www.irf.com 1
11/10/03
IRF740APbF
SMPS MOSFET
HEXFET® Power MOSFET
lSwitch Mode Power Supply ( SMPS )
lUninterruptable Power Supply
lHigh speed power switching
lLead-Free
Benefits
Applications
lLow Gate Charge Qg results in Simple
Drive Requirement
lImproved Gate, Avalanche and dynamic
dv/dt Ruggedness
lFully Characterized Capacitance and
Avalanche Voltage and Current
lEffective Coss specified ( See AN 1001)
VDSS Rds(on) max ID
400V 0.5510A
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 10
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 6.3 A
IDM Pulsed Drain Current 40
PD @TC = 25°C Power Dissipation 125 W
Linear Derating Factor 1.0 W/°C
VGS Gate-to-Source Voltage ± 30 V
dv/dt Peak Diode Recovery dv/dt 5.9 V/ns
TJOperating Junction and -55 to + 150
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
Mounting torqe, 6-32 or M3 screw 10 lbf•in (1.1N•m)
Absolute Maximum Ratings
T
O
-22
0
AB
SDG
PD- 94828
Notes through are on page 8
Typical SMPS Topologies:
l Single transistor Flyback Xfmr. Reset
l Single Transistor Forward Xfmr. Reset
( Both for US Line Input only )
IRF740APbF
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
gfs Forward Transconductance 4.9 ––– ––– S VDS = 50V, ID = 6.0A
QgTotal Gate Charge –– ––– 36 ID = 10A
Qgs Gate-to-Source Charge ––– ––– 9.9 nC VDS = 320V
Qgd Gate-to-Drain ("Miller") Charge ––– ––– 16 VGS = 10V, See Fig. 6 and 13
td(on) Turn-On Delay Time ––– 10 –– VDD = 200V
trRise Time ––– 35 –– ID = 10A
td(off) Turn-Off Delay Time ––– 24 –– RG = 10
tfFall Time ––– 22 ––– RD = 19.5,See Fig. 10
Ciss Input Capacitance ––– 1030 ––– VGS = 0V
Coss Output Capacitance ––– 170 ––– VDS = 25V
Crss Reverse Transfer Capacitance ––– 7.7 ––– pF ƒ = 1.0MHz, See Fig. 5
Coss Output Capacitance ––– 1490 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss Output Capacitance ––– 52 ––– VGS = 0V, VDS = 320V, ƒ = 1.0MHz
Coss eff. Effective Output Capacitance ––– 61 –– VGS = 0V, VDS = 0V to 320V
Dynamic @ TJ = 25°C (unless otherwise specified)
ns
Parameter Typ. Max. Units
EAS Single Pulse Avalanche Energy––– 630 mJ
IAR Avalanche Current––– 10 A
EAR Repetitive Avalanche Energy––– 12.5 mJ
Avalanche Characteristics
S
D
G
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode) ––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– ––– 2.0 V TJ = 25°C, IS = 10A, VGS = 0V
trr Reverse Recovery Time ––– 240 360 ns TJ = 25°C, IF = 10A
Qrr Reverse RecoveryCharge ––– 1.9 2.9 µC di/dt = 100A/µs
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Diode Characteristics
10
40
A
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 1.0
RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
RθJA Junction-to-Ambient ––– 62
Thermal Resistance
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 400 ––– –– V VGS = 0V, ID = 250µA
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.48 ––– V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– ––– 0.55 VGS = 10V, ID = 6.0A
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA
––– ––– 25 µA VDS = 400V, VGS = 0V
––– ––– 250 VDS = 320V, VGS = 0V, TJ = 125°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 30V
Gate-to-Source Reverse Leakage ––– ––– -100 nA VGS = -30V
IGSS
IDSS Drain-to-Source Leakage Current
IRF740APbF
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.01
0.1
1
10
100
0.1 1 10 100
20µs PULSE WIDTH
T = 25 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
0.1
1
10
100
0.1 1 10 100
20µs PULSE WIDTH
T = 150 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
