This is information on a product in full production.
July 2018 DS12110 Rev 5 1/231
STM32H743xI
32-bit Arm® Cortex®-M7 400MHz MCUs, up to 2MB Flash,
1MB RAM, 46 com. and analog interfaces
Datasheet - production data
Features
Core
32-bit Arm® Cortex®-M7 core with double-
precision FPU and L1 cache: 16 Kbytes of data
and 16 Kbytes of instruction cache; frequency
up to 400 MHz, MPU, 856 DMIPS/
2.14 DMIPS/MHz (Dhrystone 2.1), and DSP
instructions
Memories
Up to 2 Mbytes of Flash memory with read-
while-write support
1 Mbyte of RAM: 192 Kbytes of TCM RAM (inc.
64 Kbytes of ITCM RAM + 128 Kbytes of
DTCM RAM for time critical routines),
864 Kbytes of user SRAM, and 4 Kbytes of
SRAM in Backup domain
Dual mode Quad-SPI memory interface
running up to 133 MHz
Flexible external memory controller with up to
32-bit data bus: SRAM, PSRAM,
SDRAM/LPSDR SDRAM, NOR/NAND Flash
memory clocked up to 133 MHz in
Synchronous mode
CRC calculation unit
Security
ROP, PC-ROP, active tamper
General-purpose input/outputs
Up to 168 I/O ports with interrupt capability
Reset and power management
3 separate power domains which can be
independently clock-gated or switched off:
D1: high-performance capabilities
D2: communication peripherals and timers
D3: reset/clock control/power management
1.62 to 3.6 V application supply and I/Os
POR, PDR, PVD and BOR
Dedicated USB power embedding a 3.3 V
internal regulator to supply the internal PHYs
Embedded regulator (LDO) with configurable
scalable output to supply the digital circuitry
Voltage scaling in Run and Stop mode (5
configurable ranges)
Backup regulator (~0.9 V)
Voltage reference for analog peripheral/VREF+
Low-power modes: Sleep, Stop, Standby and
VBAT supporting battery charging
Low-power consumption
Total current consumption down to 4
µA
Clock management
Internal oscillators: 64 MHz HSI, 48 MHz
HSI48, 4 MHz CSI, 32 kHz LSI
External oscillators: 4-48 MHz HSE,
32.768 kHz LSE
3× PLLs (1 for the system clock, 2 for kernel
clocks) with Fractional mode
Interconnect matrix
3 bus matrices (1 AXI and 2 AHB)
Bridges (5× AHB2-APB, 2× AXI2-AHB)
)%*$
LQFP208
(28x28 mm)
LQFP176
(24x24 mm)
LQFP144
(20x20 mm)
LQFP100
(14x14 mm)
UFBGA176+25 (10x10 mm)
UFBGA169 (7x7 mm)
)%*$
TFBGA240+25 (14x14 mm)
TFBGA100 (8x8 mm)(1)
www.st.com
STM32H743xI
2/231 DS12110 Rev 5
4 DMA controllers to unload the CPU
1× high-speed master direct memory access
controller (MDMA) with linked list support
2× dual-port DMAs with FIFO
1× basic DMA with request router capabilities
Up to 35 communication peripherals
4× I2Cs FM+ interfaces (SMBus/PMBus)
4× USARTs/4x UARTs (ISO7816 interface,
LIN, IrDA, up to 12.5 Mbit/s) and 1x LPUART
6× SPIs, 3 with muxed duplex I2S audio class
accuracy via internal audio PLL or external
clock, 1x I2S in LP domain (up to 133 MHz)
4x SAIs (serial audio interface)
SPDIFRX interface
SWPMI single-wire protocol master I/F
MDIO Slave interface
2× SD/SDIO/MMC interfaces (up to 125 MHz)
2× CAN controllers: 2 with CAN FD, 1 with
time-triggered CAN (TT-CAN)
2× USB OTG interfaces (1FS, 1HS/FS) crystal-
less solution with LPM and BCD
Ethernet MAC interface with DMA controller
HDMI-CEC
8- to 14-bit camera interface (up to 80 MHz)
11 analog peripherals
3× ADCs with 16-bit max. resolution (up to 36
channels, 4.5 MSPS at 12 bits)
1× temperature sensor
2× 12-bit D/A converters (1 MHz)
2× ultra-low-power comparators
2× operational amplifiers (8 MHz bandwidth)
1× digital filters for sigma delta modulator
(DFSDM) with 8 channels/4 filters
Graphics
LCD-TFT controller up to XGA resolution
Chrom-ART graphical hardware Accelerator™
(DMA2D) to reduce CPU load
Hardware JPEG Codec
Up to 22 timers and watchdogs
1× high-resolution timer (2.5 ns max
resolution)
2× 32-bit timers with up to 4 IC/OC/PWM or
pulse counter and quadrature (incremental)
encoder input (up to 200 MHz)
2× 16-bit advanced motor control timers (up to
200 MHz)
10× 16-bit general-purpose timers (up to
200 MHz)
5× 16-bit low-power timers (up to 200 MHz)
2× watchdogs (independent and window)
1× SysTick timer
RTC with sub-second accuracy & HW calendar
Debug mode
SWD & JTAG interfaces
4-Kbyte Embedded Trace Buffer
True random number generators (3
oscillators each)
96-bit unique ID
All packages are ECOPACK®2 compliant
Table 1. Device summary
Reference Part number
STM32H743xI STM32H743VI, STM32H743ZI, STM32H743II, STM32H743BI, STM32H743XI,
STM32H743AI
DS12110 Rev 5 3/231
STM32H743xI Contents
6
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Arm® Cortex®-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Low-power strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.1 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.2 System reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.9 Bus-interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10 DMA controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.11 Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 28
3.13 Extended interrupt and event controller (EXTI) . . . . . . . . . . . . . . . . . . . . 28
3.14 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 28
3.15 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.17 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.18 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.19 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.20 Digital-to-analog converters (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Contents STM32H743xI
4/231 DS12110 Rev 5
3.21 Ultra-low-power comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.22 Operational amplifiers (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.23 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 32
3.24 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.25 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.26 JPEG Codec (JPEG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.27 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.28 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.28.1 High-resolution timer (HRTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.28.2 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.28.3 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.28.4 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.28.5 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5) . . . . 38
3.28.6 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.28.7 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.28.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.29 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 39
3.30 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.31 Universal synchronous/asynchronous receiver transmitter (USART) . . . 40
3.32 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 41
3.33 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 42
3.34 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.35 SPDIFRX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.36 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 43
3.37 Management Data Input/Output (MDIO) slaves . . . . . . . . . . . . . . . . . . . . 44
3.38 SD/SDIO/MMC card host interfaces (SDMMC) . . . . . . . . . . . . . . . . . . . . 44
3.39 Controller area network (FDCAN1, FDCAN2) . . . . . . . . . . . . . . . . . . . . . 44
3.40 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 45
3.41 Ethernet MAC interface with dedicated DMA controller (ETH) . . . . . . . . . 45
3.42 High-definition multimedia interface (HDMI)
- consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.43 Debug infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
DS12110 Rev 5 5/231
STM32H743xI Contents
6
5 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.2 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.3 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 101
6.3.4 Embedded reset and power control block characteristics . . . . . . . . . . 102
6.3.5 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.7 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.11 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.13 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 129
6.3.14 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.15 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.16 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.17 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.3.18 Quad-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3.19 Delay block (DLYB) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3.20 16-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3.21 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.3.22 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . . 169
6.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.3.24 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Contents STM32H743xI
6/231 DS12110 Rev 5
6.3.25 Voltage booster for analog switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.3.26 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.3.27 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.3.28 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics . . . 176
6.3.29 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 179
