PIC12F683 Data Sheet 8-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology (c) 2007 Microchip Technology Inc. DS41211D Note the following details of the code protection feature on Microchip devices: * Microchip products meet the specification contained in their particular Microchip Data Sheet. * Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. * There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. * Microchip is willing to work with the customer who is concerned about the integrity of their code. * Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. (c) 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PIC(R) MCUs and dsPIC(R) DSCs, KEELOQ(R) code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. DS41211D-page ii (c) 2007 Microchip Technology Inc. PIC12F683 8-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology High-Performance RISC CPU: Low-Power Features: * Only 35 instructions to learn: - All single-cycle instructions except branches * Operating speed: - DC - 20 MHz oscillator/clock input - DC - 200 ns instruction cycle * Interrupt capability * 8-level deep hardware stack * Direct, Indirect and Relative Addressing modes * Standby Current: - 50 nA @ 2.0V, typical * Operating Current: - 11 A @ 32 kHz, 2.0V, typical - 220 A @ 4 MHz, 2.0V, typical * Watchdog Timer Current: - 1 A @ 2.0V, typical Peripheral Features: Special Microcontroller Features: * 6 I/O pins with individual direction control: - High current source/sink for direct LED drive - Interrupt-on-pin change - Individually programmable weak pull-ups - Ultra Low-Power Wake-up on GP0 * Analog Comparator module with: - One analog comparator - Programmable on-chip voltage reference (CVREF) module (% of VDD) - Comparator inputs and output externally accessible * A/D Converter: - 10-bit resolution and 4 channels * Timer0: 8-bit timer/counter with 8-bit programmable prescaler * Enhanced Timer1: - 16-bit timer/counter with prescaler - External Timer1 Gate (count enable) - Option to use OSC1 and OSC2 in LP mode as Timer1 oscillator if INTOSC mode selected * Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler * Capture, Compare, PWM module: - 16-bit Capture, max resolution 12.5 ns - Compare, max resolution 200 ns - 10-bit PWM, max frequency 20 kHz * In-Circuit Serial ProgrammingTM (ICSPTM) via two pins * Precision Internal Oscillator: - Factory calibrated to 1%, typical - Software selectable frequency range of 8 MHz to 125 kHz - Software tunable - Two-Speed Start-up mode - Crystal fail detect for critical applications - Clock mode switching during operation for power savings * Power-Saving Sleep mode * Wide operating voltage range (2.0V-5.5V) * Industrial and Extended temperature range * Power-on Reset (POR) * Power-up Timer (PWRT) and Oscillator Start-up Timer (OST) * Brown-out Reset (BOR) with software control option * Enhanced Low-Current Watchdog Timer (WDT) with on-chip oscillator (software selectable nominal 268 seconds with full prescaler) with software enable * Multiplexed Master Clear with pull-up/input pin * Programmable code protection * High Endurance Flash/EEPROM cell: - 100,000 write Flash endurance - 1,000,000 write EEPROM endurance - Flash/Data EEPROM Retention: > 40 years Program Memory Data Memory Device PIC12F683 I/O Flash (words) SRAM (bytes) EEPROM (bytes) 2048 128 256 (c) 2007 Microchip Technology Inc. 6 10-bit A/D (ch) Comparators 4 1 Timers 8/16-bit 2/1 DS41211D-page 1 PIC12F683 VDD 1 GP5/T1CKI/OSC1/CLKIN 2 GP4/AN3/T1G/OSC2/CLKOUT 3 GP3/MCLR/VPP 4 PIC12F683 8-Pin Diagram (PDIP, SOIC) 8 VSS 7 GP0/AN0/CIN+/ICSPDAT/ULPWU 6 GP1/AN1/CIN-/VREF/ICSPCLK 5 GP2/AN2/T0CKI/INT/COUT/CCP1 8-Pin Diagram (DFN) VDD 1 GP5/TICKI/OSC1/CLKIN 2 PIC12F683 8 VSS 7 GP0/AN0/CIN+/ICSPDAT/ULPWU GP4/AN3/TIG/OSC2/CLKOUT 3 6 GP1/AN1/CIN-/VREF/ICSPCLK GP3/MCLR/VPP 4 5 GP2/AN2/T0CKI/INT/COUT/CCP1 VDD 1 8 VSS GP5/TICKI/OSC1/CLKIN 2 7 GP0/AN0/CIN+/ICSPDAT/ULPWU 8-Pin Diagram (DFN-S) PIC12F683 GP4/AN3/TIG/OSC2/CLKOUT 3 6 GP1/AN1/CIN-/VREF/ICSPCLK GP3/MCLR/VPP 4 5 GP2/AN2/T0CKI/INT/COUT/CCP1 TABLE 1: I/O 8-PIN SUMMARY Pin Analog Comparators Timer CCP Interrupts Pull-ups Basic GP0 7 AN0 CIN+ -- -- IOC Y ICSPDAT/ULPWU GP1 6 AN1/VREF CIN- -- -- IOC Y ICSPCLK GP2 5 AN2 COUT T0CKI CCP1 INT/IOC Y -- MCLR/VPP GP3(1) 4 -- -- -- -- IOC Y(2) GP4 3 AN3 -- T1G -- IOC Y OSC2/CLKOUT GP5 2 -- -- T1CKI -- IOC Y OSC1/CLKIN -- 1 -- -- -- -- -- -- VDD -- 8 -- -- -- -- -- -- VSS Note 1: 2: Input only. Only when pin is configured for external MCLR. DS41211D-page 2 (c) 2007 Microchip Technology Inc. PIC12F683 Table of Contents 1.0 Device Overview .......................................................................................................................................................................... 5 2.0 Memory Organization ................................................................................................................................................................... 7 3.0 Oscillator Module (With Fail-Safe Clock Monitor)....................................................................................................................... 19 4.0 GPIO Port................................................................................................................................................................................... 31 5.0 Timer0 Module ........................................................................................................................................................................... 41 6.0 Timer1 Module with Gate Control............................................................................................................................................... 44 7.0 Timer2 Module ........................................................................................................................................................................... 49 8.0 Comparator Module.................................................................................................................................................................... 51 9.0 Analog-to-Digital Converter (ADC) Module ................................................................................................................................ 61 10.0 Data EEPROM Memory ............................................................................................................................................................. 71 11.0 Capture/Compare/PWM (CCP) Module ..................................................................................................................................... 75 12.0 Special Features of the CPU...................................................................................................................................................... 83 13.0 Instruction Set Summary .......................................................................................................................................................... 101 14.0 Development Support............................................................................................................................................................... 111 15.0 Electrical Specifications............................................................................................................................................................ 115 16.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 137 17.0 Packaging Information.............................................................................................................................................................. 159 Appendix A: Data Sheet Revision History.......................................................................................................................................... 165 Appendix B: Migrating From Other PIC(R) Devices ............................................................................................................................. 165 The Microchip Web Site ..................................................................................................................................................................... 171 Customer Change Notification Service .............................................................................................................................................. 171 Customer Support .............................................................................................................................................................................. 171 Reader Response .............................................................................................................................................................................. 172 Product Identification System ............................................................................................................................................................ 173 TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: * Microchip's Worldwide Web site; http://www.microchip.com * Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our web site at www.microchip.com to receive the most current information on all of our products. (c) 2007 Microchip Technology Inc. DS41211D-page 3 PIC12F683 NOTES: DS41211D-page 4 (c) 2007 Microchip Technology Inc. PIC12F683 1.0 DEVICE OVERVIEW The PIC12F683 is covered by this data sheet. It is available in 8-pin PDIP, SOIC and DFN-S packages. Figure 1-1 shows a block diagram of the PIC12F683 device. Table 1-1 shows the pinout description. FIGURE 1-1: PIC12F683 BLOCK DIAGRAM INT Configuration 13 Flash 2k x 14 Program Memory Program Bus 8 Data Bus Program Counter GP0 GP1 GP2 RAM 128 bytes 8-Level Stack (13-bit) GP3 GP4 File Registers 14 RAM Addr GP5 9 Addr MUX Instruction Reg 7 Direct Addr Indirect Addr 8 FSR Reg STATUS Reg 8 3 MUX Power-up Timer Instruction Decode & Control Oscillator Start-up Timer Timing Generation OSC1/CLKIN ALU Power-on Reset 8 Watchdog Timer W Reg Brown-out Reset OSC2/CLKOUT Internal Oscillator Block CCP1 T1G MCLR VDD VSS T1CKI Timer0 Timer1 Timer2 CCP T0CKI Analog-to-Digital Converter EEDATA 1 Analog Comparator 8 256 bytes Data EEPROM EEADDR VREF AN0 AN1 AN2 AN3 (c) 2007 Microchip Technology Inc. CVREF CIN- CIN+ COUT DS41211D-page 5 PIC12F683 TABLE 1-1: PIC12F683 PINOUT DESCRIPTION Name VDD GP5/T1CKI/OSC1/CLKIN GP4/AN3/T1G/OSC2/CLKOUT GP3/MCLR/VPP GP2/AN2/T0CKI/INT/COUT/CCP1 GP1/AN1/CIN-/VREF/ICSPCLK GP0/AN0/CIN+/ICSPDAT/ULPWU VSS Legend: Function Input Type Output Type VDD Power -- Positive supply GP5 TTL CMOS T1CKI ST -- Timer1 clock GPIO I/O with prog. pull-up and interrupt-on-change OSC1 XTAL -- Crystal/Resonator CLKIN ST -- External clock input/RC oscillator connection GP4 TTL CMOS AN3 AN -- GPIO I/O with prog. pull-up and interrupt-on-change A/D Channel 3 input T1G ST -- OSC2 -- XTAL Crystal/Resonator CLKOUT -- CMOS FOSC/4 output Timer1 gate GP3 TTL -- GPIO input with interrupt-on-change MCLR ST -- Master Clear with internal pull-up VPP HV -- Programming voltage GP2 ST CMOS AN2 AN -- A/D Channel 2 input T0CKI ST -- Timer0 clock input INT ST -- External Interrupt COUT -- CMOS Comparator 1 output CCP1 ST CMOS Capture input/Compare output/PWM output GP1 TTL CMOS AN1 AN -- A/D Channel 1 input Comparator 1 input GPIO I/O with prog. pull-up and interrupt-on-change GPIO I/O with prog. pull-up and interrupt-on-change CIN- AN -- VREF AN -- External Voltage Reference for A/D ICSPCLK ST -- Serial Programming Clock GP0 TTL CMOS GPIO I/O with prog. pull-up and interrupt-on-change AN0 AN -- A/D Channel 0 input CIN+ AN -- Comparator 1 input ICSPDAT ST CMOS ULPWU AN -- Ultra Low-Power Wake-up input VSS Power -- Ground reference AN = Analog input or output TTL = TTL compatible input HV = High Voltage DS41211D-page 6 Description Serial Programming Data I/O CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels XTAL = Crystal (c) 2007 Microchip Technology Inc. PIC12F683 2.0 MEMORY ORGANIZATION 2.1 Program Memory Organization The PIC12F683 has a 13-bit program counter capable of addressing an 8k x 14 program memory space. Only the first 2k x 14 (0000h-07FFh) for the PIC12F683 is physically implemented. Accessing a location above these boundaries will cause a wraparound within the first 2K x 14 space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 2-1). FIGURE 2-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC12F683 PC<12:0> CALL, RETURN RETFIE, RETLW 2.2 Data Memory Organization The data memory (see Figure 2-2) is partitioned into two banks, which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). The Special Function Registers are located in the first 32 locations of each bank. Register locations 20h-7Fh in Bank 0 and A0h-BFh in Bank 1 are General Purpose Registers, implemented as static RAM. Register locations F0h-FFh in Bank 1 point to addresses 70h-7Fh in Bank 0. All other RAM is unimplemented and returns `0' when read. RP0 of the STATUS register is the bank select bit. RP0 0 Bank 0 is selected 1 Bank 1 is selected 13 Note: Stack Level 1 The IRP and RP1 bits of the STATUS register are reserved and should always be maintained as `0's. Stack Level 2 Stack Level 8 Reset Vector 0000h Interrupt Vector 0004h 0005h On-chip Program Memory 07FFh 0800h Wraps to 0000h-07FFh 1FFFh (c) 2007 Microchip Technology Inc. DS41211D-page 7 PIC12F683 2.2.1 GENERAL PURPOSE REGISTER FILE The register file is organized as 128 x 8 in the PIC12F683. Each register is accessed, either directly or indirectly, through the File Select Register FSR (see Section 2.4 "Indirect Addressing, INDF and FSR Registers"). 2.2.2 SPECIAL FUNCTION REGISTERS The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM. The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature. FIGURE 2-2: DATA MEMORY MAP OF THE PIC12F683 File Address File Address Indirect addr.(1) 00h Indirect addr.(1) 80h TMR0 01h OPTION_REG 81h PCL 02h PCL 82h STATUS 03h STATUS 83h FSR 04h FSR 84h GPIO 05h TRISIO 85h 06h 86h 07h 87h 08h 88h 09h 89h PCLATH 0Ah PCLATH 8Ah INTCON 0Bh INTCON 8Bh PIR1 0Ch PIE1 8Ch 0Dh 8Dh TMR1L 0Eh PCON 8Eh TMR1H 0Fh OSCCON 8Fh T1CON 10h OSCTUNE 90h TMR2 11h T2CON 12h CCPR1L 13h CCPR1H 14h CCP1CON 15h WPU 95h 16h IOC 96h 91h PR2 92h 93h 94h 17h 97h WDTCON 18h CMCON0 19h VRCON 99h CMCON1 1Ah EEDAT 9Ah 1Bh EEADR 9Bh 1Ch EECON1 9Ch 1Dh EECON2(1) 9Dh ADRESH 1Eh ADRESL 9Eh ADCON0 1Fh ANSEL General Purpose Registers 32 Bytes 9Fh A0h 20h General Purpose Registers 98h BFh C0h 96 Bytes Accesses 70h-7Fh 7Fh BANK 0 EFh F0h FFh BANK 1 Unimplemented data memory locations, read as `0'. Note 1: Not a physical register. DS41211D-page 8 (c) 2007 Microchip Technology Inc. PIC12F683 TABLE 2-1: Addr Name PIC12F683 SPECIAL REGISTERS SUMMARY BANK 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Page Bank 0 00h INDF 01h TMR0 Timer0 Module Register xxxx xxxx 41, 90 02h PCL Program Counter's (PC) Least Significant Byte 0000 0000 17, 90 03h STATUS 04h FSR 05h GPIO Addressing this location uses contents of FSR to address data memory (not a physical register) xxxx xxxx 17, 90 (1) IRP RP1 (1) RP0 TO PD Z DC C GP3 GP2 GP1 GP0 Indirect Data Memory Address Pointer -- -- GP5 GP4 0001 1xxx 11, 90 xxxx xxxx 17, 90 --xx xxxx 31, 90 06h -- Unimplemented -- -- 07h -- Unimplemented -- -- 08h -- Unimplemented -- -- 09h -- Unimplemented -- -- -- -- INTCON GIE PEIE T0IE INTE GPIE T0IF INTF PIR1 EEIF ADIF CCP1IF -- CMIF OSFIF TMR2IF 0Ah PCLATH 0Bh 0Ch 0Dh -- -- Write Buffer for upper 5 bits of Program Counter ---0 0000 17, 90 GPIF Unimplemented -- 0Eh TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 0Fh TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 10h T1CON 11h TMR2 T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC -- xxxx xxxx 44, 90 xxxx xxxx 44, 90 TMR1CS TMR1ON 0000 0000 47, 90 Timer2 Module Register 0000 0000 49, 90 12h T2CON 13h CCPR1L Capture/Compare/PWM Register 1 Low Byte 14h CCPR1H Capture/Compare/PWM Register 1 High Byte 15h CCP1CON 16h -- Unimplemented -- -- 17h -- Unimplemented -- -- 18h WDTCON -- -- -- WDTPS3 WDTPS2 WDTPS1 WDTPS0 19h CMCON0 -- COUT -- CINV CIS CM2 CM1 1Ah CMCON1 -- -- -- -- -- -- T1GSS 1Bh -- Unimplemented -- -- 1Ch -- Unimplemented -- -- 1Dh -- Unimplemented -- -- 1Eh ADRESH 1Fh ADCON0 Legend: Note 1: -- 0000 0000 13, 90 TMR1IF 000- 0000 15, 90 -- TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 50, 90 -- DC1B1 DC1B0 xxxx xxxx 76, 90 xxxx xxxx 76, 90 CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 75, 90 SWDTEN ---0 1000 97, 90 CM0 CMSYNC ---- --10 57, 90 Most Significant 8 bits of the left shifted A/D result or 2 bits of right shifted result ADFM VCFG -- -- CHS1 CHS0 GO/DONE -0-0 0000 56, 90 xxxx xxxx 61,90 ADON 00-- 0000 65,90 - = unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented IRP and RP1 bits are reserved, always maintain these bits clear. (c) 2007 Microchip Technology Inc. DS41211D-page 9 PIC12F683 TABLE 2-2: Addr PIC12F683 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1 Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Page Bank 1 80h INDF 81h OPTION_REG Addressing this location uses contents of FSR to address data memory (not a physical register) xxxx xxxx 17, 90 82h PCL GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 Program Counter's (PC) Least Significant Byte IRP(1) RP1(1) RP0 TO 1111 1111 12, 90 0000 0000 17, 90 PD Z DC C 0001 1xxx 11, 90 83h STATUS 84h FSR 85h TRISIO 86h -- Unimplemented -- -- 87h -- Unimplemented -- -- 88h -- Unimplemented -- -- 89h -- Unimplemented -- -- Indirect Data Memory Address Pointer -- -- TRISIO5 TRISIO4 xxxx xxxx 17, 90 TRISIO3 TRISIO2 TRISIO1 8Ah PCLATH -- -- -- 8Bh INTCON GIE PEIE T0IE INTE GPIE T0IF INTF EEIE ADIE CCP1IE -- CMIE OSFIE TMR2IE 8Ch PIE1 8Dh -- TRISIO0 --11 1111 32, 90 Write Buffer for upper 5 bits of Program Counter ---0 0000 17, 90 GPIF 0000 0000 13, 90 TMR1IE 000- 0000 14, 90 Unimplemented -- 8Eh PCON -- -- -- -- POR BOR 8Fh OSCCON -- IRCF2 IRCF1 IRCF0 OSTS(2) HTS LTS SCS -110 x000 20, 90 90h OSCTUNE -- -- -- TUN4 TUN3 TUN2 TUN1 TUN0 ---0 0000 24, 90 91h 92h -- PR2 ULPWUE SBOREN -- Unimplemented --01 --qq 16, 90 -- Timer2 Module Period Register -- 1111 1111 49, 90 93h -- Unimplemented -- -- 94h -- Unimplemented -- -- (3) 95h WPU -- -- WPU5 WPU4 -- WPU2 WPU1 WPU0 --11 -111 34, 90 96h IOC -- -- IOC5 IOC4 IOC3 IOC2 IOC1 IOC0 --00 0000 34, 90 97h -- Unimplemented -- -- 98h -- Unimplemented -- -- 99h VRCON VREN -- VRR -- VR3 VR2 VR1 9Ah EEDAT EEDAT7 EEDAT6 EEDAT5 EEDAT4 EEDAT3 EEDAT2 EEDAT1 EEDAT0 0000 0000 71, 90 9Bh EEADR EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 0000 0000 71, 90 -- -- -- -- WRERR WREN WR 9Ch EECON1 VR0 RD 9Dh EECON2 EEPROM Control Register 2 (not a physical register) 9Eh ADRESL Least Significant 2 bits of the left shifted result or 8 bits of the right shifted result 9Fh ANSEL Legend: Note 1: 2: 3: -- ADCS2 ADCS1 ADCS0 ANS3 0-0- 0000 58, 90 ---- x000 72, 91 ---- ---- 72, 91 ANS2 ANS1 xxxx xxxx 66, 91 ANS0 -000 1111 33, 91 - = unimplemented locations read as `0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented IRP and RP1 bits are reserved, always maintain these bits clear. OSTS bit of the OSCCON register reset to `0' with Dual Speed Start-up and LP, HS or XT selected as the oscillator. GP3 pull-up is enabled when MCLRE is `1' in the Configuration Word register. DS41211D-page 10 (c) 2007 Microchip Technology Inc. PIC12F683 2.2.2.1 STATUS Register The STATUS register, shown in Register 2-1, contains: * Arithmetic status of the ALU * Reset status * Bank select bits for data memory (SRAM) The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. REGISTER 2-1: For example, CLRF STATUS, will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u u1uu (where u = unchanged). It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, see the "Instruction Set Summary". Note 1: Bits IRP and RP1 of the STATUS register are not used by the PIC12F683 and should be maintained as clear. Use of these bits is not recommended, since this may affect upward compatibility with future products. 2: The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. STATUS: STATUS REGISTER Reserved Reserved R/W-0 R-1 R-1 R/W-x R/W-x R/W-x IRP RP1 RP0 TO PD Z DC C bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared x = Bit is unknown bit 7 IRP: This bit is reserved and should be maintained as `0' bit 6 RP1: This bit is reserved and should be maintained as `0' bit 5 RP0: Register Bank Select bit (used for direct addressing) 1 = Bank 1 (80h - FFh) 0 = Bank 0 (00h - 7Fh) bit 4 TO: Time-out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred bit 3 PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit Carry/Borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions), For Borrow, the polarity is reversed. 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result bit 0 C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register. (c) 2007 Microchip Technology Inc. DS41211D-page 11 PIC12F683 2.2.2.2 OPTION Register Note: The OPTION register is a readable and writable register, which contains various control bits to configure: * * * * TMR0/WDT prescaler External GP2/INT interrupt TMR0 Weak pull-ups on GPIO REGISTER 2-2: To achieve a 1:1 prescaler assignment for Timer0, assign the prescaler to the WDT by setting PSA bit of the OPTION register to `1' See Section 5.1.3 "Software Programmable Prescaler". OPTION_REG: OPTION REGISTER R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared x = Bit is unknown bit 7 GPPU: GPIO Pull-up Enable bit 1 = GPIO pull-ups are disabled 0 = GPIO pull-ups are enabled by individual PORT latch values in WPU register bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of INT pin 0 = Interrupt on falling edge of INT pin bit 5 T0CS: Timer0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (FOSC/4) bit 4 T0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin bit 3 PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module bit 2-0 PS<2:0>: Prescaler Rate Select bits BIT VALUE 000 001 010 011 100 101 110 111 Note 1: TIMER0 RATE WDT RATE 1:2 1:4 1:8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256 1:1 1:2 1:4 1:8 1 : 16 1 : 32 1 : 64 1 : 128 A dedicated 16-bit WDT postscaler is available. See Section 12.6 "Watchdog Timer (WDT)" for more information. DS41211D-page 12 (c) 2007 Microchip Technology Inc. PIC12F683 2.2.2.3 INTCON Register Note: The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, GPIO change and external GP2/INT pin interrupts. REGISTER 2-3: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. INTCON: INTERRUPT CONTROL REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 GIE PEIE T0IE INTE GPIE T0IF INTF GPIF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared x = Bit is unknown bit 7 GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts bit 6 PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts bit 5 T0IE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt bit 4 INTE: GP2/INT External Interrupt Enable bit 1 = Enables the GP2/INT external interrupt 0 = Disables the GP2/INT external interrupt bit 3 GPIE: GPIO Change Interrupt Enable bit(1) 1 = Enables the GPIO change interrupt 0 = Disables the GPIO change interrupt bit 2 T0IF: Timer0 Overflow Interrupt Flag bit(2) 1 = Timer0 register has overflowed (must be cleared in software) 0 = Timer0 register did not overflow bit 1 INTF: GP2/INT External Interrupt Flag bit 1 = The GP2/INT external interrupt occurred (must be cleared in software) 0 = The GP2/INT external interrupt did not occur bit 0 GPIF: GPIO Change Interrupt Flag bit 1 = When at least one of the GPIO <5:0> pins changed state (must be cleared in software) 0 = None of the GPIO <5:0> pins have changed state Note 1: 2: IOC register must also be enabled. T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before clearing T0IF bit. (c) 2007 Microchip Technology Inc. DS41211D-page 13 PIC12F683 2.2.2.4 PIE1 Register The PIE1 register contains the interrupt enable bits, as shown in Register 2-4. REGISTER 2-4: Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt. PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 EEIE ADIE CCP1IE -- CMIE OSFIE TMR2IE TMR1IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7 EEIE: EE Write Complete Interrupt Enable bit 1 = Enables the EE write complete interrupt 0 = Disables the EE write complete interrupt bit 6 ADIE: A/D Converter (ADC) Interrupt Enable bit 1 = Enables the ADC interrupt 0 = Disables the ADC interrupt bit 5 CCP1IE: CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt bit 4 Unimplemented: Read as `0' bit 3 CMIE: Comparator Interrupt Enable bit 1 = Enables the Comparator 1 interrupt 0 = Disables the Comparator 1 interrupt bit 2 OSFIE: Oscillator Fail Interrupt Enable bit 1 = Enables the oscillator fail interrupt 0 = Disables the oscillator fail interrupt bit 1 TMR2IE: Timer2 to PR2 Match Interrupt Enable bit 1 = Enables the Timer2 to PR2 match interrupt 0 = Disables the Timer2 to PR2 match interrupt bit 0 TMR1IE: Timer1 Overflow Interrupt Enable bit 1 = Enables the Timer1 overflow interrupt 0 = Disables the Timer1 overflow interrupt DS41211D-page 14 x = Bit is unknown (c) 2007 Microchip Technology Inc. PIC12F683 2.2.2.5 PIR1 Register The PIR1 register contains the interrupt flag bits, as shown in Register 2-5. REGISTER 2-5: Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 EEIF ADIF CCP1IF -- CMIF OSFIF TMR2IF TMR1IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared x = Bit is unknown bit 7 EEIF: EEPROM Write Operation Interrupt Flag bit 1 = The write operation completed (must be cleared in software) 0 = The write operation has not completed or has not been started bit 6 ADIF: A/D Interrupt Flag bit 1 = A/D conversion complete 0 = A/D conversion has not completed or has not been started bit 5 CCP1IF: CCP1 Interrupt Flag bit Capture mode: 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM mode: Unused in this mode bit 4 Unimplemented: Read as `0' bit 3 CMIF: Comparator Interrupt Flag bit 1 = Comparator 1 output has changed (must be cleared in software) 0 = Comparator 1 output has not changed bit 2 OSFIF: Oscillator Fail Interrupt Flag bit 1 = System oscillator failed, clock input has changed to INTOSC (must be cleared in software) 0 = System clock operating bit 1 TMR2IF: Timer2 to PR2 Match Interrupt Flag bit 1 = Timer2 to PR2 match occurred (must be cleared in software) 0 = Timer2 to PR2 match has not occurred bit 0 TMR1IF: Timer1 Overflow Interrupt Flag bit 1 = Timer1 register overflowed (must be cleared in software) 0 = Timer1 has not overflowed (c) 2007 Microchip Technology Inc. DS41211D-page 15 PIC12F683 2.2.2.6 PCON Register The Power Control (PCON) register contains flag bits (see Table 12-2) to differentiate between a: * * * * Power-on Reset (POR) Brown-out Reset (BOR) Watchdog Timer Reset (WDT) External MCLR Reset The PCON register also controls the Ultra Low-Power Wake-up and software enable of the BOR. The PCON register bits are shown in Register 2-6. REGISTER 2-6: PCON: POWER CONTROL REGISTER U-0 U-0 R/W-0 R/W-1 U-0 U-0 R/W-0 R/W-x -- -- ULPWUE SBOREN -- -- POR BOR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as `0' bit 5 ULPWUE: Ultra Low-Power Wake-Up Enable bit 1 = Ultra Low-Power Wake-up enabled 0 = Ultra Low-Power Wake-up disabled bit 4 SBOREN: Software BOR Enable bit(1) 1 = BOR enabled 0 = BOR disabled bit 3-2 Unimplemented: Read as `0' bit 1 POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) bit 0 BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs) Note 1: Set BOREN<1:0> = 01 in the Configuration Word register for this bit to control the BOR. DS41211D-page 16 (c) 2007 Microchip Technology Inc. PIC12F683 2.3 PCL and PCLATH The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-3 shows the two situations for the loading of the PC. The upper example in Figure 2-3 shows how the PC is loaded on a write to PCL (PCLATH<4:0> PCH). The lower example in Figure 2-3 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> PCH). FIGURE 2-3: 12 8 Instruction with 0 PCL as Destination 7 8 PCLATH<4:0> ALU Result PCLATH PCH 11 10 PCL 8 0 7 PC GOTO, CALL 2 PCLATH<4:3> 11 OPCODE<10:0> PCLATH 2.3.1 COMPUTED GOTO A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note AN556, "Implementing a Table Read" (DS00556). 