LM193/LM293/LM393/LM2903 Low Power Low Offset Voltage Dual Comparators General Description The LM193 series consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0 mV max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage. Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM193 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the LM193 series will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators. n n n n n Reduced VOS drift over temperature Eliminates need for dual supplies Allows sensing near ground Compatible with all forms of logic Power drain suitable for battery operation Features n Wide supply -- Voltage range: 2.0V to 36V 1.0V to 18V -- single or dual supplies: n Very low supply current drain (0.4 mA) -- independent of supply voltage n Low input biasing current: 25 nA 5 nA n Low input offset current: 3 mV n Maximum offset voltage: n Input common-mode voltage range includes ground n Differential input voltage range equal to the power supply voltage n Low output saturation voltage,: 250 mV at 4 mA n Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems Advantages n High precision comparators Schematic and Connection Diagrams DS005709-2 (c) 1999 National Semiconductor Corporation DS005709 www.national.com LM193/LM293/LM393/LM2903 Low Power Low Offset Voltage Dual Comparators October 1999 LM193/LM293/LM393/LM2903 Schematic and Connection Diagrams (Continued) Metal Can Package Dual-In-Line Package DS005709-1 DS005709-3 Order Number LM193J/883 * LM193AJ/883, LM193AJ-QMLV ** LM393J, LM393AJ, LM393M, LM2903M, LM393N, LM2903J or LM2903N See NS Package Number J08A, M08A or N08E Order Number LM193H * LH193H/883 , LM193AH-QMLV ** M193AH, LM193AH/883, LM293H, LM293AH, LM393H or LM393AH See NS Package Number H08C Note: * Also available per JM38510/11202 Note: ** See STD Mil DWG 5962-94526 www.national.com 2 LM193/LM193A -55C to +125C LM2903 -40C to +85C Storage Temperature Range -65C to +150C Lead Temperature (Soldering, 10 seconds) +260C Soldering Information Dual-In-Line Package Soldering (10 seconds) 260C Small Outline Package 215C Vapor Phase (60 seconds) Infrared (15 seconds) 220C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD rating (1.5 k in series with 100 pF) 1300V Supply Voltage, V+ Differential Input Voltage (Note 8) Input Voltage Input Current (VIN < -0.3V) (Note 3) Power Dissipation (Note 1) Molded DIP Metal Can Small Outline Package Output Short-Circuit to Ground (Note 2) Operating Temperature Range LM393/LM393A LM293/LM293A 36V 36V -0.3V to +36V 50 mA 780 mW 660 mW 510 mW Continuous 0C to +70C -25C to +85C Electrical Characteristics (V+ = 5V, TA = 25C, unless otherwise stated) Parameter Conditions LM193A Min Typ LM293A, LM393A Max Min Typ Units Max Input Offset Voltage (Note 9) 1.0 2.0 1.0 2.0 mV Input Bias Current IIN(+) or IIN(-) with Output In Linear Range, VCM = 0V (Note 5) 25 100 25 250 nA Input Offset Current IIN(+)-IIN(-) VCM = 0V V+ = 30V (Note 6) 50 nA Input Common Mode 3.0 25 5.0 V+-1.5 0 0 V+-1.5 V Voltage Range Supply Current RL = V+ = 5V V+ = 36V Voltage Gain RL15 k, V+ = 15V VO = 1V to 11V Large Signal Response Saturation Voltage VIN = TTL Logic Swing, VREF = 1.4V VRL = 5V, RL = 5.1 k VRL = 5V, RL = 5.1 k (Note 7) VIN(-) = 1V, VIN(+) = 0, VO1.5V VIN(-) = 1V, VIN(+) = 0, ISINK4 mA Output Leakage Current VIN(-) = 0, VIN(+) = 1V, VO = 5V Time Response Time Output Sink Current 50 0.4 1 0.4 1 1 2.5 1 2.5 200 50 300 1.3 6.0 16 6.0 250 400 mA 200 V/mV 300 ns 1.3 s 16 mA 250 0.1 mA 400 0.1 mV nA Electrical Characteristics (V+ = 5V, TA = 25C, unless otherwise stated) Parameter Conditions LM193 Min Typ LM293, LM393 Max Min Typ LM2903 Max Min Typ Units Max Input Offset Voltage (Note 9) 1.0 5.0 1.0 5.0 2.0 7.0 mV Input Bias Current 25 100 25 250 25 250 nA Input Offset Current IIN(+) or IIN(-) with Output In Linear Range, VCM = 0V (Note 5) IIN(+)-IIN(-) VCM = 0V 50 nA Input Common Mode V+ = 30V (Note 6) 3.0 0 25 V+-1.5 5.0 0 50 V+-1.5 5.0 0 V+-1.5 V Voltage Range Supply Current RL = V+ = 5V V+ = 36V 3 0.4 1 0.4 1 0.4 1.0 mA 1 2.5 1 2.5 1 2.5 mA www.national.com LM193/LM293/LM393/LM2903 Absolute Maximum