6.3.30 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 180
6.3.31 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.3.32 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.3.33 JTAG/SWD interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.1 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.2 TFBGA100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array
package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.3 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.4 UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211
7.5 LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
7.6 LQFP208 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.7 UFBGA176+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7.8 TFBGA240+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.9 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
7.9.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
DS12110 Rev 5 7/231
STM32H743xI List of tables
9
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32H743xI features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 3. System vs domain low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 4. DFSDM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 5. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 6. USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 7. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 8. STM32H743xI pin/ball definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 9. Port A alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 10. Port B alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 11. Port C alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 12. Port D alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 13. Port E alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 14. Port F alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 15. Port G alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 16. Port H alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 17. Port I alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 18. Port J alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 19. Port K alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 20. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 21. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 22. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 23. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 24. VCAP operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 25. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . 101
Table 26. Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 27. Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 28. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 29. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM, regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 30. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, cache ON, regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 31. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, cache OFF, regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 32. Typical consumption in Run mode and corresponding performance
versus code position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 33. Typical current consumption batch acquisition mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 34. Typical and maximum current consumption in Sleep mode, regulator ON. . . . . . . . . . . . 107
Table 35. Typical and maximum current consumption in Stop mode, regulator ON. . . . . . . . . . . . . 108
Table 36. Typical and maximum current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . 108
Table 37. Typical and maximum current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . 109
Table 38. Peripheral current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 39. Peripheral current consumption in Stop, Standby and VBAT mode . . . . . . . . . . . . . . . . . 116
Table 40. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 41. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 42. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 43. 4-48 MHz HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 44. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
List of tables STM32H743xI
8/231 DS12110 Rev 5
Table 45. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 46. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 47. CSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 48. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 49. PLL characteristics (wide VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 50. PLL characteristics (medium VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 51. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 52. Flash memory programming (single bank configuration nDBANK=1) . . . . . . . . . . . . . . . 127
Table 53. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 54. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 55. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 56. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 57. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 58. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 59. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 60. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 61. Output timing characteristics (HSLV OFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 62. Output timing characteristics (HSLV ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 63. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 64. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 140
Table 65. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings . . . . . . . . . . 140
Table 66. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 141
Table 67. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings. . . . . . . . . . 142
Table 68. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 69. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 143
Table 70. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 71. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 145
Table 72. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 73. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 74. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 75. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 76. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 77. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 78. SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 79. LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 80. SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 81. LPSDR SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 82. Quad-SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 83. Quad SPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 84. Dynamics characteristics: Delay Block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 85. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 86. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 87. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 88. DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 89. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 90. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 91. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 92. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 93. VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 94. Voltage booster for analog switch characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 95. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 96. OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
DS12110 Rev 5 9/231
STM32H743xI List of tables
9
Table 97. DFSDM measured timing 1.62-3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 98. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Table 99. LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Table 100. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Table 101. Minimum i2c_ker_ck frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Table 102. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Table 103. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 104. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Table 105. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Table 106. MDIO Slave timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Table 107. Dynamic characteristics: SD / MMC characteristics, VDD=2.7V to 3.6V . . . . . . . . . . . . . 191
Table 108. Dynamic characteristics: eMMC characteristics, VDD=1.71V to 1.9V . . . . . . . . . . . . . . . 192
Table 109. USB OTG_FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Table 110. Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Table 111. Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 195
Table 112. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 196
Table 113. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 197