2.3.2 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address. 2.4 PCL PC 12 Note 1: There are no Status bits to indicate stack overflow or stack underflow conditions. LOADING OF PC IN DIFFERENT SITUATIONS PCH 5 The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on). Indirect Addressing, INDF and FSR Registers The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing. Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit of the STATUS register, as shown in Figure 2-4. A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 2-1. EXAMPLE 2-1: MOVLW MOVWF NEXT CLRF INCF BTFSS GOTO CONTINUE INDIRECT ADDRESSING 0x20 FSR INDF FSR FSR,4 NEXT ;initialize pointer ;to RAM ;clear INDF register ;inc pointer ;all done? ;no clear next ;yes continue STACK The PIC12F683 family has an 8-level x 13-bit wide hardware stack (see Figure 2-1). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation. (c) 2007 Microchip Technology Inc. DS41211D-page 17 PIC12F683 FIGURE 2-4: DIRECT/INDIRECT ADDRESSING PIC12F683 Direct Addressing RP1 (1) RP0 6 Bank Select Indirect Addressing From Opcode IRP(1) 0 7 Bank Select Location Select 00 01 10 File Select Register 0 Location Select 11 00h 180h Data Memory Not Used 7Fh 1FFh Bank 0 Bank 1 Bank 2 Bank 3 For memory map detail, see Figure 2-2. Note 1: The RP1 and IRP bits are reserved; always maintain these bits clear. DS41211D-page 18 (c) 2007 Microchip Technology Inc. PIC12F683 3.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR) The Oscillator module can be configured in one of eight clock modes. 3.1 Overview 1. 2. 3. The Oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 3-1 illustrates a block diagram of the Oscillator module. 4. 5. Clock sources can be configured from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured from one of two internal oscillators, with a choice of speeds selectable via software. Additional clock features include: 6. 7. 8. * Selectable system clock source between external or internal via software. * Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution. * Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator. FIGURE 3-1: EC - External clock with I/O on OSC2/CLKOUT. LP - 32 kHz Low-Power Crystal mode. XT - Medium Gain Crystal or Ceramic Resonator Oscillator mode. HS - High Gain Crystal or Ceramic Resonator mode. RC - External Resistor-Capacitor (RC) with FOSC/4 output on OSC2/CLKOUT. RCIO - External Resistor-Capacitor (RC) with I/O on OSC2/CLKOUT. INTOSC - Internal oscillator with FOSC/4 output on OSC2 and I/O on OSC1/CLKIN. INTOSCIO - Internal oscillator with I/O on OSC1/CLKIN and OSC2/CLKOUT. Clock Source modes are configured by the FOSC<2:0> bits in the Configuration Word register (CONFIG). The internal clock can be generated from two internal oscillators. The HFINTOSC is a calibrated high-frequency oscillator. The LFINTOSC is an uncalibrated low-frequency oscillator. PIC(R) MCU CLOCK SOURCE BLOCK DIAGRAM FOSC<2:0> (Configuration Word Register) SCS<0> (OSCCON Register) External Oscillator OSC2 Sleep MUX LP, XT, HS, RC, RCIO, EC OSC1 IRCF<2:0> (OSCCON Register) 8 MHz Internal Oscillator 4 MHz System Clock (CPU and Peripherals) INTOSC 111 110 101 1 MHz 100 500 kHz 250 kHz 125 kHz LFINTOSC 31 kHz 31 kHz 011 MUX HFINTOSC 8 MHz Postscaler 2 MHz 010 001 000 Power-up Timer (PWRT) Watchdog Timer (WDT) Fail-Safe Clock Monitor (FSCM) (c) 2007 Microchip Technology Inc. DS41211D-page 19 PIC12F683 3.2 Oscillator Control The Oscillator Control (OSCCON) register (Figure 3-1) controls the system clock and frequency selection options. The OSCCON register contains the following bits: * Frequency selection bits (IRCF) * Frequency Status bits (HTS, LTS) * System clock control bits (OSTS, SCS) REGISTER 3-1: OSCCON: OSCILLATOR CONTROL REGISTER U-0 R/W-1 R/W-1 R/W-0 R-1 R-0 R-0 R/W-0 -- IRCF2 IRCF1 IRCF0 OSTS(1) HTS LTS SCS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared x = Bit is unknown bit 7 Unimplemented: Read as `0' bit 6-4 IRCF<2:0>: Internal Oscillator Frequency Select bits 111 = 8 MHz 110 = 4 MHz (default) 101 = 2 MHz 100 = 1 MHz 011 = 500 kHz 010 = 250 kHz 001 = 125 kHz 000 = 31 kHz (LFINTOSC) bit 3 OSTS: Oscillator Start-up Time-out Status bit(1) 1 = Device is running from the external clock defined by FOSC<2:0> of the Configuration Word register 0 = Device is running from the internal oscillator (HFINTOSC or LFINTOSC) bit 2 HTS: HFINTOSC Status bit (High Frequency - 8 MHz to 125 kHz) 1 = HFINTOSC is stable 0 = HFINTOSC is not stable bit 1 LTS: LFINTOSC Stable bit (Low Frequency - 31 kHz) 1 = LFINTOSC is stable 0 = LFINTOSC is not stable bit 0 SCS: System Clock Select bit 1 = Internal oscillator is used for system clock 0 = Clock source defined by FOSC<2:0> of the Configuration Word register Note 1: Bit resets to `0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled. DS41211D-page 20 (c) 2007 Microchip Technology Inc. PIC12F683 3.3 Clock Source Modes Clock Source modes can be classified as external or internal. External Clock Modes 3.4.1 OSCILLATOR START-UP TIMER (OST) If the Oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the Oscillator module. When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 3-1. * External Clock modes rely on external circuitry for the clock source. Examples are: Oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits. * Internal clock sources are contained internally within the Oscillator module. The Oscillator module has two internal oscillators: the 8 MHz High-Frequency Internal Oscillator (HFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC). The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bit of the OSCCON register. See Section 3.6 "Clock Switching" for additional information. TABLE 3-1: 3.4 In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see Section 3.7 "Two-Speed Clock Start-up Mode"). OSCILLATOR DELAY EXAMPLES Switch From Switch To Frequency Oscillator Delay Sleep/POR LFINTOSC HFINTOSC 31 kHz 125 kHz to 8 MHz Sleep/POR EC, RC DC - 20 MHz 2 instruction cycles LFINTOSC (31 kHz) EC, RC DC - 20 MHz 1 cycle of each Oscillator Warm-Up Delay (TWARM) Sleep/POR LP, XT, HS 32 kHz to 20 MHz 1024 Clock Cycles (OST) LFINTOSC (31 kHz) HFINTOSC 125 kHz to 8 MHz 1 s (approx.) 3.4.2 EC MODE The External Clock (EC) mode allows an externally generated logic level as the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input and the OSC2 is available for general purpose I/O. Figure 3-2 shows the pin connections for EC mode. The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC(R) MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed. (c) 2007 Microchip Technology Inc. FIGURE 3-2: EXTERNAL CLOCK (EC) MODE OPERATION OSC1/CLKIN Clock from Ext. System PIC(R) MCU I/O Note 1: OSC2/CLKOUT(1) Alternate pin functions are listed in the Device Overview. DS41211D-page 21 PIC12F683 3.4.3 LP, XT, HS MODES The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 3-3). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed. LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals). Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application. 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application. 3: For oscillator design assistance, reference the following Microchip Applications Notes: * AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC(R) and PIC(R) Devices" (DS00826) * AN849, "Basic PIC(R) Oscillator Design" (DS00849) * AN943, "Practical PIC(R) Oscillator Analysis and Design" (DS00943) * AN949, "Making Your Oscillator Work" (DS00949) XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification. HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting. Figure 3-3 and Figure 3-4 show typical circuits for quartz crystal and ceramic resonators, respectively. FIGURE 3-3: CERAMIC RESONATOR OPERATION (XT OR HS MODE) QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE) OSC1/CLKIN C1 PIC(R) MCU OSC1/CLKIN C1 PIC(R) MCU To Internal Logic RP(3) RF(2) Sleep To Internal Logic Quartz Crystal C2 FIGURE 3-4: RS(1) RF(2) Sleep OSC2/CLKOUT Note 1: A series resistor (RS) may be required for quartz crystals with low drive level. 2: The value of RF varies with the Oscillator mode selected (typically between 2 M to 10 M). DS41211D-page 22 C2 Ceramic RS(1) Resonator OSC2/CLKOUT Note 1: A series resistor (RS) may be required for ceramic resonators with low drive level. 2: The value of RF varies with the Oscillator mode selected (typically between 2 M to 10 M). 3: An additional parallel feedback resistor (RP) may be required for proper ceramic resonator operation. (c) 2007 Microchip Technology Inc. PIC12F683 3.4.4 EXTERNAL RC MODES 3.5 The external Resistor-Capacitor (RC) modes support the use of an external RC circuit. This allows the designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required. There are two modes: RC and RCIO. In RC mode, the RC circuit connects to OSC1. OSC2/CLKOUT outputs the RC oscillator frequency divided by 4. This signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements. Figure 3-5 shows the external RC mode connections. FIGURE 3-5: VDD EXTERNAL RC MODES PIC(R) MCU REXT OSC1/CLKIN Internal Clock CEXT VSS FOSC/4 or I/O(2) OSC2/CLKOUT(1) Recommended values: 10 k REXT 100 k, <3V 3 k REXT 100 k, 3-5V CEXT > 20 pF, 2-5V Note 1: 2: Alternate pin functions are listed in the Device Overview. Output depends upon RC or RCIO clock mode. In RCIO mode, the RC circuit is connected to OSC1. OSC2 becomes an additional general purpose I/O pin. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are: * threshold voltage variation * component tolerances * packaging variations in capacitance The user also needs to take into account variation due to tolerance of external RC components used. Internal Clock Modes The Oscillator module has two independent, internal oscillators that can be configured or selected as the system clock source. 1. 2. The HFINTOSC (High-Frequency Internal Oscillator) is factory calibrated and operates at 8 MHz. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 3-2). The LFINTOSC (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz. The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<2:0> of the OSCCON register. The system clock can be selected between external or internal clock sources via the System Clock Selection (SCS) bit of the OSCCON register. See Section 3.6 "Clock Switching" for more information. 3.5.1 INTOSC AND INTOSCIO MODES The INTOSC and INTOSCIO modes configure the internal oscillators as the system clock source when the device is programmed using the oscillator selection or the FOSC<2:0> bits in the Configuration Word register (CONFIG). See Section 12.0 "Special Features of the CPU" for more information. In INTOSC mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT outputs the selected internal oscillator frequency divided by 4. The CLKOUT signal may be used to provide a clock for external circuitry, synchronization, calibration, test or other application requirements. In INTOSCIO mode, OSC1/CLKIN and OSC2/CLKOUT are available for general purpose I/O. 3.5.2 HFINTOSC The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 8 MHz internal clock source. The frequency of the HFINTOSC can be altered via software using the OSCTUNE register (Register 3-2). The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 3-1). One of seven frequencies can be selected via software using the IRCF<2:0> bits of the OSCCON register. See Section 3.5.4 "Frequency Select Bits (IRCF)" for more information. The HFINTOSC is enabled by selecting any frequency between 8 MHz and 125 kHz by setting the IRCF<2:0> bits of the OSCCON register 000. Then, set the System Clock Source (SCS) bit of the OSCCON register to `1' or enable Two-Speed Start-up by setting the IESO bit in the Configuration Word register (CONFIG) to `1'. The HF Internal Oscillator (HTS) bit of the OSCCON register indicates whether the HFINTOSC is stable or not. (c) 2007 Microchip Technology Inc. DS41211D-page 23 PIC12F683 3.5.2.1 OSCTUNE Register The HFINTOSC is factory calibrated but can be adjusted in software by writing to the OSCTUNE register (Register 3-2). The default value of the OSCTUNE register is `0'. The value is a 5-bit two's complement number. REGISTER 3-2: When the OSCTUNE register is modified, the HFINTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred. OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are not affected by the change in frequency. OSCTUNE: OSCILLATOR TUNING REGISTER U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 -- -- -- TUN4 TUN3 TUN2 TUN1 TUN0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7-5 Unimplemented: Read as `0' bit 4-0 TUN<4:0>: Frequency Tuning bits 01111 = Maximum frequency 01110 = * * * 00001 = 00000 = Oscillator module is running at the calibrated frequency. 11111 = * * * 10000 = Minimum frequency DS41211D-page 24 x = Bit is unknown (c) 2007 Microchip Technology Inc. PIC12F683 3.5.3 LFINTOSC The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source. The output of the LFINTOSC connects to a postscaler and multiplexer (see Figure 3-1). Select 31 kHz, via software, using the IRCF<2:0> bits of the OSCCON register. See Section 3.5.4 "Frequency Select Bits (IRCF)" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM). The LFINTOSC is enabled by selecting 31 kHz (IRCF<2:0> bits of the OSCCON register = 000) as the system clock source (SCS bit of the OSCCON register = 1), or when any of the following are enabled: * Two-Speed Start-up IESO bit of the Configuration Word register = 1 and IRCF<2:0> bits of the OSCCON register = 000 * Power-up Timer (PWRT) * Watchdog Timer (WDT) * Fail-Safe Clock Monitor (FSCM) The LF Internal Oscillator (LTS) bit of the OSCCON register indicates whether the LFINTOSC is stable or not. 3.5.4 FREQUENCY SELECT BITS (IRCF) The output of the 8 MHz HFINTOSC and 31 kHz LFINTOSC connects to a postscaler and multiplexer (see Figure 3-1). The Internal Oscillator Frequency Select bits IRCF<2:0> of the OSCCON register select the frequency output of the internal oscillators. One of eight frequencies can be selected via software: * * * * * * * * 8 MHz 4 MHz (Default after Reset) 2 MHz 1 MHz 500 kHz 250 kHz 125 kHz 31 kHz (LFINTOSC) Note: 3.5.5 HF AND LF INTOSC CLOCK SWITCH TIMING When switching between the LFINTOSC and the HFINTOSC, the new oscillator may already be shut down to save power (see Figure 3-6). If this is the case, there is a delay after the IRCF<2:0> bits of the OSCCON register are modified before the frequency selection takes place. The LTS and HTS bits of the OSCCON register will reflect the current active status of the LFINTOSC and HFINTOSC oscillators. The timing of a frequency selection is as follows: 1. 2. 3. 4. 5. 6. IRCF<2:0> bits of the OSCCON register are modified. If the new clock is shut down, a clock start-up delay is started. Clock switch circuitry waits for a falling edge of the current clock. CLKOUT is held low and the clock switch circuitry waits for a rising edge in the new clock. CLKOUT is now connected with the new clock. LTS and HTS bits of the OSCCON register are updated as required. Clock switch is complete. See Figure 3-1 for more details. If the internal oscillator speed selected is between 8 MHz and 125 kHz, there is no start-up delay before the new frequency is selected. This is because the old and new frequencies are derived from the HFINTOSC via the postscaler and multiplexer. Start-up delay specifications are located in the Electrical Specifications Chapter of this data sheet, under AC Specifications (Oscillator Module). Following any Reset, the IRCF<2:0> bits of the OSCCON register are set to `110' and the frequency selection is set to 4 MHz. The user can modify the IRCF bits to select a different frequency. (c) 2007 Microchip Technology Inc. DS41211D-page 25 PIC12F683 FIGURE 3-6: INTERNAL OSCILLATOR SWITCH TIMING LF(1) HF HFINTOSC LFINTOSC (FSCM and WDT disabled) HFINTOSC Start-up Time 2-cycle Sync Running LFINTOSC 0 IRCF <2:0> =0 System Clock Note 1: When going from LF to HF. HFINTOSC LFINTOSC (Either FSCM or WDT enabled) HFINTOSC 2-cycle Sync Running LFINTOSC 0 IRCF <2:0> =0 System Clock LFINTOSC HFINTOSC LFINTOSC turns off unless WDT or FSCM is enabled LFINTOSC Start-up Time 2-cycle Sync Running HFINTOSC IRCF <2:0> =0 0 System Clock DS41211D-page 26 (c) 2007 Microchip Technology Inc. PIC12F683 3.6 Clock Switching The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bit of the OSCCON register. 3.6.1 SYSTEM CLOCK SELECT (SCS) BIT The System Clock Select (SCS) bit of the OSCCON register selects the system clock source that is used for the CPU and peripherals. * When the SCS bit of the OSCCON register = 0, the system clock source is determined by configuration of the FOSC<2:0> bits in the Configuration Word register (CONFIG). * When the SCS bit of the OSCCON register = 1, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<2:0> bits of the OSCCON register. After a Reset, the SCS bit of the OSCCON register is always cleared. Note: 3.6.2 Any automatic clock switch, which may occur from Two-Speed Start-up or Fail-Safe Clock Monitor, does not update the SCS bit of the OSCCON register. The user can monitor the OSTS bit of the OSCCON register to determine the current system clock source. OSCILLATOR START-UP TIME-OUT STATUS (OSTS) BIT The Oscillator Start-up Time-out Status (OSTS) bit of the OSCCON register indicates whether the system clock is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word register (CONFIG), or from the internal clock source. In particular, OSTS indicates that the Oscillator Start-up Timer (OST) has timed out for LP, XT or HS modes. 3.7 Two-Speed Clock Start-up Mode Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. When the Oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) is enabled (see Section 3.4.1 "Oscillator Start-up Timer (OST)"). The OST will suspend program execution until 1024 oscillations are counted. Two-Speed Start-up mode minimizes the delay in code execution by operating from the internal oscillator as the OST is counting. When the OST count reaches 1024 and the OSTS bit of the OSCCON register is set, program execution switches to the external oscillator. 3.7.1 TWO-SPEED START-UP MODE CONFIGURATION Two-Speed Start-up mode is configured by the following settings: * IESO (of the Configuration Word register) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled). * SCS (of the OSCCON register) = 0. * FOSC<2:0> bits in the Configuration Word register (CONFIG) configured for LP, XT or HS mode. Two-Speed Start-up mode is entered after: * Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or * Wake-up from Sleep. If the external clock oscillator is configured to be anything other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep. 3.7.2 1. 2. 3. 4. 5. 6. 7. TWO-SPEED START-UP SEQUENCE Wake-up from Power-on Reset or Sleep. Instructions begin execution by the internal oscillator at the frequency set in the IRCF<2:0> bits of the OSCCON register. OST enabled to count 1024 clock cycles. OST timed out, wait for falling edge of the internal oscillator. OSTS is set. System clock held low until the next falling edge of new clock (LP, XT or HS mode). System clock is switched to external clock source. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC as the clock source and go back to Sleep without waiting for the primary oscillator to become stable. Note: Executing a SLEEP instruction will abort the oscillator start-up time and will cause the OSTS bit of the OSCCON register to remain clear. (c) 2007 Microchip Technology Inc. DS41211D-page 27 PIC12F683 3.7.3 CHECKING TWO-SPEED CLOCK STATUS Checking the state of the OSTS bit of the OSCCON register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word register (CONFIG), or the internal oscillator. FIGURE 3-7: TWO-SPEED START-UP HFINTOSC TOST OSC1 0 1 1022 1023 OSC2 Program Counter PC - N PC PC + 1 System Clock DS41211D-page 28 (c) 2007 Microchip Technology Inc. PIC12F683 3.8 3.8.3 Fail-Safe Clock Monitor The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the Configuration Word register (CONFIG). The FSCM is applicable to all external oscillator modes (LP, XT, HS, EC, RC and RCIO). FIGURE 3-8: FSCM BLOCK DIAGRAM Clock Monitor Latch External Clock LFINTOSC Oscillator / 64 31 kHz (~32 s) 488 Hz (~2 ms) S Q R Q The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or toggling the SCS bit of the OSCCON register. When the SCS bit is toggled, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared and the device will be operating from the external clock source. The Fail-Safe condition must be cleared before the OSFIF flag can be cleared. 3.8.4 3.8.1 Clock Failure Detected FAIL-SAFE DETECTION The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 3-8. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the primary clock goes low. 3.8.2 RESET OR WAKE-UP FROM SLEEP The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. When the FSCM is enabled, the Two-Speed Start-up is also enabled. Therefore, the device will always be executing code while the OST is operating. Note: Sample Clock FAIL-SAFE CONDITION CLEARING Due to the wide range of oscillator start-up times, the Fail-Safe circuit is not active during oscillator start-up (i.e., after exiting Reset or Sleep). After an appropriate amount of time, the user should check the OSTS bit of the OSCCON register to verify the oscillator start-up and that the system clock switchover has successfully completed. FAIL-SAFE OPERATION When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSFIF of the PIR1 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE1 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation. The internal clock source chosen by the FSCM is determined by the IRCF<2:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs. (c) 2007 Microchip Technology Inc. DS41211D-page 29 PIC12F683 FIGURE 3-9: FSCM TIMING DIAGRAM Sample Clock Oscillator Failure System Clock Output Clock Monitor Output (Q) Failure Detected OSCFIF Test Note: Test Test The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in this example have been chosen for clarity. TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets(1) CONFIG(2) CPD CP MCLRE PWRTE WDTE FOSC2 FOSC1 FOSC0 -- -- INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 000x OSCCON -- IRCF2 IRCF1 IRCF0 OSTS HTS LTS SCS -110 x000 -110 x000 Name OSCTUNE PIE1 PIR1 Legend: Note 1: 2: -- -- -- TUN4 TUN3 TUN2 TUN1 TUN0 ---0 0000 ---u uuuu EEIE ADIE CCP1IE -- CMIE OSFIE TMR2IE TMR1IE 000- 0000 000- 0000 EEIF ADIF CCP1IF -- CMIF OSFIF TMR2IF TMR1IF 000- 0000 000- 0000 x = unknown, u = unchanged, - = unimplemented locations read as `0'. Shaded cells are not used by oscillators. Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation. See Configuration Word register (Register 12-1) for operation of all register bits. DS41211D-page 30 (c) 2007 Microchip Technology Inc. PIC12F683 4.0 GPIO PORT There are as many as six general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin. 4.1 GPIO and the TRISIO Registers The TRISIO register controls the direction of the GPIO pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISIO register are maintained set when using them as analog inputs. I/O pins configured as analog input always read `0'. Note: GPIO is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISIO. Setting a TRISIO bit (= 1) will make the corresponding GPIO pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISIO bit (= 0) will make the corresponding GPIO pin an output (i.e., put the contents of the output latch on the selected pin). An exception is GP3, which is input only and its TRISIO bit will always read as `1'. Example 4-1 shows how to initialize GPIO. Reading the GPIO register reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. REGISTER 4-1: Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch. GP3 reads `0' when MCLRE = 1. The ANSEL and CMCON0 registers must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read `0'. EXAMPLE 4-1: BANKSEL CLRF MOVLW MOVWF BANKSEL CLRF MOVLW MOVWF GPIO GPIO 07h CMCON0 ANSEL ANSEL 0Ch TRISIO INITIALIZING GPIO ; ;Init GPIO ;Set GP<2:0> to ;digital I/O ; ;digital I/O ;Set GP<3:2> as inputs ;and set GP<5:4,1:0> ;as outputs GPIO: GENERAL PURPOSE I/O REGISTER U-0 U-0 R/W-x R/W-0 R-x R/W-0 R/W-0 R/W-0 -- -- GP5 GP4 GP3 GP2 GP1 GP0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7-6 Unimplemented: Read as `0' bit 5-0 GP<5:0>: GPIO I/O Pin bit 1 = Port pin is > VIH 0 = Port pin is < VIL (c) 2007 Microchip Technology Inc. x = Bit is unknown DS41211D-page 31 PIC12F683 REGISTER 4-2: TRISIO GPIO TRI-STATE REGISTER U-0 U-0 R/W-1 R/W-1 R-1 R/W-1 R/W-1 R/W-1 -- -- TRISIO5(2,3) TRISIO4(2) TRISIO3(1) TRISIO2 TRISIO1 TRISIO0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7-6 Unimplemented: Read as `0' bit 5:4 TRISIO<5:4>: GPIO Tri-State Control bit 1 = GPIO pin configured as an input (tri-stated) 0 = GPIO pin configured as an output bit 3 TRISIO<3>: GPIO Tri-State Control bit Input only bit 2:0 TRISIO<2:0>: GPIO Tri-State Control bit 1 = GPIO pin configured as an input (tri-stated) 0 = GPIO pin configured as an output Note 1: 2: 3: 4.2 x = Bit is unknown TRISIO<3> always reads `1'. TRISIO<5:4> always reads `1' in XT, HS and LP OSC modes. TRISIO<5> always reads `1' in RC and RCIO and EC modes. Additional Pin Functions 4.2.3 INTERRUPT-ON-CHANGE Every GPIO pin on the PIC12F683 has an interrupt-on-change option and a weak pull-up option. GP0 has an Ultra Low-Power Wake-up option. The next three sections describe these functions. Each of the GPIO pins is individually configurable as an interrupt-on-change pin. Control bits IOCx enable or disable the interrupt function for each pin. Refer to Register 4-5. The interrupt-on-change is disabled on a Power-on Reset. 4.2.1 For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of GPIO. The `mismatch' outputs of the last read are OR'd together to set the GPIO Change Interrupt Flag bit (GPIF) in the INTCON register (Register 2-3). ANSEL REGISTER The ANSEL register is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSEL bit high will cause all digital reads on the pin to be read as `0' and allow analog functions on the pin to operate correctly. The state of the ANSEL bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port. 4.2.2 WEAK PULL-UPS Each of the GPIO pins, except GP3, has an individually configurable internal weak pull-up. Control bits WPUx enable or disable each pull-up. Refer to Register 4-4. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the GPPU bit of the OPTION register). A weak pull-up is automatically enabled for GP3 when configured as MCLR and disabled when GP3 is an I/O. There is no software control of the MCLR pull-up. DS41211D-page 32 This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by: a) b) Any read or write of GPIO. This will end the mismatch condition, then, Clear the flag bit GPIF. A mismatch condition will continue to set flag bit GPIF. Reading GPIO will end the mismatch condition and allow flag bit GPIF to be cleared. The latch holding the last read value is not affected by a MCLR nor Brown-out Reset. After these resets, the GPIF flag will continue to be set if a mismatch is present. Note: If a change on the I/O pin should occur when any GPIO operation is being executed, then the GPIF interrupt flag may not get set. (c) 2007 Microchip Technology Inc. PIC12F683 REGISTER 4-3: ANSEL: ANALOG SELECT REGISTER U-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 R/W-1 R/W-1 -- ADCS2 ADCS1 ADCS0 ANS3 ANS2 ANS1 ANS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7 Unimplemented: Read as `0' bit 6-4 ADCS<2:0>: A/D Conversion Clock Select bits 000 = FOSC/2 001 = FOSC/8 010 = FOSC/32 x11 = FRC (clock derived from a dedicated internal oscillator = 500 kHz max) 100 = FOSC/4 101 = FOSC/16 110 = FOSC/64 bit 3-0 ANS<3:0>: Analog Select bits Analog select between analog or digital function on pins AN<3:0>, respectively. 