Ratings (Note 10) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. LM193/LM293/LM393/LM2903 Electrical Characteristics (Continued) (V+ = 5V, TA = 25C, unless otherwise stated) Parameter Conditions LM193 Min Typ Voltage Gain Large Signal Response Time Response Time Output Sink Current Saturation Voltage Output Leakage Current RL15 k, V+ = 15V VO = 1V to 11V VIN = TTL Logic Swing, VREF = 1.4V VRL = 5V, RL = 5.1 k VRL = 5V, RL = 5.1 k (Note 7) VIN(-) = 1V, VIN(+) = 0, VO1.5V LM293, LM393 Max Min Typ Min Typ 50 200 50 200 25 100 300 300 300 1.3 6.0 VIN(-) = 1V, VIN(+) = 0, ISINK4 mA VIN(-) = 0, VIN(+) = 1V, VO = 5V LM2903 Max 1.3 16 250 6.0 400 16 6.0 250 0.1 400 V/mV ns 1.5 s 16 mA 250 0.1 Units Max 400 0.1 mV nA Electrical Characteristics (V+ = 5V) (Note 4) Parameter Conditions LM193A Min Typ LM293A, LM393A Max Min Typ Units Max Input Offset Voltage (Note 9) 4.0 4.0 Input Offset Current IIN(+)-IIN(-), VCM = 0V 100 150 nA Input Bias Current IIN(+) or IIN(-) with Output in Linear Range, VCM = 0V (Note 5) 300 400 nA Input Common Mode Voltage Range V+ = 30V (Note 6) V+-2.0 V Saturation Voltage VIN(-) = 1V, VIN(+) = 0, ISINK4 mA VIN(-) = 0, VIN(+) = 1V, VO = 30V 700 700 mV Output Leakage Current 1.0 1.0 A Differential Input Voltage Keep All VIN's0V (or V-, if Used), (Note 8) 36 36 V V+-2.0 0 0 mV Electrical Characteristics (V+ = 5V) (Note 4) Parameter Conditions LM193 Min Typ LM293, LM393 Max Min Typ LM2903 Max Min Typ Units Max Input Offset Voltage (Note 9) 9 9 9 15 mV Input Offset Current IIN(+)-IIN(-), VCM = 0V 100 150 50 200 nA Input Bias Current IIN(+) or IIN(-) with Output in Linear Range, VCM = 0V (Note 5) 300 400 200 500 nA Input Common Mode Voltage Range V+ = 30V (Note 6) V+-2.0 V Saturation Voltage VIN(-) = 1V, VIN(+) = 0, ISINK4 mA VIN(-) = 0, VIN(+) = 1V, VO = 30V 700 700 700 mV Output Leakage Current 1.0 1.0 1.0 A Differential Input Keep All VIN's0V (or V-, if Used), 36 36 36 V Voltage (Note 8) 0 V+-2.0 0 V+-2.0 0 400 Note 1: For operating at high temperatures, the LM393/LM393A and LM2903 must be derated based on a 125C maximum junction temperature and a thermal resistance of 170C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM193/LM193A/LM293/LM293A must be derated based on a 150C maximum junction temperature. The low bias dissipation and the "ON-OFF" characteristic of the outputs keeps the chip dissipation very small (PD100 mW), provided the output transistors are allowed to saturate. Note 2: Short circuits from the output to V+ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 20 mA independent of the magnitude of V+. Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V+ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3V. Note 4: These specifications are limited to -55CTA+125C, for the LM193/LM193A. With the LM293/LM293A all temperature specifications are limited to -25CTA+85C and the LM393/LM393A temperature specifications are limited to 0CTA+70C. The LM2903 is limited to -40CTA+85C. www.national.com 4 (Continued) Note 5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines. Note 6: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V+-1.5V at 25C, but either or both inputs can go to 36V without damage, independent of the magnitude of V+. Note 7: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section. Note 8: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3V (or 0.3V below the magnitude of the negative power supply, if used). Note 9: At output switch point, VO 1.4V, RS = 0 with V+ from 5V to 30V; and over the full input common-mode range (0V to V+-1.5V), at 25C. Note 10: Refer to RETS193AX for LM193AH military specifications and to RETS193X for LM193H military specifications. Typical Performance Characteristics Supply Current LM193/LM293/LM393, LM193A/LM293A/LM393A Input Current Output Saturation Voltage DS005709-25 DS005709-26 Response Time for Various Input Overdrives -- Negative Transition Response Time for Various Input Overdrives -- Positive Transition DS005709-28 Typical Performance Characteristics Supply Current DS005709-27 DS005709-29 LM2903 Input Current Output Saturation Voltage DS005709-31 