Table 114. Dynamics characteristics: JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Table 115. Dynamics characteristics: SWD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Table 116. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Table 117. TFBGA100, 8 x 8 × 0.8 mm thin fine-pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Table 118. TFBGA100 recommended PCB design rules (0.8 mm pitch BGA). . . . . . . . . . . . . . . . . . 206
Table 119. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Table 120. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Table 121. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Table 122. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Table 123. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . 220
Table 124. UFBGA 176+25 recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . 221
Table 125. TFBG - 240 +25 ball, 14x14 mm, 0.8 mm pitch, fine pitch ball grid array
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Table 126. TFBGA - 240+25ball recommended PCB design rules (0.8 mm pitch) . . . . . . . . . . . . . . 225
Table 127. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Table 128. STM32H743xI ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Table 129. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
List of figures STM32H743xI
10/231 DS12110 Rev 5
List of figures
Figure 1. STM32H743xI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 2. Power-up/power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 3. STM32H743xI bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 4. LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 5. TFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 6. LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 7. UFBGA169 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 8. LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 9. UFBGA176+25 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 10. LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 11. TFBGA240+25 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 12. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 13. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 14. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 15. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 16. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 17. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 18. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 19. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 20. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 21. VIL/VIH for all I/Os except BOOT0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 22. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 23. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 139
Figure 24. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 141
Figure 25. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 142
Figure 26. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 27. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Figure 28. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Figure 29. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 30. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Figure 31. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 32. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 33. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 153
Figure 34. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 154
Figure 35. SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 36. SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 37. Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 38. Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 39. ADC accuracy characteristics (12-bit resolution) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 40. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Figure 41. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 165
Figure 42. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 165
Figure 43. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Figure 44. Channel transceiver timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 45. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Figure 46. LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 47. LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 48. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
DS12110 Rev 5 11/231
STM32H743xI List of figures
11
Figure 49. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 50. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 51. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 52. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 53. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 54. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 55. MDIO Slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Figure 56. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 57. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 58. DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 59. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Figure 60. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure 61. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure 62. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Figure 63. JTAG timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 64. SWD timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 65. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 200
Figure 66. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Figure 67. LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Figure 68. TFBGA100, 8 × 8 × 0.8 mm thin fine-pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Figure 69. TFBGA100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Figure 70. TFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Figure 71. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . 207
Figure 72. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Figure 73. LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Figure 74. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid
array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Figure 75. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline . . . . . . . . . . . . . . 212
Figure 76. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Figure 77. LQFP176 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Figure 78. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline . . . . . . . . . . . . . . 216
Figure 79. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Figure 80. LQFP208 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Figure 81. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Figure 82. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Figure 83. UFBGA176+25 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Figure 84. TFBGA - 240+25 ball, 14x14 mm, 0.8 mm pitch, fine pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Figure 85. TFBGA - 240+25 ball, 14x14 mm 0.8 mm pitch
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Figure 86. TFBGA240+25 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Introduction STM32H743xI
12/231 DS12110 Rev 5
1 Introduction
This document provides information on STM32H743xI microcontrollers, such as description,
functional overview, pin assignment and definition, electrical characteristics, packaging, and
ordering information.
This document should be read in conjunction with the STM32H743xI reference manual
(RM0433), available from the STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M7 core, please refer to the Cortex®-M7 Technical
Reference Manual, available from the http://www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS12110 Rev 5 13/231
STM32H743xI Description
47
2 Description
STM32H743xI devices are based on the high-performance Arm® Cortex®-M7 32-bit RISC
core operating at up to 400 MHz. The Cortex® -M7 core features a floating point unit (FPU)
which supports Arm® double-precision (IEEE 754 compliant) and single-precision data-
processing instructions and data types. STM32H743xI devices support a full set of DSP
instructions and a memory protection unit (MPU) to enhance application security.
STM32H743xI devices incorporate high-speed embedded memories with a dual-bank Flash
memory up to 2 Mbytes, 1 Mbyte of RAM (including 192 Kbytes of TCM RAM, 864 Kbytes of
user SRAM and 4 Kbytes of backup SRAM), as well as an extensive range of enhanced
I/Os and peripherals connected to APB buses, AHB buses, 2x32-bit multi-AHB bus matrix
and a multi layer AXI interconnect supporting internal and external memory access.
All the devices offer three ADCs, two DACs, two ultra-low power comparators, a low-power
RTC, a high-resolution timer, 12 general-purpose 16-bit timers, two PWM timers for motor
control, five low-power timers, a true random number generator (RNG). The devices support
four digital filters for external sigma-delta modulators (DFSDM). They also feature standard
and advanced communication interfaces.
Standard peripherals
–Four I
2Cs
Four USARTs, four UARTs and one LPUART
Six SPIs, three I2Ss in Half-duplex mode. To achieve audio class accuracy, the I2S
peripherals can be clocked by a dedicated internal audio PLL or by an external
clock to allow synchronization.