1 = Analog input. Pin is assigned as analog input(1). 0 = Digital I/O. Pin is assigned to port or special function. Note 1: x = Bit is unknown Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups and interrupt-on-change, if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin. (c) 2007 Microchip Technology Inc. DS41211D-page 33 PIC12F683 REGISTER 4-4: WPU: WEAK PULL-UP REGISTER U-0 U-0 R/W-1 R/W-1 U-0 R/W-1 R/W-1 R/W-1 -- -- WPU5 WPU4 -- WPU2 WPU1 WPU0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7-6 Unimplemented: Read as `0' bit 5-4 WPU<5:4>: Weak Pull-up Control bits 1 = Pull-up enabled 0 = Pull-up disabled bit 3 Unimplemented: Read as `0' bit 2-0 WPU<2:0>: Weak Pull-up Control bits 1 = Pull-up enabled 0 = Pull-up disabled Note 1: 2: 3: 4: x = Bit is unknown Global GPPU must be enabled for individual pull-ups to be enabled. The weak pull-up device is automatically disabled if the pin is in Output mode (TRISIO = 0). The GP3 pull-up is enabled when configured as MCLR and disabled as an I/O in the Configuration Word. WPU<5:4> always reads `1' in XT, HS and LP OSC modes. REGISTER 4-5: IOC: INTERRUPT-ON-CHANGE GPIO REGISTER U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 -- -- IOC5 IOC4 IOC3 IOC2 IOC1 IOC0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7-6 Unimplemented: Read as `0' bit 5-0 IOC<5:0>: Interrupt-on-change GPIO Control bits 1 = Interrupt-on-change enabled 0 = Interrupt-on-change disabled Note 1: 2: x = Bit is unknown Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized. IOC<5:4> always reads `0' in XT, HS and LP OSC modes. DS41211D-page 34 (c) 2007 Microchip Technology Inc. PIC12F683 4.2.4 ULTRA LOW-POWER WAKE-UP The Ultra Low-Power Wake-up (ULPWU) on GP0 allows a slow falling voltage to generate an interrupt-on-change on GP0 without excess current consumption. The mode is selected by setting the ULPWUE bit of the PCON register. This enables a small current sink which can be used to discharge a capacitor on GP0. To use this feature, the GP0 pin is configured to output `1' to charge the capacitor, interrupt-on-change for GP0 is enabled and GP0 is configured as an input. The ULPWUE bit is set to begin the discharge and a SLEEP instruction is performed. When the voltage on GP0 drops below VIL, an interrupt will be generated which will cause the device to wake-up. Depending on the state of the GIE bit of the INTCON register, the device will either jump to the interrupt vector (0004h) or execute the next instruction when the interrupt event occurs. See Section 4.2.3 "Interrupt-on-Change" and Section 12.4.3 "GPIO Interrupt" for more information. This feature provides a low-power technique for periodically waking up the device from Sleep. The time-out is dependent on the discharge time of the RC circuit on GP0. See Example 4-2 for initializing the Ultra Low-Power Wake-up module. Note: For more information, refer to the Application Note AN879, "Using the Microchip Ultra Low-Power Wake-up Module" (DS00879). EXAMPLE 4-2: BANKSEL MOVLW MOVWF BANKSEL BCF BCF BANKSEL BSF CALL BANKSEL BSF BSF BSF MOVLW MOVWF SLEEP NOP ULTRA LOW-POWER WAKE-UP INITIALIZATION CMCON0 H'7' CMCON0 ANSEL ANSEL,0 TRISA,0 PORTA PORTA,0 CapDelay PCON PCON,ULPWUE IOCA,0 TRISA,0 B'10001000' INTCON ; ;Turn off ;comparators ; ;RA0 to digital I/O ;Output high to ; ;charge capacitor ; ; ;Enable ULP Wake-up ;Select RA0 IOC ;RA0 to input ;Enable interrupt ; and clear flag ;Wait for IOC ; The series resistor provides overcurrent protection for the GP0 pin and can allow for software calibration of the time-out (see Figure 4-1). A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired interrupt delay. This technique will compensate for the affects of temperature, voltage and component accuracy. The Ultra Low-Power Wake-up peripheral can also be configured as a simple Programmable Low-Voltage Detect or temperature sensor. (c) 2007 Microchip Technology Inc. DS41211D-page 35 PIC12F683 4.2.5 PIN DESCRIPTIONS AND DIAGRAMS 4.2.5.1 Figure 4-1 shows the diagram for this pin. The GP0 pin is configurable to function as one of the following: Each GPIO pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the comparator or the ADC, refer to the appropriate section in this data sheet. FIGURE 4-1: GP0/AN0/CIN+/ICSPDAT/ULPWU * * * * * a general purpose I/O an analog input for the ADC an analog input to the comparator In-Circuit Serial ProgrammingTM data an analog input to the Ultra Low-Power Wake-up BLOCK DIAGRAM OF GP0 Analog Input Mode(1) VDD Data Bus WR WPU D Q Weak CK Q GPPU RD WPU VDD D WR GPIO Q I/O pin CK Q VSS + D WR TRISIO VT Q CK Q IULP 0 RD TRISIO 1 Analog Input Mode(1) VSS ULPWUE RD GPIO D WR IOC Q CK Q Q D EN RD IOC Q Q3 D EN Interrupt-onChange RD GPIO To Comparator To A/D Converter Note DS41211D-page 36 1: Comparator mode and ANSEL determines Analog Input mode. (c) 2007 Microchip Technology Inc. PIC12F683 4.2.5.2 GP1/AN1/CIN-/VREF/ICSPCLK 4.2.5.3 GP2/AN2/T0CKI/INT/COUT/CCP1 Figure 4-2 shows the diagram for this pin. The GP1 pin is configurable to function as one of the following: Figure 4-3 shows the diagram for this pin. The GP2 pin is configurable to function as one of the following: * * * * * * * * * * * a general purpose I/O an analog input for the ADC a analog input to the comparator a voltage reference input for the ADC In-Circuit Serial Programming clock FIGURE 4-2: Data Bus WR WPU D BLOCK DIAGRAM OF GP1 Q Analog Input Mode(1) Weak Data Bus GPPU RD WPU D WR GPIO FIGURE 4-3: VDD CK Q a general purpose I/O an analog input for the ADC the clock input for Timer0 an external edge triggered interrupt a digital output from the Comparator a digital input/output for the CCP (refer to Section 11.0 "Capture/Compare/PWM (CCP) Module"). D WR WPU Q CK Analog Input Mode VDD Q Weak GPPU RD WPU VDD Q BLOCK DIAGRAM OF GP2 Analog Input Mode COUT Enable CK Q D VDD Q I/O pin D WR TRISIO WR GPIO Q CK Q RD GPIO Q CK Q D EN RD IOC Q 1 I/O pin Q CK Q VSS Analog Input Mode RD TRISIO Q COUT 0 D WR TRISIO D Q VSS Analog Input Mode(1) RD TRISIO WR IOC CK RD GPIO Q3 D D WR IOC Q CK Q EN EN Interrupt-onchange RD IOC Q RD GPIO To Comparator D Q Q3 D EN Interrupt-onchange To A/D Converter RD GPIO Note 1: Comparator mode and ANSEL determines Analog Input mode. To Timer0 To INT To A/D Converter Note (c) 2007 Microchip Technology Inc. 1: Comparator mode and ANSEL determines Analog Input mode. DS41211D-page 37 PIC12F683 4.2.5.4 GP3/MCLR/VPP 4.2.5.5 GP4/AN3/T1G/OSC2/CLKOUT Figure 4-4 shows the diagram for this pin. The GP3 pin is configurable to function as one of the following: Figure 4-5 shows the diagram for this pin. The GP4 pin is configurable to function as one of the following: * a general purpose input * as Master Clear Reset with weak pull-up * * * * * FIGURE 4-4: BLOCK DIAGRAM OF GP3 VDD MCLRE Data Bus MCLRE Reset RD TRISIO MCLRE D CK VSS Q Q FIGURE 4-5: Input pin VSS RD GPIO WR IOC Weak a general purpose I/O an analog input for the ADC a Timer1 gate input a crystal/resonator connection a clock output BLOCK DIAGRAM OF GP4 Analog Input Mode Data Bus WR WPU D CK Q VDD Q Weak GPPU RD WPU D Oscillator Circuit Q EN RD IOC Interrupt-onchange Q CLK(1) Modes OSC1 Q3 VDD CLKOUT Enable D D EN WR GPIO FOSC/4 Q 1 0 CK Q I/O pin CLKOUT Enable RD GPIO VSS D WR TRISIO Q INTOSC/ RC/EC(2) CK Q CLKOUT Enable RD TRISIO Analog Input Mode RD GPIO D WR IOC Q Q CK Q D EN RD IOC Q Q3 D EN Interrupt-onchange RD GPIO To T1G To A/D Converter Note 1: CLK modes are XT, HS, LP, optional LP oscillator and CLKOUT Enable. 2: With CLKOUT option. DS41211D-page 38 (c) 2007 Microchip Technology Inc. PIC12F683 4.2.5.6 GP5/T1CKI/OSC1/CLKIN FIGURE 4-6: Figure 4-6 shows the diagram for this pin. The GP5 pin is configurable to function as one of the following: * * * * BLOCK DIAGRAM OF GP5 INTOSC Mode Data Bus a general purpose I/O a Timer1 clock input a crystal/resonator connection a clock input VDD Q D WR WPU TMR1LPEN(1) CK Weak Q GPPU RD WPU Oscillator Circuit OSC2 D WR GPIO VDD Q CK Q I/O pin Q D WR TRISIO CK Q VSS INTOSC Mode RD TRISIO (1) RD GPIO D Q CK WR IOC Q D Q EN Q3 RD IOC Q D EN Interrupt-onchange RD GPIO To Timer1 or CLKGEN Note 1: Timer1 LP oscillator enabled. 2: When using Timer1 with LP oscillator, the Schmitt Trigger is bypassed. TABLE 4-1: Name SUMMARY OF REGISTERS ASSOCIATED WITH GPIO Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets ANSEL -- ADCS2 ADCS1 ADCS0 ANS3 ANS2 ANS1 ANS0 -000 1111 -000 1111 CCP1CON -- -- DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000 CMCON0 -- COUT -- CINV CIS CM2 CM1 CM0 -0-0 0000 -0-0 0000 PCON -- -- ULPWUE SBOREN -- -- POR BOR --01 --qq --0u --uu GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 000x -- -- IOC5 IOC4 IOC3 IOC2 IOC1 IOC0 --00 0000 --00 0000 GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111 -- -- GP5 GP4 GP3 GP2 GP1 GP0 --xx xxxx --x0 x000 0000 0000 INTCON IOC OPTION_REG GPIO T1CON T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 TRISIO -- -- TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111 WPU -- -- WPU5 WPU4 -- WPU2 WPU1 WPU0 --11 -111 --11 -111 Legend: x = unknown, u = unchanged, - = unimplemented locations read as `0'. Shaded cells are not used by GPIO. (c) 2007 Microchip Technology Inc. DS41211D-page 39 PIC12F683 NOTES: DS41211D-page 40 (c) 2007 Microchip Technology Inc. PIC12F683 5.0 TIMER0 MODULE 5.1 Timer0 Operation The Timer0 module is an 8-bit timer/counter with the following features: When used as a timer, the Timer0 module can be used as either an 8-bit timer or an 8-bit counter. * * * * * 5.1.1 8-bit timer/counter register (TMR0) 8-bit prescaler (shared with Watchdog Timer) Programmable internal or external clock source Programmable external clock edge selection Interrupt on overflow 8-BIT TIMER MODE When used as a timer, the Timer0 module will increment every instruction cycle (without prescaler). Timer mode is selected by clearing the T0CS bit of the OPTION register to `0'. Figure 5-1 is a block diagram of the Timer0 module. When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write. Note: 5.1.2 The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written. 8-BIT COUNTER MODE When used as a counter, the Timer0 module will increment on every rising or falling edge of the T0CKI pin. The incrementing edge is determined by the T0SE bit of the OPTION register. Counter mode is selected by setting the T0CS bit of the OPTION register to `1'. FIGURE 5-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER FOSC/4 Data Bus 0 8 1 Sync 2 Tcy 1 T0CKI pin TMR0 0 0 T0SE T0CS Set Flag bit T0IF on Overflow 8-bit Prescaler PSA 1 8 PSA WDTE SWDTEN PS<2:0> 16-bit Prescaler 31 kHz INTOSC 1 WDT Time-out 0 16 Watchdog Timer PSA WDTPS<3:0> Note 1: T0SE, T0CS, PSA, PS<2:0> are bits in the OPTION register. 2: SWDTEN and WDTPS<3:0> are bits in the WDTCON register. 3: WDTE bit is in the Configuration Word register. (c) 2007 Microchip Technology Inc. DS41211D-page 41 PIC12F683 5.1.3 SOFTWARE PROGRAMMABLE PRESCALER A single software programmable prescaler is available for use with either Timer0 or the Watchdog Timer (WDT), but not both simultaneously. The prescaler assignment is controlled by the PSA bit of the OPTION register. To assign the prescaler to Timer0, the PSA bit must be cleared to a `0'. There are 8 prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be assigned to the WDT module. The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the prescaler. When the prescaler is assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. 5.1.3.1 Switching Prescaler Between Timer0 and WDT Modules As a result of having the prescaler assigned to either Timer0 or the WDT, it is possible to generate an unintended device Reset when switching prescaler values. When changing the prescaler assignment from Timer0 to the WDT module, the instruction sequence shown in Example 5-1, must be executed. EXAMPLE 5-1: BANKSEL CLRWDT CLRF CHANGING PRESCALER (TIMER0 WDT) TMR0 TMR0 BANKSEL BSF CLRWDT OPTION_REG OPTION_REG,PSA MOVLW ANDWF IORLW MOVWF b'11111000' OPTION_REG,W b'00000101' OPTION_REG DS41211D-page 42 ; ;Clear WDT ;Clear TMR0 and ;prescaler ; ;Select WDT ; ; ;Mask prescaler ;bits ;Set WDT prescaler ;to 1:32 When changing the prescaler assignment from the WDT to the Timer0 module, the following instruction sequence must be executed (see Example 5-2). EXAMPLE 5-2: CHANGING PRESCALER (WDT TIMER0) CLRWDT ;Clear WDT and ;prescaler BANKSEL OPTION_REG ; MOVLW b'11110000' ;Mask TMR0 select and ANDWF OPTION_REG,W ;prescaler bits IORLW b'00000011' ;Set prescale to 1:16 MOVWF OPTION_REG ; 5.1.4 TIMER0 INTERRUPT Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The T0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The T0IF bit must be cleared in software. The Timer0 interrupt enable is the T0IE bit of the INTCON register. Note: 5.1.5 The Timer0 interrupt cannot wake the processor from Sleep since the timer is frozen during Sleep. USING TIMER0 WITH AN EXTERNAL CLOCK When Timer0 is in Counter mode, the synchronization of the T0CKI input and the Timer0 register is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, the high and low periods of the external clock source must meet the timing requirements as shown in the Section 15.0 "Electrical Specifications". (c) 2007 Microchip Technology Inc. PIC12F683 REGISTER 5-1: OPTION_REG: OPTION REGISTER R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared x = Bit is unknown bit 7 GPPU: GPIO Pull-up Enable bit 1 = GPIO pull-ups are disabled 0 = GPIO pull-ups are enabled by individual PORT latch values in WPU register bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of INT pin 0 = Interrupt on falling edge of INT pin bit 5 T0CS: Timer0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (FOSC/4) bit 4 T0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin bit 3 PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module bit 2-0 PS<2:0>: Prescaler Rate Select bits BIT VALUE TIMER0 RATE WDT RATE 000 001 010 011 100 101 110 111 Note 1: Name SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0 Bit 7 TMR0 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Timer0 Module Register INTCON OPTION_REG TRISIO 1:1 1:2 1:4 1:8 1 : 16 1 : 32 1 : 64 1 : 128 A dedicated 16-bit WDT postscaler is available. See Section 12.6 "Watchdog Timer (WDT)" for more information. TABLE 5-1: Legend: 1:2 1:4 1:8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256 Value on all other Resets xxxx xxxx uuuu uuuu GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 000x GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111 -- -- --11 1111 --11 1111 TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 - = Unimplemented locations, read as `0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module. (c) 2007 Microchip Technology Inc. DS41211D-page 43 PIC12F683 6.0 TIMER1 MODULE WITH GATE CONTROL 6.1 The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter. The Timer1 module is a 16-bit timer/counter with the following features: * * * * * * * * * * Timer1 Operation 16-bit timer/counter register pair (TMR1H:TMR1L) Programmable internal or external clock source 3-bit prescaler Optional LP oscillator Synchronous or asynchronous operation Timer1 gate (count enable) via comparator or T1G pin Interrupt on overflow Wake-up on overflow (external clock, Asynchronous mode only) Special Event Trigger (with CCP) Comparator output synchronization to Timer1 clock When used with an internal clock source, the module is a timer. When used with an external clock source, the module can be used as either a timer or counter. 6.2 Clock Source Selection The TMR1CS bit of the T1CON register is used to select the clock source. When TMR1CS = 0, the clock source is FOSC/4. When TMR1CS = 1, the clock source is supplied externally. Clock Source TMR1CS FOSC/4 0 T1CKI pin 1 Figure 6-1 is a block diagram of the Timer1 module. FIGURE 6-1: TIMER1 BLOCK DIAGRAM TMR1GE T1GINV TMR1ON Set flag bit TMR1IF on Overflow To Comparator Module Timer1 Clock TMR1(2) TMR1H TMR1L Synchronized clock input 0 EN 1 Oscillator (1) T1SYNC OSC1/T1CKI OSC2/T1G 1 FOSC/4 Internal Clock Synchronize(3) Prescaler 1, 2, 4, 8 det 0 2 T1CKPS<1:0> TMR1CS 1 INTOSC Without CLKOUT T1OSCEN COUT 0 T1GSS Note 1: 2: 3: DS41211D-page 44 ST Buffer is low power type when using LP oscillator, or high speed type when using T1CKI. Timer1 register increments on rising edge. Synchronize does not operate while in Sleep. (c) 2007 Microchip Technology Inc. PIC12F683 6.2.1 INTERNAL CLOCK SOURCE When the internal clock source is selected the TMR1H:TMR1L register pair will increment on multiples of TCY as determined by the Timer1 prescaler. 6.2.2 EXTERNAL CLOCK SOURCE When the external clock source is selected, the Timer1 module may work as a timer or a counter. When counting, Timer1 is incremented on the rising edge of the external clock input T1CKI. In addition, the Counter mode clock can be synchronized to the microcontroller system clock or run asynchronously. 6.5 If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 6.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode"). Note: If an external clock oscillator is needed (and the microcontroller is using the INTOSC without CLKOUT), Timer1 can use the LP oscillator as a clock source. Note: 6.3 In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge. 6.4 Timer1 Oscillator A low-power 32.768 kHz crystal oscillator is built-in between pins OSC1 (input) and OSC2 (amplifier output). The oscillator is enabled by setting the T1OSCEN control bit of the T1CON register. The oscillator will continue to run during Sleep. The Timer1 oscillator is shared with the system LP oscillator. Thus, Timer1 can use this mode only when the primary system clock is derived from the internal oscillator or when in LP oscillator mode. The user must provide a software time delay to ensure proper oscillator start-up. TRISIO<5:4> bits are set when the Timer1 oscillator is enabled. GP5 and GP4 bits read as `0' and TRISIO5 and TRISIO4 bits read as `1'. Note: 6.5.1 Timer1 Prescaler Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L. The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to enabling Timer1. Timer1 Operation in Asynchronous Counter Mode When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce a single spurious increment. READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads. For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TTMR1L register pair. 6.6 Timer1 Gate Timer1 gate source is software configurable to be the T1G pin or the output of the Comparator. This allows the device to directly time external events using T1G or analog events using Comparator 2. See the CMCON1 register (Register 8-2) for selecting the Timer1 gate source. This feature can simplify the software for a Delta-Sigma A/D converter and many other applications. For more information on Delta-Sigma A/D converters, see the Microchip web site (www.microchip.com). Note: TMR1GE bit of the T1CON register must be set to use either T1G or COUT as the Timer1 gate source. See Register 8-2 for more information on selecting the Timer1 gate source. Timer1 gate can be inverted using the T1GINV bit of the T1CON register, whether it originates from the T1G pin or Comparator 2 output. This configures Timer1 to measure either the active-high or active-low time between events. (c) 2007 Microchip Technology Inc. DS41211D-page 45 PIC12F683 6.7 Timer1 Interrupt 6.9 CCP Special Event Trigger The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits: If a CCP is configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt. * Timer1 interrupt enable bit of the PIE1 register * PEIE bit of the INTCON register * GIE bit of the INTCON register In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the period register for Timer1. The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine. Timer1 should be synchronized to the FOSC to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed. Note: 6.8 The TMR1H:TTMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts. Timer1 Operation During Sleep In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the CCP, the write will take precedence. For more information, see Section on CCP. Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device: * TMR1ON bit of the T1CON register must be set * TMR1IE bit of the PIE1 register must be set * PEIE bit of the INTCON register must be set The device will wake-up on an overflow and execute the next instruction. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine (0004h). FIGURE 6-2: 6.10 Comparator Synchronization The same clock used to increment Timer1 can also be used to synchronize the comparator output. This feature is enabled in the Comparator module. When using the comparator for Timer1 gate, the comparator output should be synchronized to Timer1. This ensures Timer1 does not miss an increment if the comparator changes. For more information, see Section 8.0 "Comparator Module". TIMER1 INCREMENTING EDGE T1CKI = 1 when TMR1 Enabled T1CKI = 0 when TMR1 Enabled Note 1: 2: Arrows indicate counter increments. In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock. DS41211D-page 46 (c) 2007 Microchip Technology Inc. PIC12F683 6.11 Timer1 Control Register The Timer1 Control register (T1CON), shown in Register 6-1, is used to control Timer1 and select the various features of the Timer1 module. REGISTER 6-1: R/W-0 R/W-0 (1) T1GINV T1CON: TIMER1 CONTROL REGISTER (2) TMR1GE R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7 T1GINV: Timer1 Gate Invert bit(1) 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low) bit 6 TMR1GE: Timer1 Gate Enable bit(2) If TMR1ON = 0: This bit is ignored If TMR1ON = 1: 1 = Timer1 is on if Timer1 gate is not active 0 = Timer1 is on bit 5-4 T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale Value 10 = 1:4 Prescale Value 01 = 1:2 Prescale Value 00 = 1:1 Prescale Value bit 3 T1OSCEN: LP Oscillator Enable Control bit If INTOSC without CLKOUT oscillator is active: 1 = LP oscillator is enabled for Timer1 clock 0 = LP oscillator is off Else: This bit is ignored. LP oscillator is disabled. bit 2 T1SYNC: Timer1 External Clock Input Synchronization Control bit TMR1CS = 1: 1 = Do not synchronize external clock input 0 = Synchronize external clock input TMR1CS = 0: This bit is ignored. Timer1 uses the internal clock bit 1 TMR1CS: Timer1 Clock Source Select bit 1 = External clock from T1CKI pin (on the rising edge) 0 = Internal clock (FOSC/4) bit 0 TMR1ON: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1 Note 1: 2: x = Bit is unknown T1GINV bit inverts the Timer1 gate logic, regardless of source. TMR1GE bit must be set to use either T1G pin or COUT, as selected by the T1GSS bit of the CMCON1 register, as a Timer1 gate source. (c) 2007 Microchip Technology Inc. DS41211D-page 47 PIC12F683 TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1 Value on all other Resets Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 CONFIG(1) CPD CP MCLRE PWRTE WDTE FOSC2 FOSC1 FOSC0 -- -- -- -- -- -- -- -- T1GSS CMSYNC ---- --10 ---- --10 0000 000x CMCON1 Bit 0 Value on POR, BOR Name INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 PIE1 EEIE ADIE CCP1IE -- CMIE OSFIE TMR2IE TMR1IE 000- 0000 000- 0000 PIR1 EEIF ADIF CCP1IF -- CMIF OSFIF TMR2IF TMR1IF 000- 0000 000- 0000 TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu 0000 0000 uuuu uuuu T1CON Legend: Note 1: T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON x = unknown, u = unchanged, - = unimplemented, read as `0'. Shaded cells are not used by the Timer1 module. See Configuration Word register (Register 12-1) for operation of all register bits. DS41211D-page 48 (c) 2007 Microchip Technology Inc. PIC12F683 7.0 TIMER2 MODULE The Timer2 module is an 8-bit timer with the following features: * * * * * 8-bit timer register (TMR2) 8-bit period register (PR2) Interrupt on TMR2 match with PR2 Software programmable prescaler (1:1, 1:4, 1:16) Software programmable postscaler (1:1 to 1:16) Timer2 is turned on by setting the TMR2ON bit in the T2CON register to a `1'. Timer2 is turned off by clearing the TMR2ON bit to a `0'. The Timer2 prescaler is controlled by the T2CKPS bits in the T2CON register. The Timer2 postscaler is controlled by the TOUTPS bits in the T2CON register. The prescaler and postscaler counters are cleared when: See Figure 7-1 for a block diagram of Timer2. 7.1 The TMR2 and PR2 registers are both fully readable and writable. On any Reset, the TMR2 register is set to 00h and the PR2 register is set to FFh. Timer2 Operation The clock input to the Timer2 module is the system instruction clock (FOSC/4). The clock is fed into the Timer2 prescaler, which has prescale options of 1:1, 1:4 or 1:16. The output of the prescaler is then used to increment the TMR2 register. * A write to TMR2 occurs. * A write to T2CON occurs. * Any device Reset occurs (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset). Note: The values of TMR2 and PR2 are constantly compared to determine when they match. TMR2 will increment from 00h until it matches the value in PR2. When a match occurs, two things happen: TMR2 is not cleared when T2CON is written. * TMR2 is reset to 00h on the next increment cycle. * The Timer2 postscaler is incremented The match output of the Timer2/PR2 comparator is then fed into the Timer2 postscaler. The postscaler has postscale options of 1:1 to 1:16 inclusive. The output of the Timer2 postscaler is used to set the TMR2IF interrupt flag bit in the PIR1 register. FIGURE 7-1: TIMER2 BLOCK DIAGRAM TMR2 Output FOSC/4 Prescaler 1:1, 1:4, 1:16 2 TMR2 Sets Flag bit TMR2IF Reset Comparator EQ Postscaler 1:1 to 1:16 T2CKPS<1:0> PR2 4 TOUTPS<3:0> (c) 2007 Microchip Technology Inc. DS41211D-page 49 PIC12F683 REGISTER 7-1: T2CON: TIMER 2 CONTROL REGISTER U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 -- TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7 Unimplemented: Read as `0' bit 6-3 TOUTPS<3:0>: Timer2 Output Postscaler Select bits 0000 = 1:1 Postscaler 0001 = 1:2 Postscaler 0010 = 1:3 Postscaler 0011 = 1:4 Postscaler 0100 = 1:5 Postscaler 0101 = 1:6 Postscaler 0110 = 1:7 Postscaler 0111 = 1:8 Postscaler 1000 = 1:9 Postscaler 1001 = 1:10 Postscaler 1010 = 1:11 Postscaler 1011 = 1:12 Postscaler 1100 = 1:13 Postscaler 1101 = 1:14 Postscaler 1110 = 1:15 Postscaler 1111 = 1:16 Postscaler bit 2 TMR2ON: Timer2 On bit 1 = Timer2 is on 0 = Timer2 is off bit 1-0 T2CKPS<1:0>: Timer2 Clock Prescale Select bits 00 = Prescaler is 1 01 = Prescaler is 4 1x = Prescaler is 16 TABLE 7-1: Name Bit 7 x = Bit is unknown SUMMARY OF ASSOCIATED TIMER2 REGISTERS Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 000x PIE1 EEIE ADIE CCP1IE -- CMIE OSFIE TMR2IE TMR1IE 000- 0000 000- 0000 EEIF ADIF CCP1IF -- CMIF OSFIF TMR2IF TMR1IF PIR1 000- 0000 000- 0000 PR2 Timer2 Module Period Register 1111 1111 1111 1111 TMR2 Holding Register for the 8-bit TMR2 Register 0000 0000 0000 0000 -000 0000 -000 0000 T2CON -- Legend: x = unknown, u = unchanged, - = unimplemented read as `0'. Shaded cells are not used for Timer2 module. DS41211D-page 50 TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 (c) 2007 Microchip Technology Inc. PIC12F683 8.0 COMPARATOR MODULE FIGURE 8-1: Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. The comparators are very useful mixed signal building blocks because they provide analog functionality independent of the program execution. The analog comparator module includes the following features: * * * * * * * * VIN+ + VIN- - Output VINVIN+ Multiple comparator configurations Comparator output is available internally/externally Programmable output polarity Interrupt-on-change Wake-up from Sleep Timer1 gate (count enable) Output synchronization to Timer1 clock input Programmable voltage reference 8.1 SINGLE COMPARATOR Output Note: The black areas of the output of the comparator represents the uncertainty due to input offsets and response time. Comparator Overview The comparator is shown in Figure 8-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level. FIGURE 8-2: COMPARATOR OUTPUT BLOCK DIAGRAM CMSYNC Port Pins MULTIPLEX To Timer1 Gate CINV 0 To COUT pin D Q D Q 1 Timer1 clock source(1) Q1 EN To Data Bus RD CMCON0 Set CMIF bit D Q3*RD CMCON0 Q EN CL Reset Note 1: Comparator output is latched on falling edge of Timer1 clock source. 