DS005709-30 5 DS005709-32 www.national.com LM193/LM293/LM393/LM2903 Electrical Characteristics LM193/LM293/LM393/LM2903 Typical Performance Characteristics LM2903 (Continued) Response Time for Various Input Overdrives -- Negative Transition Response Time for Various Input Overdrives -- Positive Transition DS005709-33 DS005709-34 Application Hints The differential input voltage may be larger than V+ without damaging the device (Note 8). Protection should be provided to prevent the input voltages from going negative more than -0.3 VDC (at 25C). An input clamp diode can be used as shown in the applications section. The output of the LM193 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V+ terminal of the LM193 package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V+) and the of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately 60 rSAT of the output transistor. The low offset voltage of the output transistor (1.0 mV) allows the output to clamp essentially to ground level for small load currents. The LM193 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator change states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to < 10 k reduces the feedback signal levels and finally, adding even a small amount (1.0 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required. All input pins of any unused comparators should be tied to the negative supply. The bias network of the LM193 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 2.0 VDC to 30 VDC. It is usually unnecessary to use a bypass capacitor across the power supply line. Typical Applications Basic Comparator (V+ = 5.0 VDC) Driving CMOS Driving TTL DS005709-35 DS005709-36 www.national.com 6 DS005709-37 (V+ = 5.0 VDC) (Continued) Pulse Generator Squarewave Oscillator Crystal Controlled Oscillator DS005709-38 DS005709-40 DS005709-39 * For large ratios of R1/R2, D1 can be omitted. Two-Decade High Frequency VCO DS005709-41 V* = +30 VDC +250 mVDCVC+50 VDC 700 Hzfo100 kHz Basic Comparator Non-Inverting Comparator with Hysteresis DS005709-6 DS005709-9 7 www.national.com LM193/LM293/LM393/LM2903 Typical Applications LM193/LM293/LM393/LM2903 Typical Applications (V+ = 5.0 VDC) (Continued) Inverting Comparator with Hysteresis DS005709-10 Output Strobing DS005709-11 AND Gate DS005709-12 www.national.com 8 LM193/LM293/LM393/LM2903 Typical Applications (V+ = 5.0 VDC) (Continued) OR Gate DS005709-13 Large Fan-in AND Gate DS005709-14 Limit Comparator DS005709-15 9 www.national.com LM193/LM293/LM393/LM2903 Typical Applications (V+ = 5.0 VDC) (Continued) Comparing Input Voltages of Opposite Polarity DS005709-16 ORing the Outputs Zero Crossing Detector (Single Power Supply) DS005709-17 DS005709-21 One-Shot Multivibrator Bi-Stable Multivibrator DS005709-24 DS005709-22 One-Shot Multivibrator with Input Lock Out DS005709-23 www.national.com 10 LM193/LM293/LM393/LM2903 Typical Applications (V+ = 5.0 VDC) (Continued) Time Delay Generator DS005709-7 Split-Supply Applications (V+ = +15 VDC and V- = -15 VDC) MOS Clock Driver Zero Crossing Detector DS005709-43 DS005709-42 Comparator With a Negative Reference DS005709-44 11 www.national.com LM193/LM293/LM393/LM2903 Physical Dimensions inches (millimeters) unless otherwise noted Metal Can Package (H) Order Number LM193H, LM193H/883, LM193AH, LM193AH/883, LM293H, LM293AH, LM393H or LM393AH NS Package Number H08C Order Number LM193J/883, LM193AJ/883 or LM2903J NS Package Number J08A www.national.com 12 LM193/LM293/LM393/LM2903 Physical Dimensions inches (millimeters) unless otherwise noted (Continued) Order Number LM393M or LM2903M NS Package Number M08A Molded Dual-In-Line Package (N) Order Numbers LM393N or LM2903N NS Package N08E 13 www.national.com LM193/LM293/LM393/LM2903 Low Power Low Offset Voltage Dual Comparators Notes LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. National Semiconductor Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com National Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Francais Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507 National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.