Four SAI serial audio interfaces
One SPDIFRX interface
One SWPMI (Single Wire Protocol Master Interface)
Management Data Input/Output (MDIO) slaves
Two SDMMC interfaces
A USB OTG full-speed and a USB OTG high-speed interface with full-speed
capability (with the ULPI)
One FDCAN plus one TT-CAN interface
An Ethernet interface
Chrom-ART Accelerator
HDMI-CEC
Advanced peripherals including
A flexible memory control (FMC) interface
A Quad-SPI Flash memory interface
A camera interface for CMOS sensors
An LCD-TFT display controller
A JPEG hardware compressor/decompressor
Refer to Table 2: STM32H743xI features and peripheral counts for the list of peripherals
available on each part number.
Description STM32H743xI
14/231 DS12110 Rev 5
STM32H743xI devices operate in the –40 to +85 °C temperature range from a 1.62 to 3.6 V
power supply. The supply voltage can drop down to 1.62 V by using an external power
supervisor (see Section 3.5.2: Power supply supervisor) and connecting the PDR_ON pin to
VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power
voltage detector enabled.
Dedicated supply inputs for USB (OTG_FS and OTG_HS) are available on all packages
except LQFP100 to allow a greater power supply choice.
A comprehensive set of power-saving modes allows the design of low-power applications.
STM32H743xI devices are offered in 8 packages ranging from 100 pins to 240 pins/balls.
The set of included peripherals changes with the device chosen.
These features make STM32H743xI microcontrollers suitable for a wide range of
applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Mobile applications, Internet of Things
Wearable devices: smart watches.
Figure 1 shows the general block diagram of the device family.
Table 2. STM32H743xI features and peripheral counts
Peripherals STM32H
743VI
STM32H
743ZI
STM32H
743AI
STM32H
743II
STM32H
743BI
STM32H
743XI
Flash memory in Kbytes 2048
SRAM in
Kbytes
SRAM mapped onto
AXI bus 512
SRAM1 (D2 domain) 128
SRAM2 (D2 domain) 128
SRAM3 (D2 domain) 32
SRAM4 (D3 domain) 64
TCM RAM in
Kbytes
ITCM RAM
(instruction) 64
DTCM RAM (data) 128
Backup SRAM (Kbytes) 4
FMC Yes
Quad-SPI Yes
Ethernet Yes
DS12110 Rev 5 15/231
STM32H743xI Description
47
Timers
High-resolution 1
General-purpose 10
Advanced-control
(PWM) 2
Basic 2
Low-power 5
Random number generator Yes
Communicati
on interfaces
SPI / I2S6/3
(1)
I2C4
USART/UART/
LPUART
4/4
/1
SAI 4
SPDIFRX 4 inputs
SWPMI Yes
MDIO Yes
SDMMC 2
FDCAN/TT-CAN 1/1
USB OTG_FS Yes
USB OTG_HS Yes
Ethernet and camera interface Yes
LCD-TFT Yes
JPEG Codec Yes
Chrom-ART Accelerator™ (DMA2D) Yes
GPIOs 82 114 131 140 168
16-bit ADCs
Number of channels
3
Up to 36
12-bit DAC
Number of channels
Yes
2
Comparators 2
Operational amplifiers 2
DFSDM Yes
Maximum CPU frequency 400 MHz
Operating voltage 1.71 to
3.6 V(2) 1.62 to 3.6 V(3)
Table 2. STM32H743xI features and peripheral counts (continued)
Peripherals STM32H
743VI
STM32H
743ZI
STM32H
743AI
STM32H
743II
STM32H
743BI
STM32H
743XI
Description STM32H743xI
16/231 DS12110 Rev 5
Operating temperatures
Ambient temperatures: –40 up to +85 °C(4)
Junction temperature: –40 to + 125 °C
Package LQFP100
TFBGA100(5) LQFP144 UFBGA
169(5)
LQFP176
UFBGA
176+25
LQFP208 TFBGA
240+25
1. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio
mode.
2. Since the LQFP100 package does not feature the PDR_ON pin (tied internally to VDD), the minimum VDD value for this
package is 1.71 V.
3. VDD/VDDA can drop down to 1.62 V by using an external power supervisor (see Section 3.5.2: Power supply supervisor)
and connecting PDR_ON pin to VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power
voltage detector enabled.
4. The product junction temperature must be kept within the –40 to +125 °C temperature range.
5. This package is under development. Please contact STMicroelectronics for details.
Table 2. STM32H743xI features and peripheral counts (continued)
Peripherals STM32H
743VI
STM32H
743ZI
STM32H
743AI
STM32H
743II
STM32H
743BI
STM32H
743XI
DS12110 Rev 5 17/231
STM32H743xI Description
47
Figure 1. STM32H743xI block diagram
06Y9
77)'&$1
)'&$1
,&60%86
,&60%86
,&60%86
$;,$+%0+]
FRPSOFKDQ7,0B&+>@1
FKDQ7,0B&+>@(75%.,1DV$)
$3% 0+]
7;5;
6&/6'$60%$/DV$)
$3%0+]PD[
0'0$
3.>@
FRPSOFKDQ7,0B&+>@1
FKDQ7,0B&+>@(75
%.,1DV$)
5;7;6&.&76576DV$)
6&/6'$60%$/DV$)
6&/6'$60%$/DV$)
026,0,626&.166
6'26',&.:60&.DV$)
7;5;
5;7;DV$)
5;7;DV$)
5;7;6&.