2: Q1 and Q3 are phases of the four-phase system clock (FOSC). 3: Q1 is held high during Sleep mode. (c) 2007 Microchip Technology Inc. DS41211D-page 51 PIC12F683 8.2 Analog Input Connection Considerations A simplified circuit for an analog input is shown in Figure 8-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur. Note 1: When reading a PORT register, all pins configured as analog inputs will read as a `0'. Pins configured as digital inputs will convert as an analog input, according to the input specification. 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified. A maximum source impedance of 10 k is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced. FIGURE 8-3: ANALOG INPUT MODEL VDD VT 0.6V Rs < 10K RIC To ADC Input AIN VA CPIN 5 pF VT 0.6V ILEAKAGE 500 nA Vss Legend: CPIN = Input Capacitance ILEAKAGE = Leakage Current at the pin due to various junctions RIC = Interconnect Resistance = Source Impedance RS = Analog Voltage VA VT = Threshold Voltage DS41211D-page 52 (c) 2007 Microchip Technology Inc. PIC12F683 8.3 Comparator Configuration There are eight modes of operation for the comparator. The CM<2:0> bits of the CMCON0 register are used to select these modes as shown in Figure 8-4. * Analog function (A): digital input buffer is disabled * Digital function (D): comparator digital output, overrides port function * Normal port function (I/O): independent of comparator FIGURE 8-4: The port pins denoted as "A" will read as a `0' regardless of the state of the I/O pin or the I/O control TRIS bit. Pins used as analog inputs should also have the corresponding TRIS bit set to `1' to disable the digital output driver. Pins denoted as "D" should have the corresponding TRIS bit set to `0' to enable the digital output driver. Note: Comparator interrupts should be disabled during a Comparator mode change to prevent unintended interrupts. COMPARATOR I/O OPERATING MODES Comparator Reset (POR Default Value - low power) Comparator w/o Output and with Internal Reference CM<2:0> = 000 CM<2:0> = 100 CINCIN+ A Off A (1) CIN- A CIN+ I/O COUT COUT (pin) I/O COUT (pin) I/O From CVREF Module Comparator with Output Multiplexed Input with Internal Reference and Output CM<2:0> = 001 CM<2:0> = 101 CIN- A CIN+ A COUT COUT (pin) D CIN- A CIN+ A CIS = 0 CIS = 1 COUT COUT (pin) D From CVREF Module Comparator without Output Multiplexed Input with Internal Reference CM<2:0> = 010 CM<2:0> = 110 CINCIN+ COUT (pin) A A CINCOUT A A CIN+ COUT (pin) I/O CIS = 0 CIS = 1 COUT I/O From CVREF Module Comparator with Output and Internal Reference Comparator Off (Lowest power) CM<2:0> = 011 CM<2:0> = 111 CIN- A CIN+ I/O COUT COUT (pin) D From CVREF Module Legend: A = Analog Input, ports always reads `0' I/O = Normal port I/O Note 1: CIN- I/O CIN+ I/O Off(1) COUT (pin) I/O CIS = Comparator Input Switch (CMCON0<3>) D = Comparator Digital Output Reads as `0', unless CINV = 1. (c) 2007 Microchip Technology Inc. DS41211D-page 53 PIC12F683 8.4 Comparator Control 8.5 The CMCON0 register (Register 8-1) provides access to the following comparator features: * * * * Mode selection Output state Output polarity Input switch 8.4.1 COMPARATOR OUTPUT STATE The Comparator state can always be read internally via the COUT bit of the CMCON0 register. The comparator state may also be directed to the COUT pin in the following modes: Comparator Response Time The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Section 15.0 "Electrical Specifications" for more details. * CM<2:0> = 001 * CM<2:0> = 011 * CM<2:0> = 101 When one of the above modes is selected, the associated TRIS bit of the COUT pin must be cleared. 8.4.2 COMPARATOR OUTPUT POLARITY Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CINV bit of the CMCON0 register. Clearing CINV results in a non-inverted output. A complete table showing the output state versus input conditions and the polarity bit is shown in Table 8-1. TABLE 8-1: OUTPUT STATE VS. INPUT CONDITIONS Input Conditions CINV COUT VIN- > VIN+ 0 0 VIN- < VIN+ 0 1 VIN- > VIN+ 1 1 VIN- < VIN+ 1 0 Note: 8.4.3 COUT refers to both the register bit and output pin. COMPARATOR INPUT SWITCH The inverting input of the comparator may be switched between two analog pins in the following modes: * CM<2:0> = 101 * CM<2:0> = 110 In the above modes, both pins remain in analog mode regardless of which pin is selected as the input. The CIS bit of the CMCON0 register controls the comparator input switch. DS41211D-page 54 (c) 2007 Microchip Technology Inc. PIC12F683 8.6 Comparator Interrupt Operation The comparator interrupt flag is set whenever there is a change in the output value of the comparator. Changes are recognized by means of a mismatch circuit which consists of two latches and an exclusive-or gate (see Figure 8.2). One latch is updated with the comparator output level when the CMCON0 register is read. This latch retains the value until the next read of the CMCON0 register or the occurrence of a Reset. The other latch of the mismatch circuit is updated on every Q1 system clock. A mismatch condition will occur when a comparator output change is clocked through the second latch on the Q1 clock cycle. The mismatch condition will persist, holding the CMIF bit of the PIR1 register true, until either the CMCON0 register is read or the comparator output returns to the previous state. Note: A write operation to the CMCON0 register will also clear the mismatch condition because all writes include a read operation at the beginning of the write cycle. Software will need to maintain information about the status of the comparator output to determine the actual change that has occurred. The CMIF bit of the PIR1 register, is the comparator interrupt flag. This bit must be reset in software by clearing it to `0'. Since it is also possible to write a `1' to this register, a simulated interrupt may be initiated. The CMIE bit of the PIE1 register and the PEIE and GIE bits of the INTCON register must all be set to enable comparator interrupts. If any of these bits are cleared, the interrupt is not enabled, although the CMIF bit of the PIR1 register will still be set if an interrupt condition occurs. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner: a) b) Any read or write of CMCON0. This will end the mismatch condition. Clear the CMIF interrupt flag. FIGURE 8-5: COMPARATOR INTERRUPT TIMING W/O CMCON0 READ Q1 Q3 CIN+ TRT COUT Set CMIF (level) CMIF reset by software FIGURE 8-6: COMPARATOR INTERRUPT TIMING WITH CMCON0 READ Q1 Q3 CIN+ TRT COUT Set CMIF (level) CMIF cleared by CMCON0 read reset by software Note 1: If a change in the CMCON0 register (COUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF of the PIR1 register interrupt flag may not get set. 2: When either comparator is first enabled, bias circuitry in the Comparator module may cause an invalid output from the comparator until the bias circuitry is stable. Allow about 1 s for bias settling then clear the mismatch condition and interrupt flags before enabling comparator interrupts. A persistent mismatch condition will preclude clearing the CMIF interrupt flag. Reading CMCON0 will end the mismatch condition and allow the CMIF bit to be cleared. Note: If a change in the CMCON0 register (COUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF interrupt flag may not get set. (c) 2007 Microchip Technology Inc. DS41211D-page 55 PIC12F683 8.7 Operation During Sleep 8.8 The comparator, if enabled before entering Sleep mode, remains active during Sleep. The additional current consumed by the comparator is shown separately in Section 15.0 "Electrical Specifications". If the comparator is not used to wake the device, power consumption can be minimized while in Sleep mode by turning off the comparator. The comparator is turned off by selecting mode CM<2:0> = 000 or CM<2:0> = 111 of the CMCON0 register. Effects of a Reset A device Reset forces the CMCON0 and CMCON1 registers to their Reset states. This forces the Comparator module to be in the Comparator Reset mode (CM<2:0> = 000). Thus, all comparator inputs are analog inputs with the comparator disabled to consume the smallest current possible. A change to the comparator output can wake-up the device from Sleep. To enable the comparator to wake the device from Sleep, the CMIE bit of the PIE1 register and the PEIE bit of the INTCON register must be set. The instruction following the Sleep instruction always executes following a wake from Sleep. If the GIE bit of the INTCON register is also set, the device will then execute the Interrupt Service Routine. REGISTER 8-1: CMCON0: COMPARATOR CONFIGURATION REGISTER U-0 R-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 -- COUT -- CINV CIS CM2 CM1 CM0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared x = Bit is unknown bit 7 Unimplemented: Read as `0' bit 6 COUT: Comparator Output bit When CINV = 0: 1 = VIN+ > VIN0 = VIN+ < VINWhen CINV = 1: 1 = VIN+ < VIN0 = VIN+ > VIN- bit 5 Unimplemented: Read as `0' bit 4 CINV: Comparator Output Inversion bit 1 = Output inverted 0 = Output not inverted bit 3 CIS: Comparator Input Switch bit When CM<2:0> = 110 or 101: 1 = CIN+ connects to VIN0 = CIN- connects to VINWhen CM<2:0> = 0xx or 100 or 111: CIS has no effect. bit 2-0 CM<2:0>: Comparator Mode bits (See Figure 8-5) 000 = CIN pins are configured as analog, COUT pin configured as I/O, Comparator output turned off 001 = CIN pins are configured as analog, COUT pin configured as Comparator output 010 = CIN pins are configured as analog, COUT pin configured as I/O, Comparator output available internally 011 = CIN- pin is configured as analog, CIN+ pin is configured as I/O, COUT pin configured as Comparator output, CVREF is non-inverting input 100 = CIN- pin is configured as analog, CIN+ pin is configured as I/O, COUT pin is configured as I/O, Comparator output available internally, CVREF is non-inverting input 101 = CIN pins are configured as analog and multiplexed, COUT pin is configured as Comparator output, CVREF is non-inverting input 110 = CIN pins are configured as analog and multiplexed, COUT pin is configured as I/O, Comparator output available internally, CVREF is non-inverting input 111 = CIN pins are configured as I/O, COUT pin is configured as I/O, Comparator output disabled, Comparator off. DS41211D-page 56 (c) 2007 Microchip Technology Inc. PIC12F683 8.9 Comparator Gating Timer1 8.10 This feature can be used to time the duration or interval of analog events. Clearing the T1GSS bit of the CMCON1 register will enable Timer1 to increment based on the output of the comparator. This requires that Timer1 is on and gating is enabled. See Section 6.0 "Timer1 Module with Gate Control" for details. It is recommended to synchronize the comparator with Timer1 by setting the CMSYNC bit when the comparator is used as the Timer1 gate source. This ensures Timer1 does not miss an increment if the comparator changes during an increment. REGISTER 8-2: Synchronizing Comparator Output to Timer1 The comparator output can be synchronized with Timer1 by setting the CMSYNC bit of the CMCON1 register. When enabled, the comparator output is latched on the falling edge of the Timer1 clock source. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 82) and the Timer1 Block Diagram (Figure 6-1) for more information. CMCON1: COMPARATOR CONFIGURATION REGISTER U-0 U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 -- -- -- -- -- -- T1GSS CMSYNC bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared x = Bit is unknown bit 7-2 Unimplemented: Read as `0' bit 1 T1GSS: Timer1 Gate Source Select bit(1) 1 = Timer 1 Gate Source is T1G pin (pin should be configured as digital input) 0 = Timer 1 Gate Source is comparator output bit 0 CMSYNC: Comparator Output Synchronization bit(2) 1 = Output is synchronized with falling edge of Timer1 clock 0 = Output is asynchronous Note 1: 2: Refer to Section 6.6 "Timer1 Gate". Refer to Figure 8-2. (c) 2007 Microchip Technology Inc. DS41211D-page 57 PIC12F683 8.11 EQUATION 8-1: Comparator Voltage Reference The Comparator Voltage Reference module provides an internally generated voltage reference for the comparators. The following features are available: * * * * V RR = 1 (low range): CVREF = (VR<3:0>/24) x V DD V RR = 0 (high range): CV REF = (VDD/4) + (VR<3:0> x VDD/32) Independent from Comparator operation Two 16-level voltage ranges Output clamped to VSS Ratiometric with VDD The full range of VSS to VDD cannot be realized due to the construction of the module. See Figure 8-1. The VRCON register (Register 8-3) controls the Voltage Reference module shown in Figure 8-7. 8.11.1 CVREF OUTPUT VOLTAGE INDEPENDENT OPERATION 8.11.3 OUTPUT CLAMPED TO VSS The CVREF output voltage can be set to Vss with no power consumption by configuring VRCON as follows: The comparator voltage reference is independent of the comparator configuration. Setting the VREN bit of the VRCON register will enable the voltage reference. * VREN = 0 * VRR = 1 * VR<3:0> = 0000 8.11.2 This allows the comparator to detect a zero-crossing while not consuming additional CVREF module current. OUTPUT VOLTAGE SELECTION The CVREF voltage reference has 2 ranges with 16 voltage levels in each range. Range selection is controlled by the VRR bit of the VRCON register. The 16 levels are set with the VR<3:0> bits of the VRCON register. The CVREF output voltage is determined by the following equations: REGISTER 8-3: 8.11.4 OUTPUT RATIOMETRIC TO VDD The comparator voltage reference is VDD derived and therefore, the CVREF output changes with fluctuations in VDD. The tested absolute accuracy of the Comparator Voltage Reference can be found in Section 15.0 "Electrical Specifications". VRCON: VOLTAGE REFERENCE CONTROL REGISTER R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 VREN -- VRR -- VR3 VR2 VR1 VR0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7 VREN: CVREF Enable bit 1 = CVREF circuit powered on 0 = CVREF circuit powered down, no IDD drain and CVREF = VSS. bit 6 Unimplemented: Read as `0' bit 5 VRR: CVREF Range Selection bit 1 = Low range 0 = High range bit 4 Unimplemented: Read as `0' bit 3-0 VR<3:0>: CVREF Value Selection 0 VR<3:0> 15 When VRR = 1: CVREF = (VR<3:0>/24) * VDD When VRR = 0: CVREF = VDD/4 + (VR<3:0>/32) * VDD DS41211D-page 58 x = Bit is unknown (c) 2007 Microchip Technology Inc. PIC12F683 FIGURE 8-7: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM 16 Stages 8R R R R R VDD VRR 8R 16-1 Analog MUX VREN 15 14 CVREF to Comparator Input 2 1 0 VR<3:0>(1) VREN VR<3:0> = 0000 VRR Note 1: TABLE 8-2: Care should be taken to ensure VREF remains within the comparator Common mode input range. See Section 15.0 "Electrical Specifications" for more detail. SUMMARY OF REGISTERS ASSOCIATED WITH THE COMPARATOR AND VOLTAGE REFERENCE MODULES Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets ANSEL -- ADCS2 ADCS1 ADCS0 ANS3 ANS2 ANS1 ANS0 -000 1111 -000 1111 CMCON0 -- COUT -- CINV CIS CM2 CM1 CM0 -0-0 0000 -0-0 0000 CMCON1 -- -- -- -- -- -- T1GSS CMSYNC ---- --10 ---- --10 INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 000x PIE1 EEIE ADIE CCP1IE -- CMIE OSFIE TMR2IE TMR1IE 000- 0000 0000 0000 Name PIR1 EEIF ADIF CCP1IF -- CMIF OSFIF TMR2IF TMR1IF 000- 0000 000- 0000 GPIO -- -- GP5 GP4 GP3 GP2 GP1 GP0 --xx xxxx --uu uuuu TRISIO -- -- TRISIO0 --11 1111 --11 1111 VRCON VREN -- VR0 0-0- 0000 -0-0 0000 Legend: TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 VRR -- VR3 VR2 VR1 x = unknown, u = unchanged, - = unimplemented, read as `0'. Shaded cells are not used for comparator. (c) 2007 Microchip Technology Inc. DS41211D-page 59 PIC12F683 NOTES: DS41211D-page 60 (c) 2007 Microchip Technology Inc. PIC12F683 9.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE The ADC voltage reference is software selectable to either VDD or a voltage applied to the external reference pins. The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESL and ADRESH). FIGURE 9-1: The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep. Figure 9-1 shows the block diagram of the ADC. ADC BLOCK DIAGRAM VDD VCFG = 0 VREF VCFG = 1 GP0/AN0 GP1/AN1/VREF A/D GP2/AN2 10 GO/DONE GP4/AN3 ADFM CHS 0 = Left Justify 1 = Right Justify ADON 10 ADRESH 9.1 ADC Configuration 9.1.2 ADRESL CHANNEL SELECTION When configuring and using the ADC the following functions must be considered: The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit. * * * * * * When changing channels, a delay is required before starting the next conversion. Refer to Section 9.2 "ADC Operation" for more information. GPIO configuration Channel selection ADC voltage reference selection ADC conversion clock source Interrupt control Results formatting 9.1.1 GPIO CONFIGURATION The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. See the corresponding GPIO section for more information. Note: Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current. (c) 2007 Microchip Technology Inc. DS41211D-page 61 PIC12F683 ADC VOLTAGE REFERENCE 9.1.3 The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11 TAD periods as shown in Figure 9-2. The VCFG bit of the ADCON0 register provides control of the positive voltage reference. The positive voltage reference can be either VDD or an external voltage source. The negative voltage reference is always connected to the ground reference. 9.1.4 For correct conversion, the appropriate TAD specification must be met. See A/D conversion requirements in Section 15.0 "Electrical Specifications" for more information. Table 9-1 gives examples of appropriate ADC clock selections. CONVERSION CLOCK The source of the conversion clock is software selectable via the ADCS bits of the ANSEL register. There are seven possible clock options: * * * * * * * Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result. FOSC/2 FOSC/4 FOSC/8 FOSC/16 FOSC/32 FOSC/64 FRC (dedicated internal oscillator) TABLE 9-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES (VDD > 3.0V) ADC Clock Period (TAD) ADC Clock Source Device Frequency (FOSC) ADCS<2:0> FOSC/2 20 MHz 000 100 ns(2) ns(2) 8 MHz 250 ns(2) 500 ns(2) 4 MHz 500 ns(2) 1.0 s(2) 1 MHz 2.0 s 4.0 s FOSC/4 100 200 FOSC/8 001 400 ns(2) 1.0 s(2) 2.0 s 8.0 s(3) FOSC/16 101 800 ns(2) 2.0 s 4.0 s 16.0 s(3) FOSC/32 010 1.6 s 4.0 s FOSC/64 110 3.2 s 8.0 s(3) FRC Legend: Note 1: 2: 3: 4: 2-6 x11 s(1,4) 2-6 s(3) 32.0 s(3) 16.0 s(3) 64.0 s(3) s(1,4) 2-6 s(1,4) 8.0 s(1,4) 2-6 Shaded cells are outside of recommended range. The FRC source has a typical TAD time of 4 s for VDD > 3.0V. These values violate the minimum required TAD time. For faster conversion times, the selection of another clock source is recommended. When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep. FIGURE 9-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES TCY to TAD TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 Conversion Starts Holding Capacitor is Disconnected from Analog Input (typically 100 ns) Set GO/DONE bit DS41211D-page 62 ADRESH and ADRESL registers are loaded, GO bit is cleared, ADIF bit is set, Holding capacitor is connected to analog input (c) 2007 Microchip Technology Inc. PIC12F683 9.1.5 INTERRUPTS 9.1.6 The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADC interrupt enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software. Note: RESULT FORMATTING The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON0 register controls the output format. Figure 9-3 shows the two output formats. The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled. This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the global interrupt must be disabled. If the global interrupt is enabled, execution will switch to the interrupt service routine. Please see Section 12.4 "Interrupts" for more information. FIGURE 9-3: 10-BIT A/D CONVERSION RESULT FORMAT ADRESH (ADFM = 0) ADRESL MSB LSB bit 7 bit 0 bit 7 10-bit A/D Result (ADFM = 1) Unimplemented: Read as `0' MSB bit 7 LSB bit 0 bit 7 Unimplemented: Read as `0' 9.2 9.2.1 ADC Operation STARTING A CONVERSION To enable the ADC module, the ADON bit of the ADCON0 register must be set to a `1'. Setting the GO/DONE bit of the ADCON0 register to a `1' will start the Analog-to-Digital conversion. Note: The GO/DONE bit should not be set in the same instruction that turns on the ADC. Refer to Section 9.2.6 "A/D Conversion Procedure". COMPLETION OF A CONVERSION When the conversion is complete, the ADC module will: * Clear the GO/DONE bit * Set the ADIF flag bit * Update the ADRESH:ADRESL registers with new conversion result (c) 2007 Microchip Technology Inc. bit 0 10-bit A/D Result 9.2.3 TERMINATING A CONVERSION If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH:ADRESL registers will not be updated with the partially complete Analog-to-Digital conversion sample. Instead, the ADRESH:ADRESL register pair will retain the value of the previous conversion. Additionally, a 2 TAD delay is required before another acquisition can be initiated. Following this delay, an input acquisition is automatically started on the selected channel. Note: 9.2.2 bit 0 A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated. DS41211D-page 63 PIC12F683 9.2.4 ADC OPERATION DURING SLEEP The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set. When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set. 9.2.5 SPECIAL EVENT TRIGGER The CCP Special Event Trigger allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero. Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met. See Section 11.0 "Capture/Compare/PWM (CCP) Module" for more information. 9.2.6 A/D CONVERSION PROCEDURE This is an example procedure for using the ADC to perform an Analog-to-Digital conversion: 1. 2. 3. 4. 5. 6. 7. Configure GPIO Port: * Disable pin output driver (See TRIS register) * Configure pin as analog Configure the ADC module: * Select ADC conversion clock * Configure voltage reference * Select ADC input channel * Select result format * Turn on ADC module Configure ADC interrupt (optional): * Clear ADC interrupt flag * Enable ADC interrupt * Enable peripheral interrupt * Enable global interrupt(1) Wait the required acquisition time(2). Start conversion by setting the GO/DONE bit. Wait for ADC conversion to complete by one of the following: * Polling the GO/DONE bit * Waiting for the ADC interrupt (interrupts enabled) Read ADC Result DS41211D-page 64 8. Clear the ADC interrupt flag (required if interrupt is enabled). Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution. 2: See Section 9.3 Requirements". EXAMPLE 9-1: "A/D Acquisition A/D CONVERSION ;This code block configures the ADC ;for polling, Vdd reference, Frc clock ;and GP0 input. ; ;Conversion start & polling for completion ; are included. ; BANKSEL TRISIO ; BSF TRISIO,0 ;Set GP0 to input BANKSEL ANSEL ; MOVLW B'01110001' ;ADC Frc clock, IORWF ANSEL ; and GP0 as analog BANKSEL ADCON0 ; MOVLW B'10000001' ;Right justify, MOVWF ADCON0 ;Vdd Vref, AN0, On CALL SampleTime ;Acquisiton delay BSF ADCON0,GO ;Start conversion BTFSC ADCON0,GO ;Is conversion done? GOTO $-1 ;No, test again BANKSEL ADRESH ; MOVF ADRESH,W ;Read upper 2 bits MOVWF RESULTHI ;Store in GPR space BANKSEL ADRESL ; MOVF ADRESL,W ;Read lower 8 bits MOVWF RESULTLO ;Store in GPR space 9.2.7 ADC REGISTER DEFINITIONS The following registers are used to control the operation of the ADC. (c) 2007 Microchip Technology Inc. PIC12F683 REGISTER 9-1: ADCON0: A/D CONTROL REGISTER 0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 ADFM VCFG -- -- CHS1 CHS0 GO/DONE ADON bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared x = Bit is unknown bit 7 ADFM: A/D Conversion Result Format Select bit 1 = Right justified 0 = Left justified bit 6 VCFG: Voltage Reference bit 1 = VREF pin 0 = VDD bit 5-4 Unimplemented: Read as `0' bit 3-2 CHS<1:0>: Analog Channel Select bits 00 = AN0 01 = AN1 10 = AN2 11 = AN3 bit 1 GO/DONE: A/D Conversion Status bit 1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed. 0 = A/D conversion completed/not in progress bit 0 ADON: ADC Enable bit 1 = ADC is enabled 0 = ADC is disabled and consumes no operating current (c) 2007 Microchip Technology Inc. DS41211D-page 65 PIC12F683 REGISTER 9-2: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x ADRES9 ADRES8 ADRES7 ADRES6 ADRES5 ADRES4 ADRES3 ADRES2 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7-0 x = Bit is unknown ADRES<9:2>: ADC Result Register bits Upper 8 bits of 10-bit conversion result REGISTER 9-3: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x ADRES1 ADRES0 -- -- -- -- -- -- bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7-6 ADRES<1:0>: ADC Result Register bits Lower 2 bits of 10-bit conversion result bit 5-0 Reserved: Do not use. REGISTER 9-4: x = Bit is unknown ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x -- -- -- -- -- -- ADRES9 ADRES8 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7-2 Reserved: Do not use. bit 1-0 ADRES<9:8>: ADC Result Register bits Upper 2 bits of 10-bit conversion result REGISTER 9-5: x = Bit is unknown ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x ADRES7 ADRES6 ADRES5 ADRES4 ADRES3 ADRES2 ADRES1 ADRES0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7-0 x = Bit is unknown ADRES<7:0>: ADC Result Register bits Lower 8 bits of 10-bit conversion result DS41211D-page 66 (c) 2007 Microchip Technology Inc. PIC12F683 9.3 A/D Acquisition Requirements For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 9-4. The source impedance (RS) and the internal sampling switch (RSS) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (RSS) impedance varies over the device voltage (VDD), see Figure 9-4. The maximum recommended impedance for analog sources is 10 k. As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), EQUATION 9-1: an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 9-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution. ACQUISITION TIME EXAMPLE Temperature = 50C and external impedance of 10k 5.0V V DD Assumptions: T ACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient = T AMP + T C + T COFF = 2s + T C + [ ( Temperature - 25C ) ( 0.05s/C ) ] The value for TC can be approximated with the following equations: 1 V AP PLIE D 1 - ------------ = V CHOLD 2047 ;[1] VCHOLD charged to within 1/2 lsb -TC ---------- RC V AP P LI ED 1 - e = V CHOLD ;[2] VCHOLD charge response to VAPPLIED - Tc --------- 1 RC V AP P LIED 1 - e = V A P PLIE D 1 - ------------ 2047 ;combining [1] and [2] Solving for TC: T C = - C HOLD ( R IC + R SS + R S ) ln(1/2047) = - 10pF ( 1k + 7k + 10k ) ln(0.0004885) = 1.37 s Therefore: T ACQ = 2 S + 1.37 S + [ ( 50C- 25C ) ( 0.05 S /C ) ] = 4.67 S Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out. 2: The charge holding capacitor (CHOLD) is not discharged after each conversion. 