-60 -40 -20 020 40 60 80 100 120 140 160
0.0
0.5
1.0
1.5
2.0
2.5
3.0
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
10A
0.1
1
10
100
4.0 5.0 6.0 7.0 8.0 9.0 10.0
V = 50V
20µs PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J°
T = 150 C
J°
IRF740APbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
010 20 30 40
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
10A
V = 80V
DS
V = 200V
DS
V = 320V
DS
0.1
1
10
100
0.2 0.4 0.6 0.8 1.0 1.2 1.4
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J°
T = 150 C
J°
1
10
100
10 100 1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
Single Pulse
T
T
= 150 C
= 25 C
°
°
J
C
V , Drain-to-Source Voltage (V)
I , Drain Current (A)I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
110 100 1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
100000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS
= 0V, f = 1 MHZ
Ciss = C
gs + C
gd, C
ds SHORTED
Crss
= C
gd
Coss
= C
ds
+ C
gd
IRF740APbF
www.irf.com 5
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
VDS
Pulse Width ≤ 1 µs
Duty Factor 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
0.001
0.01
0.1
1
10
0.00001 0.0001 0.001 0.01 0.1 1 10
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
25 50 75 100 125 150
0.0
2.0
4.0
6.0
8.0
10.0
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
IRF740APbF
6www.irf.com
QG
QGS QGD
VG
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
25 50 75 100 125 150
0
200
400
600
800
1000
1200
1400
Starting T , Junction Temperature ( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
°
ID
TOP
BOTTOM
4.5A
6.3A
10A
Fig 12d. Typical Drain-to-Source Voltage
Vs. Avalanche Current
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
IAV , Avalanche Current ( A)
480
500
520
540
560
580
V DSav , Avalanche Voltage ( V )
IRF740APbF
www.irf.com 7
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
+
-
+
+
+
-
-
-
Fig 14. For N-Channel HEXFETS
* VGS = 5V for Logic Level Devices
Peak Diode Recovery dv/dt Test Circuit
RG
VDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
*
IRF740APbF
8www.irf.com
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
ISD 10A, di/dt 330A/µs, VDD V(BR)DSS,
TJ 150°C
Starting TJ = 25°C, L = 12.6mH
RG = 25, IAS = 10A. (See Figure 12)
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
Pulse width 300µs; duty cycle 2%.
Notes:
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.11/03
LEAD ASSIGNMENTS
1 - GATE
2 - DRA IN
3 - SOURC E
4 - DRA IN
- B -
1.32 (.052)
1.22 (.048)
3X 0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
4.69 (.185)
4.20 (.165)
3X 0.93 (.037)
0.69 (.027)
4.06 (.160)
3.55 (.140)
1.15 (.045)
MIN
6.47 (.255)
6.10 (.240)
3.78 (.149)
3.54 (.139)
- A -
10.54 (.415)
10.29 (.405)
2.87 (.113)
2.62 (.103)
15.24 (.600)
14.84 (.584)
14.09 (.555)
13.47 (.530)
3X 1.40 (.055)
1.15 (.045)
2.54 (.100)
2X
0.36 (.014) M B A M
4
1 2 3
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDE C OUTLINE TO-220AB.
2 CONTR OLLING DIMENSION : INCH 4 HEATSINK & LE AD MEASUREMENTS DO NOT INCLUDE BURRS.
HEXFET
1- GATE
2- DRAIN
3- SOURCE
4- DRAIN
LEAD ASSIGNMENTS
IGBTs, CoPACK
1- GATE
2- COLLECTOR
3- EMITTER
4- COLLECTOR
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
EXAMPLE:
IN THE ASSEMBLY LINE "C"
T HIS IS AN IR F1010
LOT CODE 1789
AS S E MBL ED ON WW 19, 1997 PART NUMBER
ASSEMBLY
LOT CODE
DAT E CODE
YEAR 7 = 1997
LINE C
WEEK 19
LOGO
RE CT IFIER
INT E RNAT IONAL
Note: "P" in assembly line
position indicates "Lead-Free"