&76576DV$)
5;7;6&.&76
576DV$)
FKDQQHODV$)
VPFDUG
LU'$
FKDQQHODV$)
FKDQQHOVDV$)
FKDQQHOV
FKDQQHOV(75DV$)
FKDQQHOV(75DV$)
FKDQQHOV(75DV$)
5;7;DV$)
),)2
/&'7)7
),)2
&+520$57
'0$'
6'6&.)60&/.'&.>@DV
$)
),)2
/&'B5>@/&'B*>@
/&'B%>@/&'B+6<1&
/&'B96<1&/&'B'(/&'B&/.
&/.&6'>@
ELW$;,%860$75,;
+'0,B&(&DV$)
,1>@DV$)
0'&0',2
$;,0
$;,0
$UP&38
&RUWH[0
0+]
$+%3
$+%6
75$&(&.
75$&('>@
-7567-7',
-7&.6:&/.
-7'26:'-7'2
-7$*6:
(70
,&DFKH
.%
'&DFKH
.%
,7&0
.%
'7&0
.%
6WUHDPV
),)2
6'00&
6'00&B'>@6'00&B'>@'LU
6'00&B'GLU6'00&B'GLU
&0'&0'GLU&.&NLQ
&.LRDV$)
),)2
'0$
),)2V
6WUHDP
'0$
),)2V
(7+(5
0$&
),)2
6'00&
),)2
27*B+6
),)2
27*B)6
),)2
65$0
.%
6WUHDP
)0&BVLJQDOV
'0$ '0$ '0$
3+< 3+<
0,,50,,
0',2
DV$)
'3'0673
1;78/3,&.
'>@',5
,'9%86
$+%0+]
$'&
'$&B287'$&B287DV$)
E
$;,$+%0+]
-3(*
::'*
$+%0+]
$+%0+]
3$->@
+6<1&96<1&3,;&/.'>@
6$,
026,0,626&.166DV$)
026,0,626&.166DV$)
VPFDUG
LU'$ ELW$+%%860$75,;
$+%0+]
%'0$
'0$
0X[
8SWRDQDORJLQSXWV
FRPPRQWR$'&
+6(0
$+%0+]
$+%
$+%
$+%
$+%
$+%
$+%
9''$966$
15(6(7
:.83>@
#9''
5&&
5HVHW
FRQWURO
26&B,1
26&B287
9%$7 WR9
$:8
9'' %%JHQ32:(501*7
/6 /6
26&B,1
26&B287
57&B76
57&B7$03>@
57&B287
57&B5(),1
9''00& WR9
9''86% WR9
9'' WR9
966
9&$3
#9''
#9''
#96:
3:5&75/
$+%0+]
6833/<683(59,6,21
,QW
325
UHVHW
#9''
:'*B/6B'
/37,0B,1/37,0B,1
/37,0B287DV$)
23$03[B9,10
23$03[B9,13
23$03[B9287DV$)
+57,0B&+>$(@[
+57,0B)/7>@
+57,0B)/7>@BLQ6<6)/7
')6'0B&.287
')6'0B'$7$,1>@
')6'0B&.,1>@
FRPSOFKDQ7,0B&+>@1
FKDQ7,0B&+>@%.,1DV$)
FRPSOFKDQ7,0B&+1
FKDQ7,0B&+%.,1DV$)
FRPSOFKDQ7,0B&+1
FKDQ7,0B&+%.,1DV$)
6'00&B
'>@
&0'&.DV$)
8SWRDQDORJLQSXWV
FRPPRQWR$'&DQG
6'6&.)60&/.
'>@&.>@DV$)
6&/6'$60%$/DV$)
&203[B,13&203[B,10
&203[B287DV$)
/37,0B287DV$)
'7&0
.%
$+%$3%
4XDG63,
0%)/$6+
0%)/$6+
.%$;,
65$0
)0&
'HOD\EORFN
'&0, $+%$3%
+57,0
')6'0
6'6&.)60&/.&.>@DV$)
),)2
6$,
6'6&.)60&/.'>@
&.>@DV$)
),)2
6$,
63,
7,0
7,0
7,0
63,
026,0,626&.166
6'26',&.:60&.DV$) 63,,6
86$57
5;7;6&.&76576DV$) LU'$ 86$57
7,03:0 E
7,03:0 E
$3%0+]PD[
$'&
*3,23257$-
*3,23257.