3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin leakage specification. (c) 2007 Microchip Technology Inc. DS41211D-page 67 PIC12F683 FIGURE 9-4: ANALOG INPUT MODEL VDD ANx Rs CPIN 5 pF VA VT = 0.6V VT = 0.6V RIC 1k Sampling Switch SS Rss I LEAKAGE 500 nA CHOLD = 10 pF VSS/VREF- Legend: CPIN = Input Capacitance = Threshold Voltage VT I LEAKAGE = Leakage current at the pin due to various junctions RIC = Interconnect Resistance SS = Sampling Switch CHOLD = Sample/Hold Capacitance FIGURE 9-5: 6V 5V VDD 4V 3V 2V RSS 5 6 7 8 9 10 11 Sampling Switch (k) ADC TRANSFER FUNCTION Full-Scale Range 3FFh 3FEh ADC Output Code 3FDh 3FCh 1 LSB ideal 3FBh Full-Scale Transition 004h 003h 002h 001h 000h Analog Input Voltage 1 LSB ideal VSS/VREF- DS41211D-page 68 Zero-Scale Transition VDD/VREF+ (c) 2007 Microchip Technology Inc. PIC12F683 TABLE 9-2: SUMMARY OF ASSOCIATED ADC REGISTERS Name Bit 7 ADCON0 ADFM VCFG -- ADCS2 ANSEL Bit 6 Bit 5 Value on all other Resets Value on POR, BOR Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 -- -- CHS1 CHS0 GO/DONE ADON 00-- 0000 0000 0000 ADCS1 ADCS0 ANS3 ANS2 ANS1 ANS0 -000 1111 -000 1111 uuuu uuuu ADRESH A/D Result Register High Byte xxxx xxxx ADRESL A/D Result Register Low Byte xxxx xxxx uuuu uuuu 0000 0000 0000 000x INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF PIE1 EEIE ADIE CCP1IE -- CMIE OSFIE TMR2IE TMR1IE PIR1 EEIF ADIF CCP1IF -- CMIF OSFIF TMR2IF TMR1IF GPIO -- -- GP5 GP4 GP3 GP2 GP1 GP0 -- -- TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO Legend: 000- 0000 000- 0000 0000 0000 000- 0000 --xx xxxx --uu uuuu TRISIO0 --11 1111 --11 1111 x = unknown, u = unchanged, -- = unimplemented read as `0'. Shaded cells are not used for ADC module. (c) 2007 Microchip Technology Inc. DS41211D-page 69 PIC12F683 NOTES: DS41211D-page 70 (c) 2007 Microchip Technology Inc. PIC12F683 10.0 DATA EEPROM MEMORY The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers. There are four SFRs used to read and write this memory: * * * * EECON1 EECON2 (not a physically implemented register) EEDAT EEADR EEDAT holds the 8-bit data for read/write, and EEADR holds the address of the EEPROM location being accessed. PIC12F683 has 256 bytes of data EEPROM with an address range from 0h to FFh. REGISTER 10-1: The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The write time will vary with voltage and temperature as well as from chip-to-chip. Please refer to AC Specifications in Section 15.0 "Electrical Specifications" for exact limits. When the data memory is code-protected, the CPU may continue to read and write the data EEPROM memory. The device programmer can no longer access the data EEPROM data and will read zeroes. EEDAT: EEPROM DATA REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 EEDAT7 EEDAT6 EEDAT5 EEDAT4 EEDAT3 EEDAT2 EEDAT1 EEDAT0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7-0 x = Bit is unknown EEDATn: Byte Value to Write To or Read From Data EEPROM bits REGISTER 10-2: EEADR: EEPROM ADDRESS REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7-0 x = Bit is unknown EEADR: Specifies One of 256 Locations for EEPROM Read/Write Operation bits (c) 2007 Microchip Technology Inc. DS41211D-page 71 PIC12F683 10.1 EECON1 and EECON2 Registers EECON1 is the control register with four low-order bits physically implemented. The upper four bits are nonimplemented and read as `0's. Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation. The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset during normal REGISTER 10-3: operation. In these situations, following Reset, the user can check the WRERR bit, clear it and rewrite the location. The data and address will be cleared. Therefore, the EEDAT and EEADR registers will need to be re-initialized. Interrupt flag, EEIF bit of the PIR1 register, is set when write is complete. This bit must be cleared in software. EECON2 is not a physical register. Reading EECON2 will read all `0's. The EECON2 register is used exclusively in the data EEPROM write sequence. Note: The EECON1, EEDAT and EEADR registers should not be modified during a data EEPROM write (WR bit = 1). EECON1: EEPROM CONTROL REGISTER U-0 U-0 U-0 U-0 R/W-x R/W-0 R/S-0 R/S-0 -- -- -- -- WRERR WREN WR RD bit 7 bit 0 Legend: S = Bit can only be set R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared x = Bit is unknown bit 7-4 Unimplemented: Read as `0' bit 3 WRERR: EEPROM Error Flag bit 1 = A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during normal operation or BOR Reset) 0 = The write operation completed bit 2 WREN: EEPROM Write Enable bit 1 = Allows write cycles 0 = Inhibits write to the data EEPROM bit 1 WR: Write Control bit 1 = Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit can only be set, not cleared, in software.) 0 = Write cycle to the data EEPROM is complete bit 0 RD: Read Control bit 1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set, not cleared, in software.) 0 = Does not initiate an EEPROM read DS41211D-page 72 (c) 2007 Microchip Technology Inc. PIC12F683 10.2 Reading the EEPROM Data Memory To read a data memory location, the user must write the address to the EEADR register and then set control bit RD of the EECON1 register, as shown in Example 10-1. The data is available, at the very next cycle, in the EEDAT register. Therefore, it can be read in the next instruction. EEDAT holds this value until another read, or until it is written to by the user (during a write operation). EXAMPLE 10-1: DATA EEPROM READ BANKSEL MOVLW MOVWF BSF MOVF EEADR ; CONFIG_ADDR ; EEADR ;Address to read EECON1,RD ;EE Read EEDAT,W ;Move data to W 10.3 Writing to the EEPROM Data Memory To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDAT register. Then the user must follow a specific sequence to initiate the write for each byte, as shown in Example 10-2. Required Sequence EXAMPLE 10-2: BANKSEL BSF BCF BTFSC GOTO MOVLW MOVWF MOVLW MOVWF BSF BSF DATA EEPROM WRITE EECON1 EECON1,WREN INTCON,GIE INTCON,GIE $-2 55h EECON2 AAh EECON2 EECON1,WR INTCON,GIE ; ;Enable write ;Disable INTs ;See AN576 ; ;Unlock write ; ; ; ;Start the write ;Enable INTS The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. A cycle count is executed during the required sequence. Any number that is not equal to the required cycles to execute the required sequence will prevent the data from being written into the EEPROM. After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set. At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. The EEIF bit of the PIR1 register must be cleared by software. 10.4 Write Verify Depending on the application, good programming practice may dictate that the value written to the data EEPROM should be verified (see Example 10-3) to the desired value to be written. EXAMPLE 10-3: WRITE VERIFY BANKSELEEDAT MOVF EEDAT,W BSF EECON1,RD XORWF BTFSS GOTO : EEDAT,W STATUS,Z WRITE_ERR 10.4.1 ; ;EEDAT not changed ;from previous write ;YES, Read the ;value written ;Is data the same ;No, handle error ;Yes, continue USING THE DATA EEPROM The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM (specification D124) without exceeding the total number of write cycles to a single byte (specifications D120 and D120A). If this is the case, then a refresh of the array must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory. Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware. (c) 2007 Microchip Technology Inc. DS41211D-page 73 PIC12F683 10.5 Protection Against Spurious Write 10.6 There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (64 ms duration) prevents EEPROM write. The write initiate sequence and the WREN bit together help prevent an accidental write during: * Brown-out * Power Glitch * Software Malfunction TABLE 10-1: Name Data EEPROM Operation During Code-Protect Data memory can be code-protected by programming the CPD bit in the Configuration Word register (Register 12-1) to `0'. When the data memory is code-protected, the CPU is able to read and write data to the data EEPROM. It is recommended to code-protect the program memory when code-protecting data memory. This prevents anyone from programming zeroes over the existing code (which will execute as NOPs) to reach an added routine, programmed in unused program memory, which outputs the contents of data memory. Programming unused locations in program memory to `0' will also help prevent data memory code protection from becoming breached. SUMMARY OF ASSOCIATED DATA EEPROM REGISTERS Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 0000 PIR1 EEIF ADIF CCP1IF -- CMIF OSFIF TMR2IF TMR1IF 000- 0000 000- 0000 EEIE ADIE CCP1IE -- CMIE OSFIE TMR2IE TMR1IE 000- 0000 000- 0000 EEDAT EEDAT7 EEDAT6 EEDAT5 EEDAT4 EEDAT3 EEDAT2 EEDAT1 EEDAT0 0000 0000 0000 0000 EEADR EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 0000 0000 0000 0000 PIE1 EECON1 -- -- -- EECON2(1) EEPROM Control Register 2 Legend: Note 1: -- WRERR WREN WR RD ---- x000 ---- q000 ---- ---- ---- ---- x = unknown, u = unchanged, - = unimplemented read as `0', q = value depends upon condition. Shaded cells are not used by the Data EEPROM module. EECON2 is not a physical register. DS41211D-page 74 (c) 2007 Microchip Technology Inc. PIC12F683 11.0 CAPTURE/COMPARE/PWM (CCP) MODULE Additional information on CCP modules is available in the Application Note AN594, "Using the CCP Modules" (DS00594). The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events. In Capture mode, the peripheral allows the timing of the duration of an event.The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate a Pulse-Width Modulated signal of varying frequency and duty cycle. TABLE 11-1: CCP Mode The timer resources used by the module are shown in Table 11-1 REGISTER 11-1: CCP MODE - TIMER RESOURCES REQUIRED Timer Resource Capture Timer1 Compare Timer1 PWM Timer2 CCP1CON: CCP1 CONTROL REGISTER U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 -- -- DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared x = Bit is unknown bit 7-6 Unimplemented: Read as `0' bit 5-4 DC1B<1:0>: PWM Duty Cycle Least Significant bits Capture mode: Unused. Compare mode: Unused. PWM mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L. bit 3-0 CCP1M<3:0>: CCP Mode Select bits 0000 = Capture/Compare/PWM off (resets CCP module) 0001 = Unused (reserved) 0010 = Unused (reserved) 0011 = Unused (reserved) 0100 = Capture mode, every falling edge 0101 = Capture mode, every rising edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, set output on match (CCP1IF bit is set) 1001 = Compare mode, clear output on match (CCP1IF bit is set) 1010 = Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected) 1011 = Compare mode, trigger special event (CCP1IF bit is set, TMR1 is reset and A/D conversion is started if the ADC module is enabled. CCP1 pin is unaffected.) 110x = PWM mode active-high 111x = PWM mode active-low (c) 2007 Microchip Technology Inc. DS41211D-page 75 PIC12F683 11.1 11.1.2 Capture Mode In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin CCP1. An event is defined as one of the following and is configured by the CCP1M<3:0> bits of the CCP1CON register: * * * * Every falling edge Every rising edge Every 4th rising edge Every 16th rising edge When a capture is made, the Interrupt Request Flag bit CCP1IF of the PIR1 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPR1H, CCPR1L register pair is read, the old captured value is overwritten by the new captured value (see Figure 11-1). 11.1.1 CCP1 PIN CONFIGURATION In Capture mode, the CCP1 pin should be configured as an input by setting the associated TRIS control bit. Note: If the CCP1 pin is configured as an output, a write to the GPIO port can cause a capture condition. FIGURE 11-1: Prescaler / 1, 4, 16 CAPTURE MODE OPERATION BLOCK DIAGRAM CCPR1H and Edge Detect 11.1.3 SOFTWARE INTERRUPT When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP1IE interrupt enable bit of the PIE1 register clear to avoid false interrupts. Additionally, the user should clear the CCP1IF interrupt flag bit of the PIR1 register following any change in operating mode. 11.1.4 CCP PRESCALER There are four prescaler settings specified by the CCP1M<3:0> bits of the CCP1CON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter. Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCP1CON register before changing the prescaler (see Example 11-1). EXAMPLE 11-1: CLRF MOVLW CCPR1L Capture Enable TMR1H Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work. CHANGING BETWEEN CAPTURE PRESCALERS BANKSEL CCP1CON Set Flag bit CCP1IF (PIR1 register) CCP1 pin TIMER1 MODE SELECTION MOVWF ;Set Bank bits to point ;to CCP1CON CCP1CON ;Turn CCP module off NEW_CAPT_PS ;Load the W reg with ; the new prescaler ; move value and CCP ON CCP1CON ;Load CCP1CON with this ; value TMR1L CCP1CON<3:0> System Clock (FOSC) DS41211D-page 76 (c) 2007 Microchip Technology Inc. PIC12F683 11.2 11.2.2 Compare Mode In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the CCP1 module may: * * * * * Toggle the CCP1 output. Set the CCP1 output. Clear the CCP1 output. Generate a Special Event Trigger. Generate a Software Interrupt. All Compare modes can generate an interrupt. FIGURE 11-2: COMPARE MODE OPERATION BLOCK DIAGRAM CCP1CON<3:0> Mode Select Q S R Output Logic Match TRIS Output Enable Comparator TMR1H TMR1L Special Event Trigger Special Event Trigger will: * Clear TMR1H and TMR1L registers. * NOT set interrupt flag bit TMR1IF of the PIR1 register. * Set the GO/DONE bit to start the ADC conversion. 11.2.1 CCP1 PIN CONFIGURATION The user must configure the CCP1 pin as an output by clearing the associated TRIS bit. Note: SOFTWARE INTERRUPT MODE When Generate Software Interrupt mode is chosen (CCP1M<3:0> = 1010), the CCP1 module does not assert control of the CCP1 pin (see the CCP1CON register). 11.2.4 SPECIAL EVENT TRIGGER When Special Event Trigger mode is chosen (CCP1M<3:0> = 1011), the CCP1 module does the following: * Resets Timer1 * Starts an ADC conversion if ADC is enabled The CCP1 module does not assert control of the CCP1 pin in this mode (see the CCP1CON register). Set CCP1IF Interrupt Flag (PIR1) 4 CCPR1H CCPR1L CCP1 Pin In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode. 11.2.3 The action on the pin is based on the value of the CCP1M<3:0> control bits of the CCP1CON register. TIMER1 MODE SELECTION The Special Event Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPR1H, CCPR1L register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. This allows the CCPR1H, CCPR1L register pair to effectively provide a 16-bit programmable period register for Timer1. Note 1: The Special Event Trigger from the CCP module does not set interrupt flag bit TMRxIF of the PIR1 register. 2: Removing the match condition by changing the contents of the CCPR1H and CCPR1L register pair, between the clock edge that generates the Special Event Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring. Clearing the CCP1CON register will force the CCP1 compare output latch to the default low level. This is not the GPIO I/O data latch. (c) 2007 Microchip Technology Inc. DS41211D-page 77 PIC12F683 11.3 PWM Mode The PWM mode generates a Pulse-Width Modulated signal on the CCP1 pin. The duty cycle, period and resolution are determined by the following registers: * * * * PR2 T2CON CCPR1L CCP1CON FIGURE 11-4: CCP PWM OUTPUT Period Pulse Width In Pulse-Width Modulation (PWM) mode, the CCP module produces up to a 10-bit resolution PWM output on the CCP1 pin. Since the CCP1 pin is multiplexed with the PORT data latch, the TRIS for that pin must be cleared to enable the CCP1 pin output driver. Note: The PWM output (Figure 11-4) has a time base (period) and a time that the output stays high (duty cycle). TMR2 = PR2 TMR2 = CCPR1L:CCP1CON<5:4> TMR2 = 0 Clearing the CCP1CON register will relinquish CCP1 control of the CCP1 pin. Figure 11-1 shows a simplified block diagram of PWM operation. Figure 11-4 shows a typical waveform of the PWM signal. For a step-by-step procedure on how to set up the CCP module for PWM operation, see Section 11.3.7 "Setup for PWM Operation". FIGURE 11-3: SIMPLIFIED PWM BLOCK DIAGRAM CCP1CON<5:4> Duty Cycle Registers CCPR1L CCPR1H(2) (Slave) CCP1 Pin R Comparator TMR2 (1) Q S TRIS Comparator PR2 Note 1: 2: Clear Timer2, toggle CCP1 pin and latch duty cycle The 8-bit timer TMR2 register is concatenated with the 2-bit internal system clock (FOSC), or 2 bits of the prescaler, to create the 10-bit time base. In PWM mode, CCPR1H is a read-only register. DS41211D-page 78 (c) 2007 Microchip Technology Inc. PIC12F683 11.3.1 PWM PERIOD EQUATION 11-2: The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 11-1. EQUATION 11-1: T OSC * (TMR2 Prescale Value) EQUATION 11-3: (TMR2 Prescale Value) * TMR2 is cleared * The CCP1 pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.) * The PWM duty cycle is latched from CCPR1L into CCPR1H. The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation. The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or 2 bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1. The Timer2 postscaler (see Section 7.0 "Timer2 Module") is not used in the determination of the PWM frequency. When the 10-bit time base matches the CCPR1H and 2bit latch, then the CCP1 pin is cleared (see Figure 11-1). 11.3.3 PWM DUTY CYCLE The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPR1L register and DC1B<1:0> bits of the CCP1CON register. The CCPR1L contains the eight MSbs and the CCP1<1:0> bits of the CCP1CON register contain the two LSbs. CCPR1L and DC1B<1:0> bits of the CCP1CON register can be written to at any time. The duty cycle value is not latched into CCPR1H until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPR1H register is read-only. Equation 11-3 is used to calculate the PWM duty cycle ratio. The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 11-4. EQUATION 11-4: PWM RESOLUTION [ 4 ( PR2 + 1 ) ]- bits Resolution = log ----------------------------------------log ( 2 ) Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged. EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz) PWM Frequency Timer Prescale (1, 4, 16) PR2 Value Maximum Resolution (bits) TABLE 11-3: PWM RESOLUTION The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles. Equation 11-2 is used to calculate the PWM pulse width. TABLE 11-2: DUTY CYCLE RATIO CCPR1L:CCP1CON<5:4> -) Duty Cycle Ratio = (---------------------------------------------------------------------4 ( PR2 + 1 ) When TMR2 is equal to PR2, the following three events occur on the next increment cycle: 11.3.2 Pulse Width = ( CCPR1L:CCP1CON<5:4> ) * PWM PERIOD PWM Period = [ ( PR2 ) + 1 ] * 4 * T OSC * Note: PULSE WIDTH 1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz 16 4 1 1 1 1 0xFF 0xFF 0xFF 0x3F 0x1F 0x17 10 10 10 8 7 6.6 EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz) PWM Frequency Timer Prescale (1, 4, 16) PR2 Value Maximum Resolution (bits) (c) 2007 Microchip Technology Inc. 1.22 kHz 4.90 kHz 19.61 kHz 76.92 kHz 153.85 kHz 200.0 kHz 16 4 1 1 1 1 0x65 0x65 0x65 0x19 0x0C 0x09 8 8 8 6 5 5 DS41211D-page 79 PIC12F683 11.3.4 OPERATION IN SLEEP MODE In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state. 11.3.5 CHANGES IN SYSTEM CLOCK FREQUENCY The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 3.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details. 11.3.6 11.3.7 The following steps should be taken when configuring the CCP module for PWM operation: 1. 2. 3. 4. 5. EFFECTS OF RESET Any Reset will force all ports to Input mode and the CCP registers to their Reset states. 6. DS41211D-page 80 SETUP FOR PWM OPERATION Disable the PWM pin (CCP1) output drivers by setting the associated TRIS bit. Set the PWM period by loading the PR2 register. Configure the CCP module for the PWM mode by loading the CCP1CON register with the appropriate values. Set the PWM duty cycle by loading the CCPR1L register and DC1B bits of the CCP1CON register. Configure and start Timer2: * Clear the TMR2IF interrupt flag bit of the PIR1 register. * Set the Timer2 prescale value by loading the T2CKPS bits of the T2CON register. * Enable Timer2 by setting the TMR2ON bit of the T2CON register. Enable PWM output after a new PWM cycle has started: * Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is set). * Enable the CCP1 pin output driver by clearing the associated TRIS bit. (c) 2007 Microchip Technology Inc. PIC12F683 TABLE 11-4: Name REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets -- -- DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 CCP1CON --00 0000 --00 0000 CCPR1L Capture/Compare/PWM Register 1 Low Byte (LSB) xxxx xxxx xxxx xxxx CCPR1H Capture/Compare/PWM Register 1 High Byte (MSB) xxxx xxxx xxxx xxxx ---- --10 ---- --10 CMCON1 -- -- -- -- -- -- T1GSS CMSYNC INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 000x PIE1 EEIE ADIE CCP1IE -- CMIE OSFIE TMR2IE TMR1IE 000- 0000 000- 0000 PIR1 T1CON EEIF ADIF CCP1IF -- CMIF OSFIF TMR2IF TMR1IF 000- 0000 000- 0000 T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 0000 0000 TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register xxxx xxxx xxxx xxxx TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register xxxx xxxx xxxx xxxx --11 1111 --11 1111 TRISIO Legend: -- CCP1CON TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 - = Unimplemented locations, read as `0', u = unchanged, x = unknown. Shaded cells are not used by the Capture and Compare. TABLE 11-5: Name -- REGISTERS ASSOCIATED WITH PWM AND TIMER2 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets -- -- DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000 CCPR1L Capture/Compare/PWM Register 1 Low Byte (LSB) xxxx xxxx xxxx xxxx CCPR1H Capture/Compare/PWM Register 1 High Byte (MSB) xxxx xxxx xxxx xxxx 0000 000x INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 PIE1 EEIE ADIE CCP1IE -- CMIE OSFIE TMR2IE TMR1IE 000- 0000 -000 0000 PIR1 EEIF ADIF CCP1IF -- CMIF OSFIF TMR2IF TMR1IF 000- 0000 -000 0000 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 PR2 T2CON TMR2 TRISIO Legend: Timer2 Period Register -- TOUTPS3 Timer2 Module Register -- -- 1111 1111 1111 1111 -000 0000 -000 0000 0000 0000 0000 0000 --11 1111 --11 1111 - = Unimplemented locations, read as `0', u = unchanged, x = unknown. Shaded cells are not used by the PWM. (c) 2007 Microchip Technology Inc. DS41211D-page 81 PIC12F683 NOTES: DS41211D-page 82 (c) 2007 Microchip Technology Inc. PIC12F683 12.0 SPECIAL FEATURES OF THE CPU The PIC12F683 has a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving features and offer code protection. These features are: * Reset - Power-on Reset (POR) - Power-up Timer (PWRT) - Oscillator Start-up Timer (OST) - Brown-out Reset (BOR) * Interrupts * Watchdog Timer (WDT) * Oscillator Selection * Sleep * Code Protection * ID Locations * In-Circuit Serial ProgrammingTM The PIC12F683 has two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 64 ms (nominal) on power-up only, designed to keep the part in Reset while the power supply stabilizes. There is also circuitry to reset the device if a brown-out occurs, which can use the Power-up Timer to provide at least a 64 ms Reset. With these three functions on-chip, most applications need no external Reset circuitry. The Sleep mode is designed to offer a very low-current Power-down mode. The user can wake-up from Sleep through: * External Reset * Watchdog Timer Wake-up * An interrupt Several oscillator options are also made available to allow the part to fit the application. The INTOSC option saves system cost while the LP crystal option saves power. A set of Configuration bits are used to select various options (see Register 12-1). Note: 12.1 Address 2007h is beyond the user program memory space. It belongs to the special configuration memory space (2000h-3FFFh), which can be accessed only during programming. See "PIC12F6XX/16F6XX Memory Programming Specification" (DS41204) for more information. Configuration Bits The Configuration bits can be programmed (read as `0'), or left unprogrammed (read as `1') to select various device configurations as shown in Register 12-1. These bits are mapped in program memory location 2007h. (c) 2007 Microchip Technology Inc. DS41211D-page 83 PIC12F683 REGISTER 12-1: -- CONFIG: CONFIGURATION WORD REGISTER -- -- -- FCMEN IESO BOREN1 BOREN0 bit 15 bit 8 CP CPD MCLRE PWRTE WDTE FOSC2 FOSC1 FOSC0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit P = Programmable' U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared x = Bit is unknown bit 15-12 Unimplemented: Read as `1' bit 11 FCMEN: Fail-Safe Clock Monitor Enabled bit 1 = Fail-Safe Clock Monitor is enabled 0 = Fail-Safe Clock Monitor is disabled bit 10 IESO: Internal External Switchover bit 1 = Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled bit 9-8 BOREN<1:0>: Brown-out Reset Selection bits(1) 11 = BOR enabled 10 = BOR enabled during operation and disabled in Sleep 01 = BOR controlled by SBOREN bit of the PCON register 00 = BOR disabled bit 7 CPD: Data Code Protection bit(2) 1 = Data memory code protection is disabled 0 = Data memory code protection is enabled bit 6 CP: Code Protection bit(3) 1 = Program memory code protection is disabled 0 = Program memory code protection is enabled bit 5 MCLRE: GP3/MCLR pin function select bit(4) 1 = GP3/MCLR pin function is MCLR 0 = GP3/MCLR pin function is digital input, MCLR internally tied to VDD bit 4 PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled and can be enabled by SWDTEN bit of the WDTCON register bit 2-0 FOSC<2:0>: Oscillator Selection bits 111 = RC oscillator: CLKOUT function on GP4/OSC2/CLKOUT pin, RC on GP5/OSC1/CLKIN 110 = RCIO oscillator: I/O function on GP4/OSC2/CLKOUT pin, RC on GP5/OSC1/CLKIN 101 = INTOSC oscillator: CLKOUT function on GP4/OSC2/CLKOUT pin, I/O function on GP5/OSC1/CLKIN 100 = INTOSCIO oscillator: I/O function on GP4/OSC2/CLKOUT pin, I/O function on GP5/OSC1/CLKIN 011 = EC: I/O function on GP4/OSC2/CLKOUT pin, CLKIN on GP5/OSC1/CLKIN 010 = HS oscillator: High-speed crystal/resonator on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN 001 = XT oscillator: Crystal/resonator on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN 000 = LP oscillator: Low-power crystal on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN Note 1: 2: 3: 4: Enabling Brown-out Reset does not automatically enable Power-up Timer. The entire data EEPROM will be erased when the code protection is turned off. The entire program memory will be erased when the code protection is turned off. When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled. DS41211D-page 84 (c) 2007 Microchip Technology Inc. PIC12F683 12.2 Calibration Bits Brown-out Reset (BOR), Power-on Reset (POR) and 8 MHz internal oscillator (HFINTOSC) are factory calibrated. These calibration values are stored in fuses located in the Calibration Word (2009h). The Calibration Word is not erased when using the specified bulk erase sequence in the "PIC12F6XX/16F6XX Memory Programming Specification" (DS41244) and thus, does not require reprogramming. 