6$,
&203
/37,0
/37,0B287DV$) /37,0
/37,0B287DV$) /37,0
,&
026,0,626&.166
6'26',&.:60&.DV$) 63,,6
5;7;&.&76576DV$) /38$57
/37,0
95()
6<6&)*
(;7,:.83
&5&
'$3
51*
'0$
0X[
7R$3%
SHULSKHUDOV
65$0
.%
65$0
.%
$'&
$+%$3%
7,0 E
7,0 E
6:30,
7,0
E
7,0
E
7,0
E
7,0
E
7,0
E
7,0
E
7,0
E
86$57
VPFDUG
LU'$
86$57
8$57
8$57
8$57
5;7;DV$)
8$57
63,,6
026,0,626&.166
6'26',&.:60&.DV$)
63,,6
'LJLWDOILOWHU
0',2V
),)2
.%65$0
5$0
,)
86%&5
63',)5;
+'0,&(&
'$&
/37,0
23$03
$+%$3%
;7$/N+]
57&
%DFNXSUHJLVWHUV
;7$/26&
0+]
+65&
/65&
3//3//3//
3253'5%25
39'
VPFDUG
9ROWDJH
UHJXODWRU
ϯϯƚŽϭϮs
/6,
+6,
&6,
+6,
/37,0B,1/37,0B,1DQG
/37,0B287
$+%0+]
'3'0,'
9%86
.%65$0 .%%.3
5$0
$+%
ELW$+%%860$75,;
$3%0+]PD[
$3%0+]PD[
$3%0+]PD[
,:'*
7HPSHUDWXUH
VHQVRU
Functional overview STM32H743xI
18/231 DS12110 Rev 5
3 Functional overview
3.1 Arm® Cortex®-M7 with FPU
The Arm® Cortex®-M7 with double-precision FPU processor is the latest generation of Arm
processors for embedded systems. It was developed to provide a low-cost platform that
meets the needs of MCU implementation, with a reduced pin count and optimized power
consumption, while delivering outstanding computational performance and low interrupt
latency.
The Cortex®-M7 processor is a highly efficient high-performance featuring:
Six-stage dual-issue pipeline
Dynamic branch prediction
Harvard architecture with L1 caches (16 Kbytes of I-cache and 16 Kbytes of D-cache)
64-bit AXI interface
64-bit ITCM interface
2x32-bit DTCM interfaces
The following memory interfaces are supported:
Separate Instruction and Data buses (Harvard Architecture) to optimize CPU latency
Tightly Coupled Memory (TCM) interface designed for fast and deterministic SRAM
accesses
AXI Bus interface to optimize Burst transfers
Dedicated low-latency AHB-Lite peripheral bus (AHBP) to connect to peripherals.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
It also supports single and double precision FPU (floating point unit) speeds up software
development by using metalanguage development tools, while avoiding saturation.
Figure 1 shows the general block diagram of the STM32H743xI family.
Note: Cortex®-M7 with FPU core is binary compatible with the Cortex®-M4 core.
3.2 Memory protection unit (MPU)
The memory protection unit (MPU) manages the CPU access rights and the attributes of the
system resources. It has to be programmed and enabled before use. Its main purposes are
to prevent an untrusted user program to accidentally corrupt data used by the OS and/or by
a privileged task, but also to protect data processes or read-protect memory regions.
The MPU defines access rules for privileged accesses and user program accesses. It
allows defining up to 16 protected regions that can in turn be divided into up to 8
independent subregions, where region address, size, and attributes can be configured. The
protection area ranges from 32 bytes to 4 Gbytes of addressable memory.
When an unauthorized access is performed, a memory management exception is
generated.
DS12110 Rev 5 19/231
STM32H743xI Functional overview
47
3.3 Memories
3.3.1 Embedded Flash memory
The STM32H743xI devices embed up to 2 Mbytes of Flash memory that can be used for
storing programs and data.
The Flash memory is organized as 266-bit Flash words memory that can be used for storing
both code and data constants. Each word consists of:
One Flash word (8 words, 32 bytes or 256 bits)
10 ECC bits.
The Flash memory is divided into two independent banks. Each bank is organized as
follows:
A 1-Mbyte user Flash memory block containing eight user sectors of
128 Kbytes(4 K Flash words)
128 Kbytes of System Flash memory from which the device can boot
2 Kbytes (64 Flash words) of user option bytes for user configuration
3.3.2 Embedded SRAM
All devices feature:
512 Kbytes of AXI-SRAM mapped onto AXI bus on D1 domain.
SRAM1 mapped on D2 domain: 128 Kbytes
SRAM2 mapped on D2 domain: 128 Kbytes
SRAM3 mapped on D2 domain: 32 Kbytes
SRAM4 mapped on D3 domain: 64 Kbytes
4 Kbytes of backup SRAM
The content of this area is protected against possible unwanted write accesses,
and is retained in Standby or VBAT mode.
RAM mapped to TCM interface (ITCM and DTCM):
Both ITCM and DTCM RAMs are 0 wait state memories. either They can be accessed
either from the CPU or the MDMA (even in Sleep mode) through a specific AHB slave
of the CPU(AHBP):
64 Kbytes of ITCM-RAM (instruction RAM)
This RAM is connected to ITCM 64-bit interface designed for execution of critical
real-times routines by the CPU.
128 Kbytes of DTCM-RAM (2x 64-Kbyte DTCM-RAMs on 2x32-bit DTCM ports)
The DTCM-RAM could be used for critical real-time data, such as interrupt service
routines or stack/heap memory. Both DTCM-RAMs can be used in parallel (for
load/store operations) thanks to the Cortex®-M7 dual issue capability.
The MDMA can be used to load code or data in ITCM or DTCM RAMs.
Functional overview STM32H743xI
20/231 DS12110 Rev 5
Error code correction (ECC)
Over the product lifetime, and/or due to external events such as radiations, invalid bits in
memories may occur. They can be detected and corrected by ECC. This is an expected
behavior that has to be managed at final-application software level in order to ensure data
integrity through ECC algorithms implementation.