12.3 Reset The PIC12F683 differentiates between various kinds of Reset: a) b) c) d) e) f) Power-on Reset (POR) WDT Reset during normal operation WDT Reset during Sleep MCLR Reset during normal operation MCLR Reset during Sleep Brown-out Reset (BOR) FIGURE 12-1: Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on: * * * * * Power-on Reset MCLR Reset MCLR Reset during Sleep WDT Reset Brown-out Reset (BOR) WDT wake-up does not cause register resets in the same manner as a WDT Reset since wake-up is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different Reset situations, as indicated in Table 12-2. Software can use these bits to determine the nature of the Reset. See Table 12-4 for a full description of Reset states of all registers. A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 12-1. The MCLR Reset path has a noise filter to detect and ignore small pulses. See Section 15.0 "Electrical Specifications" for pulse-width specifications. SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT External Reset MCLR/VPP pin SLEEP WDT Module WDT Time-out Reset VDD Rise Detect Power-on Reset VDD Brown-out(1) Reset BOREN SBOREN S OST/PWRT OST Chip_Reset 10-bit Ripple Counter R Q OSC1/ CLKI pin PWRT LFINTOSC 11-bit Ripple Counter Enable PWRT Enable OST Note 1: Refer to the Configuration Word register (Register 12-1). (c) 2007 Microchip Technology Inc. DS41211D-page 85 PIC12F683 12.3.1 POWER-ON RESET The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. To take advantage of the POR, simply connect the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Section 15.0 "Electrical Specifications" for details. If the BOR is enabled, the maximum rise time specification does not apply. The BOR circuitry will keep the device in Reset until VDD reaches VBOD (see Section 12.3.4 "Brown-Out Reset (BOR)"). Note: For additional information, refer to the Application Note AN607, "Power-up Trouble Shooting" (DS00607). MCLR PIC12F683 has a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses. It should be noted that a WDT Reset does not drive MCLR pin low. Voltages applied to the MCLR pin that exceed its specification can result in both MCLR Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 12-2, is suggested. An internal MCLR option is enabled by clearing the MCLRE bit in the Configuration Word register. When MCLRE = 0, the Reset signal to the chip is generated internally. When the MCLRE = 1, the GP3/MCLR pin becomes an external Reset input. In this mode, the GP3/MCLR pin has a weak pull-up to VDD. DS41211D-page 86 RECOMMENDED MCLR CIRCUIT VDD R1 1 k (or greater) PIC(R) MCU R2 MCLR SW1 (optional) 100 (needed with capacitor) C1 0.1 F (optional, not critical) The POR circuit does not produce an internal Reset when VDD declines. To re-enable the POR, VDD must reach Vss for a minimum of 100 s. When the device starts normal operation (exits the Reset condition), device operating parameters (i.e., voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met. 12.3.2 FIGURE 12-2: 12.3.3 POWER-UP TIMER (PWRT) The Power-up Timer provides a fixed 64 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates from the 31 kHz LFINTOSC oscillator. For more information, see Section 3.5 "Internal Clock Modes". The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A Configuration bit, PWRTE, can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should be enabled when Brown-out Reset is enabled, although it is not required. The Power-up Timer delay will vary from chip-to-chip due to: * VDD variation * Temperature variation * Process variation See DC parameters for details "Electrical Specifications"). Note: (Section 15.0 Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 should be used when applying a "low" level to the MCLR pin, rather than pulling this pin directly to VSS. (c) 2007 Microchip Technology Inc. PIC12F683 12.3.4 BROWN-OUT RESET (BOR) If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 64 ms Reset. The BOREN0 and BOREN1 bits in the Configuration Word register select one of four BOR modes. Two modes have been added to allow software or hardware control of the BOR enable. When BOREN<1:0> = 01, the SBOREN bit of the PCON register enables/disables the BOR, allowing it to be controlled in software. By selecting BOREN<1:0> = 10, the BOR is automatically disabled in Sleep to conserve power and enabled on wake-up. In this mode, the SBOREN bit is disabled. See Register 12-1 for the Configuration Word definition. 12.3.5 The PIC12F683 stores the BOR calibration values in fuses located in the Calibration Word register (2008h). The Calibration Word register is not erased when using the specified bulk erase sequence in the "PIC12F6XX/16F6XX Memory Programming Specification" (DS41204) and thus, does not require reprogramming. A brown-out occurs when VDD falls below VBOR for greater than parameter TBOR (see Section 15.0 "Electrical Specifications"). The brown-out condition will reset the device. This will occur regardless of VDD slew rate. A Brown-out Reset may not occur if VDD falls below VBOR for less than parameter TBOR. Note: On any Reset (Power-on, Brown-out Reset, Watchdog Timer, etc.), the chip will remain in Reset until VDD rises above VBOR (see Figure 12-3). If enabled, the Power-up Timer will be invoked by the Reset and keep the chip in Reset an additional 64 ms. Note: BOR CALIBRATION Address 2008h is beyond the user program memory space. It belongs to the special configuration memory space (2000h-3FFFh), which can be accessed only during programming. See "PIC12F6XX/16F6XX Memory Programming Specification" (DS41204) for more information. The Power-up Timer is enabled by the PWRTE bit in the Configuration Word register. FIGURE 12-3: BROWN-OUT SITUATIONS VDD Internal Reset VBOR 64 ms(1) VDD Internal Reset VBOR < 64 ms 64 ms(1) VDD Internal Reset Note 1: VBOR 64 ms(1) 64 ms delay only if PWRTE bit is programmed to `0'. (c) 2007 Microchip Technology Inc. DS41211D-page 87 PIC12F683 12.3.6 TIME-OUT SEQUENCE 12.3.7 POWER CONTROL (PCON) REGISTER On power-up, the time-out sequence is as follows: The Power Control register PCON (address 8Eh) has two Status bits to indicate what type of Reset occurred last. * PWRT time-out is invoked after POR has expired. * OST is activated after the PWRT time-out has expired. Bit 0 is BOR (Brown-out). BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if BOR = 0, indicating that a Brown-out has occurred. The BOR Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register). The total time-out will vary based on oscillator configuration and PWRTE bit status. For example, in EC mode with PWRTE bit erased (PWRT disabled), there will be no time-out at all. Figure 12-4, Figure 12-5 and Figure 12-6 depict time-out sequences. The device can execute code from the INTOSC while OST is active by enabling Two-Speed Start-up or Fail-Safe Monitor (see Section 3.7.2 "Two-Speed Start-up Sequence" and Section 3.8 "Fail-Safe Clock Monitor"). Bit 1 is POR (Power-on Reset). It is a `0' on Power-on Reset and unaffected otherwise. The user must write a `1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is `0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low). Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Then, bringing MCLR high will begin execution immediately (see Figure 12-5). This is useful for testing purposes or to synchronize more than one PIC12F683 device operating in parallel. For more information, see Section 4.2.4 "Ultra Low-Power Wake-up" and Section 12.3.4 "Brown-Out Reset (BOR)". Table 12-5 shows the Reset conditions for some special registers, while Table 12-4 shows the Reset conditions for all the registers. TABLE 12-1: TIME-OUT IN VARIOUS SITUATIONS Power-up Brown-out Reset PWRTE = 0 PWRTE = 1 PWRTE = 0 PWRTE = 1 Wake-up from Sleep TPWRT + 1024 * TOSC 1024 * TOSC TPWRT + 1024 * TOSC 1024 * TOSC 1024 * TOSC TPWRT -- TPWRT -- -- Oscillator Configuration XT, HS, LP RC, EC, INTOSC TABLE 12-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE POR BOR TO PD Condition 0 x 1 1 Power-on Reset u 0 1 1 Brown-out Reset u u 0 u WDT Reset u u 0 0 WDT Wake-up u u u u MCLR Reset during normal operation u u 1 0 MCLR Reset during Sleep Legend: u = unchanged, x = unknown TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET Name Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets(1) CONFIG(2) BOREN1 BOREN0 CPD CP MCLRE PWRTE WDTE FOSC2 FOSC1 FOSC0 -- -- -- -- POR BOR --01 --qq --0u --uu PD Z DC C 0001 1xxx 000q quuu PCON STATUS Legend: Note 1: 2: -- -- IRP RP1 ULPWUE SBOREN RP0 TO u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition. Shaded cells are not used by BOR. Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation. See Configuration Word register (Register 12-1) for operation of all register bits. DS41211D-page 88 (c) 2007 Microchip Technology Inc. PIC12F683 FIGURE 12-4: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR) VDD MCLR Internal POR TPWRT PWRT Time-out TOST OST Time-out Internal Reset FIGURE 12-5: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR) VDD MCLR Internal POR TPWRT PWRT Time-out TOST OST Time-out Internal Reset FIGURE 12-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD) VDD MCLR Internal POR TPWRT PWRT Time-out TOST OST Time-out Internal Reset (c) 2007 Microchip Technology Inc. DS41211D-page 89 PIC12F683 TABLE 12-4: Register W INDF TMR0 INITIALIZATION CONDITION FOR REGISTERS Address Power-on Reset MCLR Reset WDT Reset Brown-out Reset(1) Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out -- xxxx xxxx uuuu uuuu uuuu uuuu 00h/80h xxxx xxxx xxxx xxxx uuuu uuuu 01h xxxx xxxx uuuu uuuu uuuu uuuu PCL 02h/82h 0000 0000 0000 0000 PC + 1(3) STATUS 03h/83h 0001 1xxx 000q quuu(4) uuuq quuu(4) FSR 04h/84h xxxx xxxx uuuu uuuu uuuu uuuu GPIO 05h --x0 x000 --x0 x000 --uu uuuu PCLATH 0Ah/8Ah ---0 0000 ---0 0000 ---u uuuu INTCON 0Bh/8Bh 0000 0000 0000 0000 uuuu uuuu(2) PIR1 0Ch 0000 0000 0000 0000 uuuu uuuu(2) TMR1L 0Eh xxxx xxxx uuuu uuuu uuuu uuuu TMR1H 0Fh xxxx xxxx uuuu uuuu uuuu uuuu T1CON 10h 0000 0000 uuuu uuuu -uuu uuuu TMR2 11h 0000 0000 0000 0000 uuuu uuuu T2CON 12h -000 0000 -000 0000 -uuu uuuu CCPR1L 13h xxxx xxxx uuuu uuuu uuuu uuuu CCPR1H 14h xxxx xxxx uuuu uuuu uuuu uuuu CCP1CON 15h --00 0000 --00 0000 --uu uuuu WDTCON 18h ---0 1000 ---0 1000 ---u uuuu CMCON0 19h 0000 0000 0000 0000 uuuu uuuu CMCON1 20h ---- --10 ---- --10 ---- --uu ADRESH 1Eh xxxx xxxx uuuu uuuu uuuu uuuu ADCON0 1Fh 00-- 0000 00-- 0000 uu-- uuuu OPTION_REG 81h 1111 1111 1111 1111 uuuu uuuu TRISIO 85h --11 1111 --11 1111 --uu uuuu PIE1 8Ch 0000 0000 0000 0000 uuuu uuuu (1,5) PCON 8Eh --01 --0x --0u --uu --uu --uu OSCCON 8Fh -110 q000 -110 q000 -uuu uuuu OSCTUNE 90h ---0 0000 ---u uuuu ---u uuuu PR2 92h 1111 1111 1111 1111 1111 1111 WPU 95h --11 -111 --11 -111 uuuu uuuu IOC 96h --00 0000 --00 0000 --uu uuuu VRCON 99h 0-0- 0000 0-0- 0000 u-u- uuuu EEDAT 9Ah 0000 0000 0000 0000 uuuu uuuu 9Bh 0000 0000 0000 0000 uuuu uuuu EEADR Legend: Note 1: 2: 3: 4: 5: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition. If VDD goes too low, Power-on Reset will be activated and registers will be affected differently. One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up). When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h). See Table 12-5 for Reset value for specific condition. If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u. DS41211D-page 90 (c) 2007 Microchip Technology Inc. PIC12F683 TABLE 12-4: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED) Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out Address Power-on Reset MCLR Reset WDT Reset Brown-out Reset(1) EECON1 9Ch ---- x000 ---- q000 ---- uuuu EECON2 9Dh ---- ---- ---- ---- ---- ---- ADRESL 9Eh xxxx xxxx uuuu uuuu uuuu uuuu 9Fh -000 1111 -000 1111 -uuu uuuu Register ANSEL Legend: Note 1: 2: 3: 4: 5: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition. If VDD goes too low, Power-on Reset will be activated and registers will be affected differently. One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up). When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h). See Table 12-5 for Reset value for specific condition. If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u. TABLE 12-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS Condition Program Counter Status Register PCON Register Power-on Reset 000h 0001 1xxx --01 --0x MCLR Reset during Normal Operation 000h 000u uuuu --0u --uu MCLR Reset during Sleep 000h 0001 0uuu --0u --uu 000h 0000 uuuu --0u --uu PC + 1 uuu0 0uuu --uu --uu WDT Reset WDT Wake-up Brown-out Reset Interrupt Wake-up from Sleep 000h 0001 1uuu --01 --10 PC + 1(1) uuu1 0uuu --uu --uu Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0'. Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1. (c) 2007 Microchip Technology Inc. DS41211D-page 91 PIC12F683 12.4 Interrupts The PIC12F683 has multiple interrupt sources: * * * * * * * * * * External Interrupt GP2/INT Timer0 Overflow Interrupt GPIO Change Interrupts Comparator Interrupt A/D Interrupt Timer1 Overflow Interrupt Timer2 Match Interrupt EEPROM Data Write Interrupt Fail-Safe Clock Monitor Interrupt CCP Interrupt For external interrupt events, such as the INT pin or GPIO change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends upon when the interrupt event occurs (see Figure 12-8). The latency is the same for one or two-cycle instructions. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests. Note 1: Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit. 2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The interrupts, which were ignored, are still pending to be serviced when the GIE bit is set again. The Interrupt Control register (INTCON) and Peripheral Interrupt Request Register 1 (PIR1) record individual interrupt requests in flag bits. The INTCON register also has individual and global interrupt enable bits. The Global Interrupt Enable bit, GIE of the INTCON register, enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in the INTCON register and PIE1 register. GIE is cleared on Reset. When an interrupt is serviced, the following actions occur automatically: * The GIE is cleared to disable any further interrupt. * The return address is pushed onto the stack. * The PC is loaded with 0004h. The Return from Interrupt instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables unmasked interrupts. The following interrupt flags are contained in the INTCON register: * INT Pin Interrupt * GPIO Change Interrupt * Timer0 Overflow Interrupt The peripheral interrupt flags are contained in the PIR1 register. The corresponding interrupt enable bit is contained in the PIE1 register. The following interrupt flags are contained in the PIR1 register: * * * * * * * For additional information on Timer1, Timer2, comparators, ADC, data EEPROM or Enhanced CCP modules, refer to the respective peripheral section. 12.4.1 GP2/INT INTERRUPT The external interrupt on the GP2/INT pin is edge-triggered; either on the rising edge if the INTEDG bit of the OPTION register is set, or the falling edge, if the INTEDG bit is clear. When a valid edge appears on the GP2/INT pin, the INTF bit of the INTCON register is set. This interrupt can be disabled by clearing the INTE control bit of the INTCON register. The INTF bit must be cleared by software in the Interrupt Service Routine before re-enabling this interrupt. The GP2/INT interrupt can wake-up the processor from Sleep, if the INTE bit was set prior to going into Sleep. See Section 12.7 "Power-Down Mode (Sleep)" for details on Sleep and Figure 12-10 for timing of wake-up from Sleep through GP2/INT interrupt. Note: The ANSEL and CMCON0 registers must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read `0' and cannot generate an interrupt. EEPROM Data Write Interrupt A/D Interrupt Comparator Interrupt Timer1 Overflow Interrupt Timer2 Match Interrupt Fail-Safe Clock Monitor Interrupt CCP Interrupt DS41211D-page 92 (c) 2007 Microchip Technology Inc. PIC12F683 12.4.2 TIMER0 INTERRUPT 12.4.3 An overflow (FFh 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing the T0IE bit of the INTCON register. See Section 5.0 "Timer0 Module" for operation of the Timer0 module. An input change on GPIO change sets the GPIF bit of the INTCON register. The interrupt can be enabled/disabled by setting/clearing the GPIE bit of the INTCON register. Plus, individual pins can be configured through the IOC register. Note: FIGURE 12-7: GPIO INTERRUPT If a change on the I/O pin should occur when any GPIO operation is being executed, then the GPIF interrupt flag may not get set. INTERRUPT LOGIC IOC-GP0 IOC0 IOC-GP1 IOC1 IOC-GP2 IOC2 IOC-GP3 IOC3 IOC-GP4 IOC4 IOC-GP5 IOC5 TMR2IF TMR2IE TMR1IF TMR1IE CMIF CMIE ADIF ADIE T0IF T0IE INTF INTE GPIF GPIE Wake-up (If in Sleep mode) Interrupt to CPU PEIE GIE EEIF EEIE OSFIF OSFIE CCP1IF CCP1IE (c) 2007 Microchip Technology Inc. DS41211D-page 93 PIC12F683 FIGURE 12-8: INT PIN INTERRUPT TIMING Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 OSC1 CLKOUT (3) (4) INT pin (1) (1) INTF flag (INTCON reg.) (5) Interrupt Latency (2) GIE bit (INTCON reg.) INSTRUCTION FLOW PC Instruction Fetched Inst (PC + 1) Inst (PC) Instruction Executed Note 1: PC + 1 PC 0004h -- Dummy Cycle Inst (PC) Inst (PC - 1) PC + 1 0005h Inst (0004h) Inst (0005h) Dummy Cycle Inst (0004h) INTF flag is sampled here (every Q1). 2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction. 3: CLKOUT is available only in INTOSC and RC Oscillator modes. 4: For minimum width of INT pulse, refer to AC specifications in Section 15.0 "Electrical Specifications". 5: INTF is enabled to be set any time during the Q4-Q1 cycles. TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS Value on all other Resets Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF 0000 0000 0000 0000 IOC -- -- IOC5 IOC4 IOC3 IOC2 IOC1 IOC0 --00 0000 --00 0000 PIR1 EEIF ADIF CCP1IF -- CMIF OSFIF TMR2IF TMR1IF 000- 0000 000- 0000 PIE1 EEIE ADIE CCP1IE -- CMIE OSFIE TMR2IE TMR1IE 000- 0000 000- 0000 Legend: x = unknown, u = unchanged, - = unimplemented read as `0', q = value depends upon condition. Shaded cells are not used by the interrupt module. DS41211D-page 94 (c) 2007 Microchip Technology Inc. PIC12F683 12.5 Context Saving During Interrupts Note: During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W and STATUS registers). This must be implemented in software. Since the lower 16 bytes of all banks are common in the PIC12F683 (see Figure 2-2), temporary holding registers, W_TEMP and STATUS_TEMP, should be placed in here. These 16 locations do not require banking and therefore, makes it easier to context save and restore. The same code shown in Example 12-1 can be used to: * * * * * The PIC12F683 normally does not require saving the PCLATH. However, if computed GOTO's are used in the ISR and the main code, the PCLATH must be saved and restored in the ISR. Store the W register. Store the STATUS register. Execute the ISR code. Restore the Status (and Bank Select Bit register). Restore the W register. EXAMPLE 12-1: MOVWF SWAPF SAVING STATUS AND W REGISTERS IN RAM W_TEMP STATUS,W MOVWF STATUS_TEMP : :(ISR) : SWAPF STATUS_TEMP,W MOVWF SWAPF SWAPF STATUS W_TEMP,F W_TEMP,W (c) 2007 Microchip Technology Inc. ;Copy W to TEMP ;Swap status to ;Swaps are used ;Save status to register be saved into W because they do not affect the status bits bank zero STATUS_TEMP register ;Insert user code here ;Swap STATUS_TEMP register into W ;(sets bank to original state) ;Move W into STATUS register ;Swap W_TEMP ;Swap W_TEMP into W DS41211D-page 95 PIC12F683 12.6 12.6.2 Watchdog Timer (WDT) The WDT has the following features: * * * * * Operates from the LFINTOSC (31 kHz) Contains a 16-bit prescaler Shares an 8-bit prescaler with Timer0 Time-out period is from 1 ms to 268 seconds Configuration bit and software controlled WDT is cleared under certain conditions described in Table 12-7. 12.6.1 WDT OSCILLATOR WDT CONTROL The WDTE bit is located in the Configuration Word register. When set, the WDT runs continuously. When the WDTE bit in the Configuration Word register is set, the SWDTEN bit of the WDTCON register has no effect. If WDTE is clear, then the SWDTEN bit can be used to enable and disable the WDT. Setting the bit will enable it and clearing the bit will disable it. The PSA and PS<2:0> bits of the OPTION register have the same function as in previous versions of the PIC12F683 Family of microcontrollers. See Section 5.0 "Timer0 Module" for more information. The WDT derives its time base from the 31 kHz LFINTOSC. The LTS bit of the OSCCON register does not reflect that the LFINTOSC is enabled. The value of WDTCON is `---0 1000' on all Resets. This gives a nominal time base of 17 ms. Note: When the Oscillator Start-up Timer (OST) is invoked, the WDT is held in Reset, because the WDT Ripple Counter is used by the OST to perform the oscillator delay count. When the OST count has expired, the WDT will begin counting (if enabled). FIGURE 12-9: WATCHDOG TIMER BLOCK DIAGRAM From Timer0 Clock Source 0 Prescaler(1) 16-bit WDT Prescaler 1 8 PSA 31 kHz LFINTOSC Clock PS<2:0> WDTPS<3:0> To Timer0 0 1 PSA WDTE from Configuration Word register SWDTEN from WDTCON WDT Time-out Note 1: This is the shared Timer0/WDT prescaler. See Section 5.0 "Timer0 Module" for more information. TABLE 12-7: WDT STATUS Conditions WDT WDTE = 0 CLRWDT Command Oscillator Fail Detected Cleared Exit Sleep + System Clock = T1OSC, EXTRC, INTRC, EXTCLK Exit Sleep + System Clock = XT, HS, LP DS41211D-page 96 Cleared until the end of OST (c) 2007 Microchip Technology Inc. PIC12F683 REGISTER 12-2: WDTCON: WATCHDOG TIMER CONTROL REGISTER U-0 U-0 U-0 R/W-0 R/W-1 R/W-0 R/W-0 R/W-0 -- -- -- WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as `0' -n = Value at POR `1' = Bit is set `0' = Bit is cleared bit 7-5 Unimplemented: Read as `0' bit 4-1 WDTPS<3:0>: Watchdog Timer Period Select bits Bit Value = Prescale Rate 0000 = 1:32 0001 = 1:64 0010 = 1:128 0011 = 1:256 0100 = 1:512 (Reset value) 0101 = 1:1024 0110 = 1:2048 0111 = 1:4096 1000 = 1:8192 1001 = 1:16384 1010 = 1:32768 1011 = 1:65536 1100 = Reserved 1101 = Reserved 1110 = Reserved 1111 = Reserved bit 0 SWDTEN: Software Enable or Disable the Watchdog Timer(1) 1 = WDT is turned on 0 = WDT is turned off (Reset value) Note 1: If WDTE Configuration bit = 1, then WDT is always enabled, irrespective of this control bit. If WDTE Configuration bit = 0, then it is possible to turn WDT on/off with this control bit. TABLE 12-8: Name WDTCON Legend: Note 1: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER Bit 7 OPTION_REG CONFIG x = Bit is unknown Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 WDTPS3 WDTPS2 WSTPS1 WDTPS0 SWDTEN Value on POR, BOR Value on all other Resets -- -- -- ---0 1000 ---0 1000 GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111 CPD CP MCLRE PWRTE WDTE FOSC2 FOSC1 FOSC0 -- -- Shaded cells are not used by the Watchdog Timer. See Register 12-1 for operation of all Configuration Word register bits. (c) 2007 Microchip Technology Inc. DS41211D-page 97 PIC12F683 12.7 Power-Down Mode (Sleep) The Power-down mode is entered by executing a SLEEP instruction. If the Watchdog Timer is enabled: * * * * * WDT will be cleared but keeps running. PD bit in the STATUS register is cleared. TO bit is set. Oscillator driver is turned off. I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance). For lowest current consumption in this mode, all I/O pins should be either at VDD or VSS, with no external circuitry drawing current from the I/O pin and the comparators and CVREF should be disabled. I/O pins that are high-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The T0CKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on GPIO should be considered. The MCLR pin must be at a logic high level. Note: 12.7.1 It should be noted that a Reset generated by a WDT time-out does not drive MCLR pin low. WAKE-UP FROM SLEEP The device can wake-up from Sleep through one of the following events: 1. 2. 3. External Reset input on MCLR pin. Watchdog Timer wake-up (if WDT was enabled). Interrupt from GP2/INT pin, GPIO change or a peripheral interrupt. The first event will cause a device Reset. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of a device Reset. The PD bit, which is set on power-up, is cleared when Sleep is invoked. TO bit is cleared if WDT wake-up occurred. The following peripheral interrupts can wake the device from Sleep: 1. 2. 3. 4. 5. 6. 7. Timer1 interrupt. Timer1 must be operating as an asynchronous counter. ECCP Capture mode interrupt. A/D conversion (when A/D clock source is FRC). EEPROM write operation completion. Comparator output changes state. Interrupt-on-change. External Interrupt from INT pin. When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up occurs regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction, then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction. Note: If the global interrupts are disabled (GIE is cleared) and any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from Sleep. The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up. 12.7.2 WAKE-UP USING INTERRUPTS When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur: * If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will not be cleared, the TO bit will not be set and the PD bit will not be cleared. * If the interrupt occurs during or after the execution of a SLEEP instruction, the device will Immediately wake-up from Sleep. The SLEEP instruction is executed. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will be cleared, the TO bit will be set and the PD bit will be cleared. Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP. To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction. See Figure 12-10 for more details. Other peripherals cannot generate interrupts since during Sleep, no on-chip clocks are present. DS41211D-page 98 (c) 2007 Microchip Technology Inc. PIC12F683 FIGURE 12-10: WAKE-UP FROM SLEEP THROUGH INTERRUPT Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 OSC1 TOST(2) CLKOUT(4) INT pin INTF flag (INTCON<1>) Interrupt Latency (3) GIE bit (INTCON<7>) Instruction Flow PC PC Instruction Fetched Inst(PC) = Sleep Instruction Inst(PC - 1) Executed Note 12.8 1: 2: 3: 4: Processor in Sleep PC + 1 PC + 2 PC + 2 Inst(PC + 1) Inst(PC + 2) Sleep Inst(PC + 1) PC + 2 Dummy Cycle 0004h 0005h Inst(0004h) Inst(0005h) Dummy Cycle Inst(0004h) XT, HS or LP Oscillator mode assumed. TOST = 1024 TOSC (drawing not to scale). This delay does not apply to EC and RCIO Oscillator modes. GIE = 1 assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line. CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference. Code Protection If the code protection bit(s) have not been programmed, the on-chip program memory can be read out using ICSPTM for verification purposes. Note: 12.9 The entire data EEPROM and Flash program memory will be erased when the code protection is turned off. See the "PIC12F6XX/16F6XX Memory Programming Specification" (DS41204) for more information. ID Locations Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during Program/Verify mode. Only the Least Significant 7 bits of the ID locations are used. (c) 2007 Microchip Technology Inc. DS41211D-page 99 PIC12F683 12.10 In-Circuit Serial ProgrammingTM 12.11 In-Circuit Debugger The PIC12F683 microcontrollers can be serially programmed while in the end application circuit. This is simply done with five connections for: Since in-circuit debugging requires access to three pins, MPLAB(R) ICD 2 development with a 14-pin device is not practical. A special 14-pin PIC12F683 ICD device is used with MPLAB ICD 2 to provide separate clock, data and MCLR pins and frees all normally available pins to the user. clock data power ground programming voltage A special debugging adapter allows the ICD device to be used in place of a PIC12F683 device. The debugging adapter is the only source of the ICD device. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. The device is placed into a Program/Verify mode by holding the GP0 and GP1 pins low, while raising the MCLR (VPP) pin from VIL to VIHH. See the "PIC12F6XX/16F6XX Memory Programming Specification" (DS41204) for more information. GP0 becomes the programming data and GP1 becomes the programming clock. Both GP0 and GP1 are Schmitt Trigger inputs in Program/Verify mode. A typical In-Circuit Serial Programming connection is shown in Figure 12-11. FIGURE 12-11: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION To Normal Connections External Connector Signals * When the ICD pin on the PIC12F683 ICD device is held low, the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB ICD 2. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 12-9 shows which features are consumed by the background debugger. TABLE 12-9: DEBUGGER RESOURCES Resource Description Stack 1 level Program Memory Address 0h must be NOP 700h-7FFh For more information, see "MPLAB(R) ICD 2 In-Circuit Debugger User's Guide" (DS51331), available on Microchip's web site (www.microchip.com). FIGURE 12-12: 14-PIN ICD PINOUT 14-Pin PDIP In-Circuit Debug Device PIC12F683 +5V VDD 0V VSS NC 1 ICDMCLR 2 VDD 3 VPP MCLR/VPP/GP3 GP5 4 CLK GP1 GP4 5 GP3 6 ICD 7 GP0 Data I/O * * PIC12F683-ICD * * * * * 14 ICDCLK 13 ICDDATA 12 GND 11 GP0 10 GP1 9 GP2 8 NC * To Normal Connections * Isolation devices (as required) DS41211D-page 100 (c) 2007 Microchip Technology Inc. PIC12F683 13.0 INSTRUCTION SET SUMMARY The PIC12F683 instruction set is highly orthogonal and is comprised of three basic categories: * Byte-oriented operations * Bit-oriented operations * Literal and control operations Each PIC16 instruction is a 14-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 13-1, while the various opcode fields are summarized in Table 13-1. TABLE 13-1: Field The destination designator specifies where the result of the operation is to be placed. If `d' is zero, the result is placed in the W register. If `d' is one, the result is placed in the file register specified in the instruction. For bit-oriented instructions, `b' represents a bit field designator, which selects the bit affected by the operation, while `f' represents the address of the file in which the bit is located. For literal and control operations, `k' represents an 8-bit or 11-bit constant, or literal value. One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution time of 1 s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP. All instruction examples use the format `0xhh' to represent a hexadecimal number, where `h' signifies a hexadecimal digit. Description Register file address (0x00 to 0x7F) f W Working register (accumulator) b Bit address within an 8-bit file register k Literal field, constant data or label x Don't care location (= 0 or 1). The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools. d Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1. Table 13-2 lists the instructions recognized by the MPASMTM assembler. For byte-oriented instructions, `f' represents a file register designator and `d' represents a destination designator. The file register designator specifies which file register is to be used by the instruction. OPCODE FIELD DESCRIPTIONS PC Program Counter TO Time-out bit Carry bit C DC Digit carry bit Zero bit Z PD Power-down bit FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS Byte-oriented file register operations 13 8 7 6 OPCODE d f (FILE #) 0 d = 0 for destination W d = 1 for destination f f = 7-bit file register address Bit-oriented file register operations 13 10 9 7 6 OPCODE b (BIT #) f (FILE #) 0 b = 3-bit bit address f = 7-bit file register address Literal and control operations General 13.1 Read-Modify-Write Operations 13 8 7 OPCODE Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator `d'. A read operation is performed on a register even if the instruction writes to that register. For example, a CLRF PORTA instruction will read PORTA, clear all the data bits, then write the result back to PORTA. This example would have the unintended consequence of clearing the condition that set the RAIF flag. (c) 2007 Microchip Technology Inc. 0 k (literal) k = 8-bit immediate value CALL and GOTO instructions only 13 11 OPCODE 10 0 k (literal) k = 11-bit immediate value DS41211D-page 101 PIC12F683 TABLE 13-2: PIC12F683 INSTRUCTION SET Mnemonic, Operands 14-Bit Opcode Description Cycles MSb LSb Status Affected Notes BYTE-ORIENTED FILE REGISTER OPERATIONS ADDWF ANDWF CLRF CLRW COMF DECF DECFSZ INCF INCFSZ IORWF MOVF MOVWF NOP RLF RRF SUBWF SWAPF XORWF f, d f, d f - f, d f, d f, d f, d f, d f, d f, d f - f, d f, d f, d f, d f, d Add W and f AND W with f Clear f Clear W Complement f Decrement f Decrement f, Skip if 0 Increment f Increment f, Skip if 0 Inclusive OR W with f Move f Move W to f No Operation Rotate Left f through Carry Rotate Right f through Carry Subtract W from f Swap nibbles in f Exclusive OR W with f BCF BSF BTFSC BTFSS f, b f, b f, b f, b Bit Clear f Bit Set f Bit Test f, Skip if Clear Bit Test f, Skip if Set 1 1 1 1 1 1 1(2) 1 1(2) 1 1 1 1 1 1 1 1 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 dfff dfff lfff 0xxx dfff dfff dfff dfff dfff dfff dfff lfff 0xx0 dfff dfff dfff dfff dfff ffff ffff ffff xxxx ffff ffff ffff ffff ffff ffff ffff ffff 0000 ffff ffff ffff ffff ffff 00bb 01bb 10bb 11bb bfff bfff bfff bfff ffff ffff ffff ffff 111x 1001 0kkk 0000 1kkk 1000 00xx 0000 01xx 0000 0000 110x 1010 kkkk kkkk kkkk 0110 kkkk kkkk kkkk 0000 kkkk 0000 0110 kkkk kkkk kkkk kkkk kkkk 0100 kkkk kkkk kkkk 1001 kkkk 1000 0011 kkkk kkkk 0111 0101 0001 0001 1001 0011 1011 1010 1111 0100 1000 0000 0000 1101 1100 0010 1110 0110 C, DC, Z Z Z Z Z Z Z Z Z C C C, DC, Z Z 1, 2 1, 2 2 1, 2 1, 2 1, 2, 3 1, 2 1, 2, 3 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 BIT-ORIENTED FILE REGISTER OPERATIONS 1 1 1 (2) 1 (2) 01 01 01 01 1, 2 1, 2 3 3 LITERAL AND CONTROL OPERATIONS ADDLW ANDLW CALL CLRWDT GOTO IORLW MOVLW RETFIE RETLW RETURN SLEEP SUBLW XORLW Note 1: 2: 3: k k k - k k k - k - - k k Add literal and W AND literal with W Call Subroutine Clear Watchdog Timer Go to address Inclusive OR literal with W Move literal to W Return from interrupt Return with literal in W Return from Subroutine Go into Standby mode Subtract W from literal Exclusive OR literal with W 1 1 2 1 2 1 1 2 2 2 1 1 1 11 11 10 00 10 11 11 00 11 00 00 11 11 C, DC, Z Z TO, PD Z TO, PD C, DC, Z Z When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present on the pins themselves. For example, if the data latch is `1' for a pin configured as input and is driven low by an external device, the data will be written back with a `0'. If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module. If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP. DS41211D-page 102 (c) 2007 Microchip Technology Inc. PIC12F683 13.2 Instruction Descriptions ADDLW Add literal and W Syntax: [ label ] ADDLW Operands: 0 k 255 Operation: (W) + k (W) Status Affected: C, DC, Z Description: The contents of the W register are added to the eight-bit literal `k' and the result is placed in the W register. k BCF Bit Clear f Syntax: [ label ] BCF Operands: 0 f 127 0b7 Operation: 0 (f) Status Affected: None Description: Bit `b' in register `f' is cleared. BSF Bit Set f Syntax: [ label ] BSF f,b ADDWF Add W and f Syntax: [ label ] ADDWF Operands: 0 f 127 d [0,1] Operands: 0 f 127 0b7 Operation: (W) + (f) (destination) Operation: 1 (f) Status Affected: C, DC, Z Status Affected: None Description: Add the contents of the W register with register `f'. If `d' is `0', the result is stored in the W register. If `d' is `1', the result is stored back in register `f'. Description: Bit `b' in register `f' is set. ANDLW AND literal with W BTFSC Bit Test f, Skip if Clear Syntax: [ label ] ANDLW Syntax: [ label ] BTFSC f,b Operands: 0 k 255 Operands: Operation: (W) .AND. (k) (W) 0 f 127 0b7 Status Affected: Z Operation: skip if (f) = 0 Description: The contents of W register are AND'ed with the eight-bit literal `k'. The result is placed in the W register. Status Affected: None Description: If bit `b' in register `f' is `1', the next instruction is executed. If bit `b', in register `f', is `0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction. ANDWF f,d k AND W with f Syntax: [ label ] ANDWF Operands: 0 f 127 d [0,1] Operation: (W) .AND. (f) (destination) f,d Status Affected: Z Description: AND the W register with register `f'. If `d' is `0', the result is stored in the W register. If `d' is `1', the result is stored back in register `f'. (c) 2007 Microchip Technology Inc. f,b DS41211D-page 103 PIC12F683 BTFSS Bit Test f, Skip if Set CLRWDT Clear Watchdog Timer Syntax: [ label ] BTFSS f,b Syntax: [ label ] CLRWDT Operands: 0 f 127 0b<7 Operands: None Operation: 00h WDT 0 WDT prescaler, 1 TO 1 PD Status Affected: TO, PD Description: CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set. Operation: skip if (f) = 1 Status Affected: None Description: If bit `b' in register `f' is `0', the next instruction is executed. If bit `b' is `1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction. CALL Call Subroutine COMF Complement f Syntax: [ label ] CALL k Syntax: [ label ] COMF Operands: 0 k 2047 Operands: Operation: (PC)+ 1 TOS, k PC<10:0>, (PCLATH<4:3>) PC<12:11> 0 f 127 d [0,1] Operation: (f) (destination) Status Affected: Z Description: The contents of register `f' are complemented. If `d' is `0', the result is stored in W. If `d' is `1', the result is stored back in register `f'. DECF Decrement f Syntax: [ label ] DECF f,d f,d Status Affected: None Description: Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction. CLRF Clear f Syntax: [ label ] CLRF Operands: 0 f 127 Operands: Operation: 00h (f) 1Z 0 f 127 d [0,1] Operation: (f) - 1 (destination) Status Affected: Z Status Affected: Z Description: The contents of register `f' are cleared and the Z bit is set. Description: Decrement register `f'. If `d' is `0', the result is stored in the W register. If `d' is `1', the result is stored back in register `f'. CLRW Clear W Syntax: [ label ] CLRW f Operands: None Operation: 00h (W) 1Z Status Affected: Z Description: W register is cleared. Zero bit (Z) is set. DS41211D-page 104 (c) 2007 Microchip Technology Inc. PIC12F683 DECFSZ Decrement f, Skip if 0 INCFSZ Increment f, Skip if 0 Syntax: [ label ] DECFSZ f,d Syntax: [ label ] Operands: 0 f 127 d [0,1] Operands: 0 f 127 d [0,1] Operation: (f) - 1 (destination); skip if result = 0 Operation: (f) + 1 (destination), skip if result = 0 Status Affected: None Status Affected: None Description: The contents of register `f' are decremented. If `d' is `0', the result is placed in the W register. If `d' is `1', the result is placed back in register `f'. If the result is `1', the next instruction is executed. If the result is `0', then a NOP is executed instead, making it a 2-cycle instruction. Description: The contents of register `f' are incremented. If `d' is `0', the result is placed in the W register. If `d' is `1', the result is placed back in register `f'. If the result is `1', the next instruction is executed. If the result is `0', a NOP is executed instead, making it a 2-cycle instruction. GOTO Unconditional Branch IORLW Syntax: [ label ] Syntax: [ label ] Operands: 0 k 2047 Operands: 0 k 255 Operation: k PC<10:0> PCLATH<4:3> PC<12:11> Operation: (W) .OR. k (W) Status Affected: Z Status Affected: None Description: Description: GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction. The contents of the W register are OR'ed with the eight-bit literal `k'. The result is placed in the W register. INCF Increment f IORWF Inclusive OR W with f Syntax: [ label ] Syntax: [ label ] Operands: 0 f 127 d [0,1] Operands: 0 f 127 d [0,1] Operation: (f) + 1 (destination) Operation: (W) .OR. (f) (destination) Status Affected: Z Status Affected: Z Description: The contents of register `f' are incremented. If `d' is `0', the result is placed in the W register. If `d' is `1', the result is placed back in register `f'. Description: Inclusive OR the W register with register `f'. If `d' is `0', the result is placed in the W register. If `d' is `1', the result is placed back in register `f'. GOTO k INCF f,d (c) 2007 Microchip Technology Inc. INCFSZ f,d Inclusive OR literal with W IORLW k IORWF f,d DS41211D-page 105 PIC12F683 MOVF Move f Syntax: [ label ] Operands: 0 f 127 d [0,1] MOVF f,d MOVWF Move W to f Syntax: [ label ] MOVWF Operands: 0 f 127 Operation: (W) (f) f Operation: (f) (dest) Status Affected: None Status Affected: Z Description: Description: The contents of register f is moved to a destination dependent upon the status of d. If d = 0, destination is W register. If d = 1, the destination is file register f itself. d = 1 is useful to test a file register since status flag Z is affected. Move data from W register to register `f'. Words: 1 Cycles: 1 Words: 1 Cycles: 1 Example: MOVF Example: MOVW F OPTION Before Instruction OPTION = W = After Instruction OPTION = W = FSR, 0 0xFF 0x4F 0x4F 0x4F After Instruction W = value in FSR register Z = 1 MOVLW Move literal to W NOP No Operation Syntax: [ label ] Syntax: [ label ] Operands: 0 k 255 Operands: None Operation: k (W) Operation: No operation Status Affected: None Status Affected: None Description: The eight-bit literal `k' is loaded into W register. The "don't cares" will assemble as `0's. Description: No operation. Words: 1 Cycles: 1 Words: 1 Cycles: 1 Example: MOVLW k Example: MOVLW NOP 0x5A After Instruction W = DS41211D-page 106 NOP 0x5A (c) 2007 Microchip Technology Inc. PIC12F683 RETFIE Return from Interrupt RETLW Return with literal in W Syntax: [ label ] Syntax: [ label ] Operands: None Operands: 0 k 255 Operation: TOS PC, 1 GIE Operation: k (W); TOS PC Status Affected: None Status Affected: None Description: Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction. Description: The W register is loaded with the eight bit literal `k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction. Words: 1 Cycles: 2 Example: RETFIE Words: 1 Cycles: 2 Example: RETFIE After Interrupt PC = GIE = TABLE TOS 1 RETLW k CALL TABLE;W contains table ;offset value * ;W now has table value * * ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; * * * RETLW kn ; End of table Before Instruction W = 0x07 After Instruction W = value of k8 (c) 2007 Microchip Technology Inc. RETURN Return from Subroutine Syntax: [ label ] Operands: None Operation: TOS PC Status Affected: None Description: Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction. RETURN DS41211D-page 107 PIC12F683 RLF Rotate Left f through Carry SLEEP Enter Sleep mode Syntax: [ label ] Syntax: [ label ] SLEEP Operands: 0 f 127 d [0,1] Operands: None Operation: Operation: See description below Status Affected: C Description: The contents of register `f' are rotated one bit to the left through the Carry flag. If `d' is `0', the result is placed in the W register. If `d' is `1', the result is stored back in register `f'. 00h WDT, 0 WDT prescaler, 1 TO, 0 PD RLF f,d C Words: 1 Cycles: 1 Example: Status Affected: TO, PD Description: The power-down Status bit, PD is cleared. Time-out Status bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped. Register f RLF REG1,0 Before Instruction REG1 C = = 1110 0110 0 = = = 1110 0110 1100 1100 1 After Instruction REG1 W C RRF Rotate Right f through Carry SUBLW Syntax: [ label ] Syntax: [ label ] SUBLW k Operands: 0 f 127 d [0,1] Operands: 0 k 255 Operation: k - (W) (W) Operation: See description below Status Affected: C, DC, Z Status Affected: C Description: Description: The contents of register `f' are rotated one bit to the right through the Carry flag. If `d' is `0', the result is placed in the W register. If `d' is `1', the result is placed back in register `f'. RRF f,d C DS41211D-page 108 Register f Subtract W from literal The W register is subtracted (2's complement method) from the eight-bit literal `k'. The result is placed in the W register. C=0 W>k C=1 Wk DC = 0 W<3:0> > k<3:0> DC = 1 W<3:0> k<3:0> (c) 2007 Microchip Technology Inc. PIC12F683 SUBWF Subtract W from f XORLW Exclusive OR literal with W Syntax: [ label ] SUBWF f,d Syntax: [ label ] XORLW k Operands: 0 f 127 d [0,1] Operands: 0 k 255 (f) - (W) (destination) Operation: (W) .XOR. k (W) Operation: Status Affected: Z Description: The contents of the W register are XOR'ed with the eight-bit literal `k'. The result is placed in the W register. Status Affected: C, DC, Z Description: SWAPF Subtract (2's complement method) W register from register `f'. If `d' is `0', the result is stored in the W register. If `d' is `1', the result is stored back in register `f. C=0 W>f C=1 Wf DC = 0 W<3:0> > f<3:0> DC = 1 W<3:0> f<3:0> Swap Nibbles in f XORWF Exclusive OR W with f Syntax: [ label ] SWAPF f,d Syntax: [ label ] XORWF Operands: 0 f 127 d [0,1] Operands: 0 f 127 d [0,1] Operation: (f<3:0>) (destination<7:4>), (f<7:4>) (destination<3:0>) Operation: (W) .XOR. (f) (destination) Status Affected: Z Status Affected: None Description: Description: The upper and lower nibbles of register `f' are exchanged. If `d' is `0', the result is placed in the W register. If `d' is `1', the result is placed in register `f'. Exclusive OR the contents of the W register with register `f'. If `d' is `0', the result is stored in the W register. If `d' is `1', the result is stored back in register `f'. (c) 2007 Microchip Technology Inc. f,d DS41211D-page 109 PIC12F683 NOTES: DS41211D-page 110 (c) 2007 Microchip Technology Inc. PIC12F683 14.0 DEVELOPMENT SUPPORT The PIC(R) microcontrollers are supported with a full range of hardware and software development tools: * Integrated Development Environment - MPLAB(R) IDE Software * Assemblers/Compilers/Linkers - MPASMTM Assembler - MPLAB C18 and MPLAB C30 C Compilers - MPLINKTM Object Linker/ MPLIBTM Object Librarian - MPLAB ASM30 Assembler/Linker/Library * Simulators - MPLAB SIM Software Simulator * Emulators - MPLAB ICE 2000 In-Circuit Emulator - MPLAB REAL ICETM In-Circuit Emulator * In-Circuit Debugger - MPLAB ICD 2 * Device Programmers - PICSTART(R) Plus Development Programmer - MPLAB PM3 Device Programmer - PICkitTM 2 Development Programmer * Low-Cost Demonstration and Development Boards and Evaluation Kits 14.1 MPLAB Integrated Development Environment Software The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows(R) operating system-based application that contains: * A single graphical interface to all debugging tools - Simulator - Programmer (sold separately) - Emulator (sold separately) - In-Circuit Debugger (sold separately) * A full-featured editor with color-coded context * A multiple project manager * Customizable data windows with direct edit of contents * High-level source code debugging * Visual device initializer for easy register initialization * Mouse over variable inspection * Drag and drop variables from source to watch windows * Extensive on-line help * Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers The MPLAB IDE allows you to: * Edit your source files (either assembly or C) * One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information) * Debug using: - Source files (assembly or C) - Mixed assembly and C - Machine code MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power. (c) 2007 Microchip Technology Inc. DS41211D-page 111 PIC12F683 14.2 MPASM Assembler The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs. The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel(R) standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging. The MPASM Assembler features include: * Integration into MPLAB IDE projects * User-defined macros to streamline assembly code * Conditional assembly for multi-purpose source files * Directives that allow complete control over the assembly process 14.5 MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include: * * * * * * Support for the entire dsPIC30F instruction set Support for fixed-point and floating-point data Command line interface Rich directive set Flexible macro language MPLAB IDE compatibility 14.6 14.3 MPLAB C18 and MPLAB C30 C Compilers The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger. 14.4 MPLINK Object Linker/ MPLIB Object Librarian The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script. MPLAB ASM30 Assembler, Linker and Librarian MPLAB SIM Software Simulator The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC(R) DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers. The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool. The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The object linker/library features include: * Efficient linking of single libraries instead of many smaller files * Enhanced code maintainability by grouping related modules together * Flexible creation of libraries with easy module listing, replacement, deletion and extraction DS41211D-page 112 (c) 2007 Microchip Technology Inc. PIC12F683 14.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment. The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers. The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft(R) Windows(R) 32-bit operating system were chosen to best make these features available in a simple, unified application. 14.8 MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC(R) and MCU devices. It debugs and programs PIC(R) and dsPIC(R) Flash microcontrollers with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit. The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high speed, noise tolerant, lowvoltage differential signal (LVDS) interconnection (CAT5). 14.9 MPLAB ICD 2 In-Circuit Debugger Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial ProgrammingTM (ICSPTM) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices. 14.10 MPLAB PM3 Device Programmer The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSPTM cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications. MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables. (c) 2007 Microchip Technology Inc. DS41211D-page 113 PIC12F683 14.11 PICSTART Plus Development Programmer 14.13 Demonstration, Development and Evaluation Boards The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant. A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification. 14.12 PICkit 2 Development Programmer The PICkitTM 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICCTM Lite C compiler, and is designed to help get up to speed quickly using PIC(R) microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers. DS41211D-page 114 The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory. The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications. In addition to the PICDEMTM and dsPICDEMTM demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ(R) security ICs, CAN, IrDA(R), PowerSmart(R) battery management, SEEVAL(R) evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more. Check the Microchip web page (www.microchip.com) and the latest "Product Selector Guide" (DS00148) for the complete list of demonstration, development and evaluation kits. (c) 2007 Microchip Technology Inc. PIC12F683 15.0 ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings() Ambient temperature under bias..........................................................................................................-40 to +125C Storage temperature ........................................................................................................................ -65C to +150C Voltage on VDD with respect to VSS ................................................................................................... -0.3V to +6.5V Voltage on MCLR with respect to Vss ............................................................................................... -0.3V to +13.5V Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V) Total power dissipation(1) ............................................................................................................................... 800 mW Maximum current out of VSS pin ...................................................................................................................... 95 mA Maximum current into VDD pin ......................................................................................................................... 95 mA Input clamp current, IIK (VI < 0 or VI > VDD)............................................................................................................... 20 mA Output clamp current, IOK (Vo < 0 or Vo >VDD)......................................................................................................... 20 mA Maximum output current sunk by any I/O pin.................................................................................................... 25 mA Maximum output current sourced by any I/O pin .............................................................................................. 25 mA Maximum current sunk by GPIO ...................................................................................................................... 90 mA Maximum current sourced GPIO...................................................................................................................... 90 mA Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL). NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability. (c) 2007 Microchip Technology Inc. DS41211D-page 115 PIC12F683 FIGURE 15-1: PIC12F683 VOLTAGE-FREQUENCY GRAPH, -40C TA +125C 5.5 5.0 VDD (V) 4.5 4.0 3.5 3.0 2.5 2.0 0 8 10 20 Frequency (MHz) Note 1: The shaded region indicates the permissible combinations of voltage and frequency. HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE FIGURE 15-2: 125 5% Temperature (C) 85 2% 60 1% 25 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) DS41211D-page 116 (c) 2007 Microchip Technology Inc. PIC12F683 15.1 DC Characteristics: PIC12F683-I (Industrial) PIC12F683-E (Extended) DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +85C for industrial -40C TA +125C for extended Param No. Min Typ Max Units Sym Characteristic Conditions VDD Supply Voltage 2.0 2.0 3.0 4.5 -- -- -- -- 5.5 5.5 5.5 5.5 V V V V FOSC < = 8 MHz: HFINTOSC, EC FOSC < = 4 MHz FOSC < = 10 MHz FOSC < = 20 MHz D002* VDR RAM Data Retention Voltage(1) 1.5 -- -- V Device in Sleep mode D003 VPOR VDD Start Voltage to ensure internal Power-on Reset signal -- VSS -- V See Section 12.3.1 "Power-on Reset" for details. D004* SVDD VDD Rise Rate to ensure internal Power-on Reset signal 0.05 -- -- D001 D001C D001D V/ms See Section 12.3.1 "Power-on Reset" for details. * These parameters are characterized but not tested. Data in "Typ" column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data. (c) 2007 Microchip Technology Inc. DS41211D-page 117 PIC12F683 15.2 DC Characteristics: PIC12F683-I (Industrial) PIC12F683-E (Extended) Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +85C for industrial -40C TA +125C for extended DC CHARACTERISTICS Param No. D010 Conditions Device Characteristics Min Typ Max Units VDD Supply Current (IDD) D011* D012 D013* D014 D015 D016* D017 D018 D019 (1, 2) -- 11 16 A 2.0 -- 18 28 A 3.0 -- 35 54 A 5.0 -- 140 240 A 2.0 -- 220 380 A 3.0 -- 380 550 A 5.0 -- 260 360 A 2.0 -- 420 650 A 3.0 -- 0.8 1.1 mA 5.0 -- 130 220 A 2.0 -- 215 360 A 3.0 -- 360 520 A 5.0 -- 220 340 A 2.0 -- 375 550 A 3.0 -- 0.65 1.0 mA 5.0 -- 8 20 A 2.0 -- 16 40 A 3.0 -- 31 65 A 5.0 -- 340 450 A 2.0 -- 500 700 A 3.0 -- 0.8 1.2 mA 5.0 -- 410 650 A 2.0 -- 700 950 A 3.0 -- 1.30 1.65 mA 5.0 -- 230 400 A 2.0 -- 400 680 A 3.0 -- 0.63 1.1 mA 5.0 -- 2.6 3.25 mA 4.5 -- 2.8 3.35 mA 5.0 Note FOSC = 32 kHz LP Oscillator mode FOSC = 1 MHz XT Oscillator mode FOSC = 4 MHz XT Oscillator mode FOSC = 1 MHz EC Oscillator mode FOSC = 4 MHz EC Oscillator mode FOSC = 31 kHz LFINTOSC mode FOSC = 4 MHz HFINTOSC mode FOSC = 8 MHz HFINTOSC mode FOSC = 4 MHz EXTRC mode(3) FOSC = 20 MHz HS Oscillator mode * These parameters are characterized but not tested. Data in "Typ" column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled. 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. 3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k. DS41211D-page 118 (c) 2007 Microchip Technology Inc. PIC12F683 15.3 DC Characteristics: PIC12F683-I (Industrial) DC CHARACTERISTICS Param No. D020 Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +85C for industrial Conditions Device Characteristics Power-down Base Current(IPD)(2) D021 D022 D023 D024 D025* D026 D027 Min Typ Max Units VDD Note WDT, BOR, Comparators, VREF and T1OSC disabled -- 0.05 1.2 A 2.0 -- 0.15 1.5 A 3.0 -- 0.35 1.8 A 5.0 -- 150 500 nA 3.0 -40C TA +25C -- 1.0 2.2 A 2.0 WDT Current(1) -- 2.0 4.0 A 3.0 -- 3.0 7.0 A 5.0 -- 42 60 A 3.0 -- 85 122 A 5.0 -- 32 45 A 2.0 -- 60 78 A 3.0 -- 120 160 A 5.0 -- 30 36 A 2.0 -- 45 55 A 3.0 -- 75 95 A 5.0 -- 39 47 A 2.0 -- 59 72 A 3.0 -- 98 124 A 5.0 -- 4.5 7.0 A 2.0 -- 5.0 8.0 A 3.0 -- 6.0 12 A 5.0 -- 0.30 1.6 A 3.0 -- 0.36 1.9 A 5.0 BOR Current(1) Comparator Current(1), both comparators enabled CVREF Current(1) (high range) CVREF Current(1) (low range) T1OSC Current(1), 32.768 kHz A/D Current(1), no conversion in progress * These parameters are characterized but not tested. Data in "Typ" column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption. 2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD. (c) 2007 Microchip Technology Inc. DS41211D-page 119 PIC12F683 15.4 DC Characteristics: PIC12F683-E (Extended) DC CHARACTERISTICS Param No. D020E Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +125C for extended Conditions Device Characteristics Power-down Base Current (IPD)(2) D021E D022E D023E D024E D025E* D026E D027E Min -- Typ 0.05 Max 9 Units A VDD Note 2.0 WDT, BOR, Comparators, VREF and T1OSC disabled -- 0.15 11 A 3.0 -- 0.35 15 A 5.0 -- 1 17.5 A 2.0 -- 2 19 A 3.0 -- 3 22 A 5.0 -- 42 65 A 3.0 -- 85 127 A 5.0 -- 32 45 A 2.0 -- 60 78 A 3.0 -- 120 160 A 5.0 -- 30 70 A 2.0 -- 45 90 A 3.0 -- 75 120 A 5.0 -- 39 91 A 2.0 -- 59 117 A 3.0 -- 98 156 A 5.0 -- 4.5 25 A 2.0 -- 5 30 A 3.0 -- 6 40 A 5.0 -- 0.30 12 A 3.0 -- 0.36 16 A 5.0 WDT Current(1) BOR Current(1) Comparator Current(1), both comparators enabled CVREF Current(1) (high range) CVREF Current(1) (low range) T1OSC Current(1), 32.768 kHz A/D Current(1), no conversion in progress * These parameters are characterized but not tested. Data in "Typ" column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption. 