SRAM data are protected by ECC:
7 ECC bits are added per 32-bit word.
8 ECC bits are added per 64-bit word for AXI-SRAM and ITCM-RAM.
The ECC mechanism is based on the SECDED algorithm. It supports single-error correction
and double-error detection.
3.4 Boot modes
At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option
bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF
which includes:
All Flash address space
All RAM address space: ITCM, DTCM RAMs and SRAMs
The System memory bootloader
The boot loader is located in non-user System memory. It is used to reprogram the Flash
memory through a serial interface (USART, I2C, SPI, USB-DFU). Refer to STM32
microcontroller System memory Boot mode application note (AN2606) for details.
3.5 Power supply management
3.5.1 Power supply scheme
STM32H743xI power supply voltages are the following:
VDD = 1.62 to 3.6 V: external power supply for I/Os, provided externally through VDD
pins.
VDDLDO = 1.62 to 3.6 V: supply voltage for the internal regulator supplying VCORE
VDDA = 1.62 to 3.6 V: external analog power supplies for ADC, DAC, COMP and
OPAMP.
VDD33USB and VDD50USB:
VDD50USB can be supplied through the USB cable to generate the VDD33USB via the
USB internal regulator. This allows supporting a VDD supply different from 3.3 V.
The USB regulator can be bypassed to supply directly VDD33USB if VDD = 3.3 V.
VBAT = 1.2 to 3.6 V: power supply for the VSW domain when VDD is not present.
VCAP: VCORE supply voltage, which values depend on voltage scaling (0.7 V, 0.9 V,
1.0 V, 1.1 V or 1.2 V). They are configured through VOS bits in PWR_D3CR register.
DS12110 Rev 5 21/231
STM32H743xI Functional overview
47
The VCORE domain is split into the following power domains that can be independently
switch off.
D1 domain containing some peripherals and the Cortex®-M7 core.
D2 domain containing a large part of the peripherals.
D3 domain containing some peripherals and the system control.
During power-up and power-down phases, the following power sequence requirements
must be respected (see Figure 2):
When VDD is below 1 V, other power supplies (VDDA, VDD33USB, VDD50USB) must
remain below VDD + 300 mV.
When VDD is above 1 V, all power supplies are independent.
During the power-down phase, VDD can temporarily become lower than other supplies only
if the energy provided to the microcontroller remains below 1 mJ. This allows external
decoupling capacitors to be discharged with different time constants during the power-down
transient phase.
Figure 2. Power-up/power-down sequence
1. VDDx refers to any power supply among VDDA, VDD33USB, VDD50USB.
06Y9

9%25

2SHUDWLQJPRGH3RZHURQ 3RZHUGRZQ WLPH
9
9'';
9''
,QYDOLGVXSSO\DUHD 9'';9''P9 9'';LQGHSHQGHQWIURP9''
Functional overview STM32H743xI
22/231 DS12110 Rev 5
3.5.2 Power supply supervisor
The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry:
Power-on reset (POR)
The POR supervisor monitors VDD power supply and compares it to a fixed threshold.
The devices remain in Reset mode when VDD is below this threshold,
Power-down reset (PDR)
The PDR supervisor monitors VDD power supply. A reset is generated when VDD drops
below a fixed threshold.
The PDR supervisor can be enabled/disabled through PDR_ON pin.
Brownout reset (BOR)
The BOR supervisor monitors VDD power supply. Three BOR thresholds (from 2.1 to
2.7 V) can be configured through option bytes. A reset is generated when VDD drops
below this threshold.
3.5.3 Voltage regulator
The same voltage regulator supplies the 3 power domains (D1, D2 and D3). D1 and D2 can
be independently switched off.
Voltage regulator output can be adjusted according to application needs through 5 power
supply levels:
Run mode (VOS1 to VOS3)
Scale 1: high performance
Scale 2: medium performance and consumption
Scale 3: optimized performance and low-power consumption
Stop mode (SVOS3 to SVOS5)
Scale 3: peripheral with wakeup from Stop mode capabilities (UART, SPI, I2C,
LPTIM) are operational
Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled
The peripheral functionality is disabled but wakeup from Stop mode is possible
through GPIO or asynchronous interrupt.
DS12110 Rev 5 23/231
STM32H743xI Functional overview
47
3.6 Low-power strategy
There are several ways to reduce power consumption on STM32H743xI:
Decrease dynamic power consumption by slowing down the system clocks even in
Run mode and individually clock gating the peripherals that are not used.
Save power consumption when the CPU is idle, by selecting among the available low-
power mode according to the user application needs. This allows achieving the best
compromise between short startup time, low-power consumption, as well as available
wakeup sources.
The devices feature several low-power modes:
CSleep (CPU clock stopped)
CStop (CPU sub-system clock stopped)
DStop (Domain bus matrix clock stopped)
Stop (System clock stopped)
DStandby (Domain powered down)
Standby (System powered down)
CSleep and CStop low-power modes are entered by the MCU when executing the WFI
(Wait for Interrupt) or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit of
the Cortex®-Mx core is set after returning from an interrupt service routine.
A domain can enter low-power mode (DStop or DStandby) when the processor, its
subsystem and the peripherals allocated in the domain enter low-power mode.
If part of the domain is not in low-power mode, the domain remains in the current mode.
Finally the system can enter Stop or Standby when all EXTI wakeup sources are cleared
and the power domains are in DStop or DStandby mode.
Table 3. System vs domain low-power mode
System power mode D1 domain power
mode
D2 domain power
mode
D3 domain power
mode
Run DRun/DStop/DStandby DRun/DStop/DStandby DRun
Stop DStop/DStandby DStop/DStandby DStop
Standby DStandby DStandby DStandby
Functional overview STM32H743xI
24/231 DS12110 Rev 5
3.7 Reset and clock controller (RCC)
The clock and reset controller is located in D3 domain. The RCC manages the generation of
all the clocks, as well as the clock gating and the control of the system and peripheral
resets. It provides a high flexibility in the choice of clock sources and allows to apply clock
ratios to improve the power consumption. In addition, on some communication peripherals
that are capable to work with two different clock domains (either a bus interface clock or a
kernel peripheral clock), the system frequency can be changed without modifying the
baudrate.
3.7.1 Clock management
The devices embed four internal oscillators, two oscillators with external crystal or
resonator, two internal oscillators with fast startup time and three PLLs.
The RCC receives the following clock source inputs:
Internal oscillators:
64 MHz HSI clock
48 MHz RC oscillator
4 MHz CSI clock
32 kHz LSI clock
External oscillators:
4-48 MHz HSE clock
32.768 kHz LSE clock
The RCC provides three PLLs: one for system clock, two for kernel clocks.
The system starts on the HSI clock. The user application can then select the clock
configuration.
3.7.2 System reset sources
Power-on reset initializes all registers while system reset reinitializes the system except for
the debug, part of the RCC and power controller status registers, as well as the backup
power domain.
A system reset is generated in the following cases:
Power-on reset (pwr_por_rst)
Brownout reset
Low level on NRST pin (external reset)
Window watchdog
Independent watchdog
Software reset
Low-power mode security reset
Exit from Standby
DS12110 Rev 5 25/231
STM32H743xI Functional overview
47
3.8 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
After reset, all GPIOs (except debug pins) are in Analog mode to reduce power
consumption (refer to GPIOs register reset values in the device reference manual).
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
3.9 Bus-interconnect matrix
The devices feature an AXI bus matrix, two AHB bus matrices and bus bridges that allow
interconnecting bus masters with bus slaves (see Figure 3).
Functional overview STM32H743xI
26/231 DS12110 Rev 5
Figure 3. STM32H743xI bus matrix
06Y9
$;,0
'0$ (WKHUQHW
0$& 6'00&'0$ 86%+6 86%+6
$3%
6'00& 0'0$ '0$' /7'&
%'0$
$3%
&RUWH[0
,
.%
'
.%
$+%3
'0$B0(0
'0$B3(5,3+
'0$B0(0
'0$B3(5,3+
$3%
ELW$+%EXVPDWUL[
'GRPDLQ
ELW$;,EXVPDWUL[
'GRPDLQ
ELW$+%EXVPDWUL[
'GRPDLQ
'7&0
.E\WH
,7&0
.E\WH
)ODVK$
0E\WH
)ODVK%
0E\WH
$;,65$0
.E\WH
463,
)0&
65$0
.E\WH
65$0
.E\WH
65$0
.E\WH
$+%
$+%
$+%
65$0
.E\WH
%DFNXS
65$0
.E\WH
$+%6
&38
'WR'$+%
'WR'$+%
'WR'$+%
'WR'$+%
ELWEXV
ELWEXV
%XVPXOWLSOH[HU
/HJHQG
0DVWHULQWHUIDFH
6ODYHLQWHUIDFH
$+%
$;,
$+%
$3%
$3%
7&0
DS12110 Rev 5 27/231
STM32H743xI Functional overview
47
3.10 DMA controllers
. The devices feature four DMA instances to unload CPU activity:
A master direct memory access (MDMA)
The MDMA is a high-speed DMA controller, which is in charge of all types of memory
transfers (peripheral to memory, memory to memory, memory to peripheral), without
any CPU action. It features a master AXI interface and a dedicated AHB interface to
access Cortex®-M7 TCM memories.
The MDMA is located in D1 domain. It is able to interface with the other DMA
controllers located in D2 domain to extend the standard DMA capabilities, or can
manage peripheral DMA requests directly.
Each of the 16 channels can perform single block transfers, repeated block transfers
and linked list transfers.
Two dual-port DMAs (DMA1, DMA2) located in D2 domain, with FIFO and request
router capabilities.
One basic DMA (BDMA) located in D3 domain, with request router capabilities.
The DMA request router could be considered as an extension of the DMA controller. It
routes the DMA peripheral requests to the DMA controller itself. This allowing managing the
DMA requests with a high flexibility, maximizing the number of DMA requests that run
concurrently, as well as generating DMA requests from peripheral output trigger or DMA
event.
3.11 Chrom-ART Accelerator™ (DMA2D)
The Chrom-Art Accelerator™ (DMA2D) is a graphical accelerator which offers advanced bit
blitting, row data copy and pixel format conversion. It supports the following functions:
Rectangle filling with a fixed color
Rectangle copy
Rectangle copy with pixel format conversion
Rectangle composition with blending and pixel format conversion
Various image format coding are supported, from indirect 4bpp color mode up to 32bpp
direct color. It embeds dedicated memory to store color lookup tables. The DMA2D also
supports block based YCbCr to handle JPEG decoder output.
An interrupt can be generated when an operation is complete or at a programmed
watermark.
All the operations are fully automatized and are running independently from the CPU or the
DMAs.