2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD. DS41211D-page 120 (c) 2007 Microchip Technology Inc. PIC12F683 15.5 DC Characteristics: PIC12F683-I (Industrial) PIC12F683-E (Extended) Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +85C for industrial -40C TA +125C for extended DC CHARACTERISTICS Param No. Sym VIL Characteristic Min Typ Max Units Vss Vss Conditions -- 0.8 V 4.5V VDD 5.5V -- 0.15 VDD V 2.0V VDD 4.5V Vss -- 0.2 VDD V 2.0V VDD 5.5V Input Low Voltage I/O Port: D030 with TTL buffer D030A D031 with Schmitt Trigger buffer (1) D032 MCLR, OSC1 (RC mode) VSS -- 0.2 VDD V D033 OSC1 (XT and LP modes) VSS -- 0.3 V OSC1 (HS mode) VSS -- 0.3 VDD V D033A VIH Input High Voltage I/O ports: D040 -- with TTL buffer D040A D041 with Schmitt Trigger buffer 2.0 -- VDD V 4.5V VDD 5.5V 0.25 VDD + 0.8 -- VDD V 2.0V VDD 4.5V 0.8 VDD -- VDD V 2.0V VDD 5.5V 0.8 VDD -- VDD V 1.6 -- VDD V D042 MCLR D043 OSC1 (XT and LP modes) D043A OSC1 (HS mode) 0.7 VDD -- VDD V D043B OSC1 (RC mode) 0.9 VDD -- VDD V (Note 1) (2) Input Leakage Current IIL D060 I/O ports -- 0.1 1 A VSS VPIN VDD, Pin at high-impedance D061 MCLR(3) -- 0.1 5 A VSS VPIN VDD D063 OSC1 -- 0.1 5 A VSS VPIN VDD, XT, HS and LP oscillator configuration IPUR GPIO Weak Pull-up Current 50 250 400 A VDD = 5.0V, VPIN = VSS VOL Output Low Voltage(5) -- -- 0.6 V IOL = 8.5 mA, VDD = 4.5V (Ind.) VDD - 0.7 -- -- V IOH = -3.0 mA, VDD = 4.5V (Ind.) D070* D080 I/O ports VOH D090 Output High Voltage(5) I/O ports * Note 1: 2: 3: 4: 5: These parameters are characterized but not tested. Data in "Typ" column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode. Negative current is defined as current sourced by the pin. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. See Section 10.4.1 "Using the Data EEPROM" for additional information. Including OSC2 in CLKOUT mode. (c) 2007 Microchip Technology Inc. DS41211D-page 121 PIC12F683 15.5 DC Characteristics: PIC12F683-I (Industrial) PIC12F683-E (Extended) (Continued) DC CHARACTERISTICS Param No. Sym D100 IULP Characteristic Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +85C for industrial -40C TA +125C for extended Min Typ Max Units -- 200 -- nA See Application Note AN879, "Using the Microchip Ultra Low-Power Wake-up Module" (DS00879) OSC2 pin -- -- 15 pF In XT, HS and LP modes when external clock is used to drive OSC1 All I/O pins -- -- 50 pF Ultra Low-Power Wake-Up Current Conditions Capacitive Loading Specs on Output Pins D101* COSC2 D101A* CIO Data EEPROM Memory -40C TA +85C D120 ED Byte Endurance 100K 1M -- E/W D120A ED Byte Endurance 10K 100K -- E/W D121 VDRW VDD for Read/Write VMIN -- 5.5 V D122 TDEW Erase/Write Cycle Time -- 5 6 D123 TRETD Characteristic Retention 40 -- -- Year Provided no other specifications are violated D124 TREF Number of Total Erase/Write Cycles before Refresh(4) 1M 10M -- E/W -40C TA +85C -40C TA +85C +85C TA +125C Using EECON1 to read/write VMIN = Minimum operating voltage ms Program Flash Memory D130 EP Cell Endurance 10K 100K -- E/W D130A ED Cell Endurance 1K 10K -- E/W D131 VPR VDD for Read VMIN -- 5.5 V D132 VPEW VDD for Erase/Write 4.5 -- 5.5 V D133 TPEW Erase/Write cycle time -- 2 2.5 ms D134 TRETD Characteristic Retention 40 -- -- * Note 1: 2: 3: 4: 5: +85C TA +125C VMIN = Minimum operating voltage Year Provided no other specifications are violated These parameters are characterized but not tested. Data in "Typ" column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode. Negative current is defined as current sourced by the pin. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. See Section 10.4.1 "Using the Data EEPROM" for additional information. Including OSC2 in CLKOUT mode. DS41211D-page 122 (c) 2007 Microchip Technology Inc. PIC12F683 15.6 Thermal Considerations Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +125C Param No. TH01 TH02 TH03 TH04 TH05 TH06 TH07 Note 1: 2: 3: Sym JA Characteristic Thermal Resistance Junction to Ambient Typ Units 84.6 163.0 52.4 46.3 41.2 38.8 3.0 2.6 150 -- -- C/W C/W C/W C/W C/W C/W C/W C/W C W W Conditions 8-pin PDIP package 8-pin SOIC package 8-pin DFN-S 4x4x0.9 mm package 8-pin DFN-S 6x5 mm package JC Thermal Resistance 8-pin PDIP package Junction to Case 8-pin SOIC package 8-pin DFN-S 4x4x0.9 mm package 8-pin DFN-S 6x5 mm package TJ Junction Temperature For derated power calculations PD Power Dissipation PD = PINTERNAL + PI/O PINTERNAL Internal Power Dissipation PINTERNAL = IDD x VDD (NOTE 1) PI/O I/O Power Dissipation -- W PI/O = (IOL * VOL) + (IOH * (VDD - VOH)) PDER Derated Power -- W PDER = (TJ - TA)/JA (NOTE 2, 3) IDD is current to run the chip alone without driving any load on the output pins. TA = Ambient Temperature. Maximum allowable power dissipation is the lower value of either the absolute maximum total power dissipation or derated power (PDER). (c) 2007 Microchip Technology Inc. DS41211D-page 123 PIC12F683 15.7 Timing Parameter Symbology The timing parameter symbols have been created with one of the following formats: 1. TppS2ppS 2. TppS T F Frequency Lowercase letters (pp) and their meanings: pp cc CCP1 ck CLKOUT cs CS di SDI do SDO dt Data in io I/O PORT mc MCLR Uppercase letters and their meanings: S F Fall H High I Invalid (High-impedance) L Low FIGURE 15-3: T Time osc rd rw sc ss t0 t1 wr OSC1 RD RD or WR SCK SS T0CKI T1CKI WR P R V Z Period Rise Valid High-impedance LOAD CONDITIONS Load Condition Pin CL VSS Legend: CL = DS41211D-page 124 50 pF for all pins 15 pF for OSC2 output (c) 2007 Microchip Technology Inc. PIC12F683 15.8 AC Characteristics: PIC12F683 (Industrial, Extended) FIGURE 15-4: CLOCK TIMING Q4 Q1 Q2 Q3 Q4 Q1 OSC1/CLKIN OS02 OS04 OS04 OS03 OSC2/CLKOUT (LP,XT,HS Modes) OSC2/CLKOUT (CLKOUT Mode) TABLE 15-1: CLOCK OSCILLATOR TIMING REQUIREMENTS Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +125C Param No. OS01 Sym FOSC Characteristic External CLKIN Frequency(1) Oscillator Frequency(1) OS02 TOSC External CLKIN Period(1) Oscillator Period(1) OS03 OS04* TCY TosH, TosL Min Typ Max Units DC DC DC DC -- 0.1 1 DC 27 250 50 50 -- 250 50 250 -- -- -- -- 32.768 -- -- -- -- -- -- -- 30.5 -- -- -- 37 4 20 20 -- 4 20 4 * * * * -- 10,000 1,000 -- kHz MHz MHz MHz kHz MHz MHz MHz s ns ns ns s ns ns ns Conditions LP Oscillator mode XT Oscillator mode HS Oscillator mode EC Oscillator mode LP Oscillator mode XT Oscillator mode HS Oscillator mode RC Oscillator mode LP Oscillator mode XT Oscillator mode HS Oscillator mode EC Oscillator mode LP Oscillator mode XT Oscillator mode HS Oscillator mode RC Oscillator mode Instruction Cycle Time(1) External CLKIN High, External CLKIN Low 200 TCY DC ns TCY = 4/FOSC 2 -- -- s LP oscillator 100 -- -- ns XT oscillator 20 -- -- ns HS oscillator OS05* TosR, External CLKIN Rise, 0 -- * ns LP oscillator TosF External CLKIN Fall 0 -- * ns XT oscillator 0 -- * ns HS oscillator * These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices. (c) 2007 Microchip Technology Inc. DS41211D-page 125 PIC12F683 TABLE 15-2: OSCILLATOR PARAMETERS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40C TA +125C Param No. Sym Characteristic Freq. Tolerance Min Typ Max Units Conditions OS06 TWARM Internal Oscillator Switch when running(3) -- -- -- 2 TOSC Slowest clock OS07 TSC Fail-Safe Sample Clock Period(1) -- -- 21 -- ms LFINTOSC/64 OS08 HFOSC Internal Calibrated HFINTOSC Frequency(2) OS09* OS10* LFOSC Internal Uncalibrated LFINTOSC Frequency TIOSC HFINTOSC Oscillator Wake-up from Sleep Start-up Time ST 1% 7.92 8.0 8.08 MHz VDD = 3.5V, 25C 2% 7.84 8.0 8.16 MHz 2.5V VDD 5.5V, 0C TA +85C 5% 7.60 8.0 8.40 MHz 2.0V VDD 5.5V, -40C TA +85C (Ind.), -40C TA +125C (Ext.) -- 15 31 45 kHz -- 5.5 12 24 s VDD = 2.0V, -40C to +85C -- 3.5 7 14 s VDD = 3.0V, -40C to +85C -- 3 6 11 s VDD = 5.0V, -40C to +85C * These parameters are characterized but not tested. Data in "Typ" column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices. 2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 F and 0.01 F values in parallel are recommended. 3: By design. DS41211D-page 126 (c) 2007 Microchip Technology Inc. PIC12F683 FIGURE 15-5: CLKOUT AND I/O TIMING Cycle Write Fetch Read Execute Q4 Q1 Q2 Q3 Fosc OS12 OS11 OS20 OS21 CLKOUT OS19 OS18 OS16 OS13 OS17 I/O pin (Input) OS14 OS15 I/O pin (Output) New Value Old Value OS18, OS19 TABLE 15-3: CLKOUT AND I/O TIMING PARAMETERS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40C TA +125C Param No. Sym Characteristic TOSH2CKL FOSC to CLKOUT (1) OS12 TOSH2CKH FOSC to CLKOUT (1) OS13 TCKL2IOV CLKOUT to Port out valid(1) OS14 TIOV2CKH Port input valid before CLKOUT(1) OS15* TOSH2IOV OS16 OS11 Min Typ Max Units Conditions -- -- 70 ns VDD = 5.0V VDD = 5.0V -- -- 72 ns -- -- 20 ns TOSC + 200 ns -- -- ns FOSC (Q1 cycle) to Port out valid -- 50 70 ns VDD = 5.0V TOSH2IOI FOSC (Q2 cycle) to Port input invalid (I/O in hold time) 50 -- -- ns VDD = 5.0V OS17 TIOV2OSH Port input valid to FOSC (Q2 cycle) (I/O in setup time) 20 -- -- ns OS18 TIOR Port output rise time(2) -- -- 15 40 72 32 ns VDD = 2.0V VDD = 5.0V OS19 TIOF Port output fall time(2) -- -- 28 15 55 30 ns VDD = 2.0V VDD = 5.0V OS20* TINP INT pin input high or low time 25 -- -- ns OS21* TGPP GPIO interrupt-on-change new input level time TCY -- -- ns * Note 1: 2: These parameters are characterized but not tested. Data in "Typ" column is at 5.0V, 25C unless otherwise stated. Measurements are taken in RC mode where CLKOUT output is 4 x TOSC. Includes OSC2 in CLKOUT mode. (c) 2007 Microchip Technology Inc. DS41211D-page 127 PIC12F683 FIGURE 15-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING VDD MCLR 30 Internal POR 33 PWRT Time-out 32 OSC Start-Up Time Internal Reset(1) Watchdog Timer Reset(1) 31 34 34 I/O pins Note 1: Asserted low. FIGURE 15-7: BROWN-OUT RESET TIMING AND CHARACTERISTICS VDD VBOR + VHYST VBOR (Device in Brown-out Reset) (Device not in Brown-out Reset) 37 Reset (due to BOR) * 33* 64 ms delay only if PWRTE bit in the Configuration Word register is programmed to `0'. DS41211D-page 128 (c) 2007 Microchip Technology Inc. PIC12F683 TABLE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40C TA +125C Param No. Sym Characteristic Min Typ Max Units Conditions 30 TMCL MCLR Pulse Width (low) 2 5 -- -- -- -- s s VDD = 5V, -40C to +85C VDD = 5V 31 TWDT Watchdog Timer Time-out Period (No Prescaler) 10 10 16 16 29 31 ms ms VDD = 5V, -40C to +85C VDD = 5V 32 TOST Oscillation Start-up Timer Period(1, 2) -- 1024 -- 33* TPWRT Power-up Timer Period 40 65 140 ms 34* TIOZ I/O High-impedance from MCLR Low or Watchdog Timer Reset -- -- 2.0 s 35 VBOR Brown-out Reset Voltage 2.0 -- 2.2 V 36* VHYST Brown-out Reset Hysteresis -- 50 -- mV 37* TBOR Brown-out Reset Minimum Detection Period 100 -- -- s TOSC (NOTE 3) (NOTE 4) VDD VBOR * These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices. 2: By design. 3: Period of the slower clock. 4: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 F and 0.01 F values in parallel are recommended. (c) 2007 Microchip Technology Inc. DS41211D-page 129 PIC12F683 FIGURE 15-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS T0CKI 40 41 42 T1CKI 45 46 49 47 TMR0 or TMR1 TABLE 15-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40C TA +125C Param No. 40* Sym TT0H Characteristic T0CKI High Pulse Width No Prescaler With Prescaler 41* TT0L T0CKI Low Pulse Width No Prescaler 42* TT0P T0CKI Period 45* TT1H T1CKI High Synchronous, No Prescaler Time Synchronous, with Prescaler With Prescaler Asynchronous 46* TT1L T1CKI Low Time Synchronous, No Prescaler Synchronous, with Prescaler Asynchronous 47* TT1P T1CKI Input Synchronous Period 48 FT1 Timer1 Oscillator Input Frequency Range (oscillator enabled by setting bit T1OSCEN) 49* TCKEZTMR1 Delay from External Clock Edge to Timer Increment Asynchronous * Min Typ Max Units 0.5 TCY + 20 -- -- ns 10 -- -- ns 0.5 TCY + 20 -- -- ns 10 -- -- ns Greater of: 20 or TCY + 40 N -- -- ns 0.5 TCY + 20 -- -- ns 15 -- -- ns 30 -- -- ns 0.5 TCY + 20 -- -- ns 15 -- -- ns 30 -- -- ns Greater of: 30 or TCY + 40 N -- -- ns 60 -- -- ns -- 32.768 -- kHz 2 TOSC -- 7 TOSC -- Conditions N = prescale value (2, 4, ..., 256) N = prescale value (1, 2, 4, 8) Timers in Sync mode These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. DS41211D-page 130 (c) 2007 Microchip Technology Inc. PIC12F683 FIGURE 15-9: CAPTURE/COMPARE/PWM TIMINGS (ECCP) CCP1 (Capture mode) CC01 CC02 CC03 Note: TABLE 15-6: Refer to Figure 15-3 for load conditions. CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP) Standard Operating Conditions (unless otherwise stated) Operating Temperature -40C TA +125C Param No. CC01* CC02* CC03* Sym TccL TccH TccP Characteristic CCP1 Input Low Time CCP1 Input High Time CCP1 Input Period Min Typ Max Units No Prescaler 0.5TCY + 20 -- -- ns With Prescaler 20 -- -- ns No Prescaler 0.5TCY + 20 -- -- ns With Prescaler 20 -- -- ns 3TCY + 40 N -- -- ns Conditions N = prescale value (1, 4 or 16) * These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. (c) 2007 Microchip Technology Inc. DS41211D-page 131 PIC12F683 TABLE 15-7: COMPARATOR SPECIFICATIONS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40C TA +125C Param No. Sym Characteristics CM01 VOS Input Offset Voltage CM02 VCM Input Common Mode Voltage CM03* CMRR Common Mode Rejection Ratio CM04* TRT Response Time Min Typ Max Units -- 5.0 10 mV 0 -- VDD - 1.5 V +55 -- -- dB Falling -- 150 600 ns Rising -- 200 1000 ns -- -- 10 s CM05* TMC2COV Comparator Mode Change to Output Valid Comments (VDD - 1.5)/2 (NOTE 1) * These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV. TABLE 15-8: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +125C Param No. Sym Characteristics Min Typ Max Units Comments CV01* CLSB Step Size(2) -- -- VDD/24 VDD/32 -- -- V V Low Range (VRR = 1) High Range (VRR = 0) CV02* CACC Absolute Accuracy -- -- -- -- 1/2 1/2 LSb LSb Low Range (VRR = 1) High Range (VRR = 0) CV03* CR Unit Resistor Value (R) -- 2k -- CV04* CST Settling Time(1) -- -- 10 s * These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from `0000' to `1111'. 2: See Section 8.11 "Comparator Voltage Reference" for more information. DS41211D-page 132 (c) 2007 Microchip Technology Inc. PIC12F683 TABLE 15-9: PIC12F683 A/D CONVERTER (ADC) CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +125C Param Sym No. Characteristic Min Typ Max Units Conditions AD01 NR Resolution -- -- 10 bits AD02 EIL Integral Error -- -- 1 LSb VREF = 5.12V AD03 EDL Differential Error -- -- 1 LSb No missing codes to 10 bits VREF = 5.12V AD04 EOFF Offset Error -- -- 1 LSb VREF = 5.12V AD07 EGN LSb VREF = 5.12V bit Gain Error -- -- 1 AD06 VREF AD06A Reference Voltage(3) 2.2 2.7 -- -- VDD V AD07 VAIN Full-Scale Range VSS -- VREF V AD08 ZAIN Recommended Impedance of Analog Voltage Source -- -- 10 k AD09* IREF VREF Input Current(3) 10 -- 1000 A During VAIN acquisition. Based on differential of VHOLD to VAIN. -- -- 50 A During A/D conversion cycle. Absolute minimum to ensure 1 LSb accuracy * These parameters are characterized but not tested. Data in "Typ" column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Total Absolute Error includes integral, differential, offset and gain errors. 2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes. 3: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input. 4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module. (c) 2007 Microchip Technology Inc. DS41211D-page 133 PIC12F683 TABLE 15-10: PIC12F683 A/D CONVERSION REQUIREMENTS Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +125C Param No. Sym AD130* TAD Characteristic A/D Clock Period A/D Internal RC Oscillator Period AD131 TCNV Conversion Time (not including Acquisition Time)(1) Min Typ 1.6 -- 9.0 s TOSC-based, VREF 3.0V 3.0 -- 9.0 s TOSC-based, VREF full range 3.0 6.0 9.0 s ADCS<1:0> = 11 (ADRC mode) At VDD = 2.5V 1.6 4.0 6.0 s At VDD = 5.0V -- 11 -- TAD Set GO/DONE bit to new data in A/D Result register. 11.5 -- s Amplifier Settling Time -- -- 5 s Q4 to A/D Clock Start -- TOSC/2 -- -- -- TOSC/2 + TCY -- -- AD132* TACQ Acquisition Time AD133* TAMP AD134 TGO Max Units Conditions If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed. * These parameters are characterized but not tested. Data in "Typ" column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle. 2: See Section 9.3 "A/D Acquisition Requirements" for minimum conditions. DS41211D-page 134 (c) 2007 Microchip Technology Inc. PIC12F683 FIGURE 15-10: PIC12F683 A/D CONVERSION TIMING (NORMAL MODE) BSF ADCON0, GO AD134 1 TCY (TOSC/2(1)) AD131 Q4 AD130 A/D CLK 9 A/D Data 8 7 6 3 2 1 0 NEW_DATA OLD_DATA ADRES 1 TCY ADIF GO DONE Note 1: Sampling Stopped AD132 Sample If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed. FIGURE 15-11: PIC12F683 A/D CONVERSION TIMING (SLEEP MODE) BSF ADCON0, GO AD134 (TOSC/2 + TCY(1)) 1 TCY AD131 Q4 AD130 A/D CLK 9 A/D Data 8 7 6 OLD_DATA ADRES 3 2 1 0 NEW_DATA ADIF 1 TCY GO DONE Sample Note 1: AD132 Sampling Stopped If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed. (c) 2007 Microchip Technology Inc. DS41211D-page 135 PIC12F683 NOTES: DS41211D-page 136 (c) 2007 Microchip Technology Inc. PIC12F683 16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are ensured to operate properly only within the specified range. Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range. "Typical" represents the mean of the distribution at 25C. "Maximum" or "minimum" represents (mean + 3) or (mean - 3) respectively, where is a standard deviation, over each temperature range. FIGURE 16-1: TYPICAL IDD vs. FOSC OVER VDD (EC MODE) 3.5 3.0 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 5.5V 5.0V IDD (mA) 2.5 2.0 4.0V 1.5 3.0V 1.0 2.0V 0.5 0.0 1 MHz 2 MHz 4 MHz 6 MHz 8 MHz 10 MHz 12 MHz 14 MHz 16 MHz 18 MHz 20 MHz FOSC (c) 2007 Microchip Technology Inc. DS41211D-page 137 PIC12F683 FIGURE 16-2: MAXIMUM IDD vs. FOSC OVER VDD (EC MODE) EC Mode 4.0 3.5 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 5.5V 5.0V 3.0 IDD (mA) 2.5 4.0V 2.0 3.0V 1.5 2.0V 1.0 0.5 0.0 1 MHz 2 MHz 4 MHz 6 MHz 8 MHz 10 MHz 12 MHz 14 MHz 16 MHz 18 MHz 20 MHz FOSC FIGURE 16-3: TYPICAL IDD vs. FOSC OVER VDD (HS MODE) Typical IDD vs. FOSC Over Vdd HS Mode 4.0 3.5 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 5.5V 3.0 5.0V IDD (mA) 2.5 4.5V 2.0 1.5 4.0V 3.5V 3.0V 1.0 0.5 0.0 4 MHz 10 MHz 16 MHz 20 MHz FOSC DS41211D-page 138 (c) 2007 Microchip Technology Inc. PIC12F683 FIGURE 16-4: MAXIMUM IDD vs. FOSC OVER VDD (HS MODE) Maximum IDD vs. FOSC Over Vdd HS Mode 5.0 4.5 4.0 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 5.5V IDD (mA) 3.5 5.0V 3.0 4.5V 2.5 2.0 1.5 4.0V 3.5V 3.0V 1.0 0.5 0.0 4 MHz 10 MHz 16 MHz 20 MHz FOSC FIGURE 16-5: TYPICAL IDD vs. VDD OVER FOSC (XT MODE) XT Mode 900 800 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 700 IDD (A) 600 500 4 MHz 400 300 1 MHz 200 100 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) (c) 2007 Microchip Technology Inc. DS41211D-page 139 PIC12F683 FIGURE 16-6: MAXIMUM IDD vs. VDD OVER FOSC (XT MODE) XT Mode 1,400 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 1,200 IDD (A) 1,000 800 4 MHz 600 400 1 MHz 200 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 5.0 5.5 VDD (V) FIGURE 16-7: TYPICAL IDD vs. VDD OVER FOSC (EXTRC MODE) EXTRC Mode 800 700 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 600 IDD (A) 500 4 MHz 400 300 1 MHz 200 100 0 2.0 2.5 3.0 3.5 4.0 4.5 VDD (V) DS41211D-page 140 (c) 2007 Microchip Technology Inc. PIC12F683 FIGURE 16-8: MAXIMUM IDD vs. VDD (EXTRC MODE) EXTRC Mode 1,400 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 1,200 IDD (A) 1,000 4 MHz 800 600 1 MHz 400 200 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 5.0 5.5 VDD (V) FIGURE 16-9: IDD vs. VDD OVER FOSC (LFINTOSC MODE, 31 kHz) LFINTOSC Mode, 31KHZ 80 70 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 60 IDD (A) 50 Maximum 40 30 Typical 20 10 0 2.0 2.5 3.0 3.5 4.0 4.5 VDD (V) (c) 2007 Microchip Technology Inc. DS41211D-page 141 PIC12F683 FIGURE 16-10: IDD vs. VDD (LP MODE) LP Mode 70 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 60 50 IDD (A) 32 kHz Maximum 40 30 32 kHz Typical 20 10 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) FIGURE 16-11: TYPICAL IDD vs. FOSC OVER VDD (HFINTOSC MODE) HFINTOSC 1,600 1,400 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 5.5V 5.0V 1,200 IDD (A) 1,000 4.0V 800 3.0V 600 2.0V 400 200 0 125 kHz 250 kHz 500 kHz 1 MHz 2 MHz 4 MHz 8 MHz FOSC DS41211D-page 142 (c) 2007 Microchip Technology Inc. PIC12F683 FIGURE 16-12: MAXIMUM IDD vs. FOSC OVER VDD (HFINTOSC MODE) HFINTOSC 2,000 1,800 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 5.5V 5.0V 1,600 1,400 4.0V IDD (A) 1,200 1,000 3.0V 800 600 2.0V 400 200 0 125 kHz 250 kHz 500 kHz 1 MHz 2 MHz 4 MHz 8 MHz FOSC FIGURE 16-13: TYPICAL IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED) Typical (Sleep Mode all Peripherals Disabled) 0.45 0.40 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 0.35 IPD (A) 0.30 0.25 0.20 0.15 0.10 0.05 0.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) (c) 2007 Microchip Technology Inc. DS41211D-page 143 PIC12F683 FIGURE 16-14: MAXIMUM IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED) Maximum (Sleep Mode all Peripherals Disabled) 18.0 16.0 Typical: Statistical Mean @25C Maximum: Mean + 3 Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 14.0 Max. 125C IPD (A) 12.0 10.0 8.0 6.0 4.0 Max. 85C 2.0 0.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) FIGURE 16-15: COMPARATOR IPD vs. VDD (BOTH COMPARATORS ENABLED) 180 160 140 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) IPD (A) 120 Maximum 100 Typical 80 60 40 20 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) DS41211D-page 144 (c) 2007 Microchip Technology Inc. PIC12F683 FIGURE 16-16: BOR IPD vs. VDD OVER TEMPERATURE 160 140 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 120 IPD (A) 100 Maximum 80 Typical 60 40 20 0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) FIGURE 16-17: TYPICAL WDT IPD vs. VDD OVER TEMPERATURE Typical 3.0 2.5 Typical: Statistical StatisticalMean Mean @25C @25C Typical: Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) IPD (A) 2.0 1.5 1.0 0.5 0.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) (c) 2007 Microchip Technology Inc. DS41211D-page 145 PIC12F683 FIGURE 16-18: MAXIMUM WDT IPD vs. VDD OVER TEMPERATURE Maximum 25.0 20.0 IPD (A) Max. 125C 15.0 Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 10.0 Max. 85C 5.0 0.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) FIGURE 16-19: WDT PERIOD vs. VDD OVER TEMPERATURE 30 28 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) Max. (125C) 26 Max. (85C) 24 Time (ms) 22 20 Typical 18 16 14 Minimum 12 10 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) DS41211D-page 146 (c) 2007 Microchip Technology Inc. PIC12F683 FIGURE 16-20: WDT PERIOD vs. TEMPERATURE OVER VDD (5.0V) Vdd = 5V 30 28 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 26 Maximum 24 Time (ms) 22 20 Typical 18 16 Minimum 14 12 10 -40C 25C 85C 125C Temperature (C) FIGURE 16-21: CVREF IPD vs. VDD OVER TEMPERATURE (HIGH RANGE) High Range 140 120 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 100 IPD (A) Max. 125C 80 Max. 85C 60 Typical 40 20 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) (c) 2007 Microchip Technology Inc. DS41211D-page 147 PIC12F683 FIGURE 16-22: CVREF IPD vs. VDD OVER TEMPERATURE (LOW RANGE) 180 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 160 140 120 IPD (A) Max. 125C 100 Max. 85C 80 Typical 60 40 20 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) FIGURE 16-23: VOL vs. IOL OVER TEMPERATURE (VDD = 3.0V) (VDD = 3V, -40xC TO 125xC) 0.8 0.7 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) Max. 125C 0.6 VOL (V) 0.5 Max. 85C 0.4 Typical 25C 0.3 0.2 Min. -40C 0.1 0.0 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 IOL (mA) DS41211D-page 148 (c) 2007 Microchip Technology Inc. PIC12F683 FIGURE 16-24: VOL vs. IOL OVER TEMPERATURE (VDD = 5.0V) 0.45 Typical: Statistical Mean @25C Typical: Statistical Mean Temp) @25xC+ 3 Maximum: Mean (Worst-case Maximum: Means (-40xC + 3 to 125xC) (-40C to 125C) 0.40 Max. 125C 0.35 Max. 85C VOL (V) 0.30 0.25 Typ. 25C 0.20 0.15 Min. -40C 0.10 0.05 0.00 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 IOL (mA) FIGURE 16-25: VOH vs. IOH OVER TEMPERATURE (VDD = 3.0V) 3.5 3.0 Max. -40C Typ. 25C 2.5 Min. 125C VOH (V) 2.0 1.5 1.0 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 0.5 0.0 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 IOH (mA) (c) 2007 Microchip Technology Inc. DS41211D-page 149 PIC12F683 FIGURE 16-26: VOH vs. IOH OVER TEMPERATURE (VDD = 5.0V) (VDD = 5V, -40xC TO 125xC) 5.5 5.0 Max. -40C Typ. 25C VOH (V) 4.5 Min. 125C 4.0 3.5 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 3.0 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 IOH (mA) FIGURE 16-27: TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE (TTL Input, -40xC TO 125xC) 1.7 1.5 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) Max. -40C VIN (V) 1.3 Typ. 25C 1.1 Min. 125C 0.9 0.7 0.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) DS41211D-page 150 (c) 2007 Microchip Technology Inc. PIC12F683 FIGURE 16-28: SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE (ST Input, -40xC TO 125xC) 4.0 VIH Max. 125C 3.5 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) VIH Min. -40C VIN (V) 3.0 2.5 2.0 VIL Max. -40C 1.5 VIL Min. 125C 1.0 0.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) FIGURE 16-29: T1OSC IPD vs. VDD OVER TEMPERATURE (32 kHz) 45.0 40.0 Typical: Statistical Mean @25C Maximum: Mean Mean (Worst-case Temp) + 3 Maximum: (-40xC + 3 to 125xC) (-40C to 125C) 35.0 Max. 125C IPD (mA) 30.0 25.0 20.0 15.0 Max. 85C 10.0 5.0 Typ. 25C 0.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) (c) 2007 Microchip Technology Inc. DS41211D-page 151 PIC12F683 FIGURE 16-30: COMPARATOR RESPONSE TIME (RISING EDGE) 531 806 1000 900 Max. 125C Response Time (nS) 800 700 600 Note: 500 VCM = VDD - 1.5V)/2 V+ input = VCM V- input = Transition from VCM + 100MV to VCM - 20MV Max. 85C 400 300 Typ. 25C 200 Min. -40C 100 0 2.0 2.5 4.0 5.5 VDD (V) FIGURE 16-31: COMPARATOR RESPONSE TIME (FALLING EDGE) 1000 900 Max. 125C 800 Response Time (nS) 700 600 Note: 500 VCM = VDD - 1.5V)/2 V+ input = VCM V- input = Transition from VCM - 100MV to VCM + 20MV Max. 85C 400 300 Typ. 25C 200 Min. -40C 100 0 2.0 2.5 4.0 5.5 VDD (V) DS41211D-page 152 (c) 2007 Microchip Technology Inc. PIC12F683 FIGURE 16-32: LFINTOSC FREQUENCY vs. VDD OVER TEMPERATURE (31 kHz) LFINTOSC 31Khz 45,000 40,000 Max. -40C 35,000 Typ. 25C Frequency (Hz) 30,000 25,000 20,000 Min. 85C Min. 125C 15,000 10,000 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 5,000 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) FIGURE 16-33: ADC CLOCK PERIOD vs. VDD OVER TEMPERATURE 8 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 125C 6 Time (s) 85C 4 25C -40C 2 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) (c) 2007 Microchip Technology Inc. DS41211D-page 153 PIC12F683 FIGURE 16-34: TYPICAL HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE 16 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 14 85C 12 25C Time (s) 10 -40C 8 6 4 2 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) FIGURE 16-35: MAXIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE -40C to +85C 25 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) Time (s) 20 15 85C 25C 10 -40C 5 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) DS41211D-page 154 (c) 2007 Microchip Technology Inc. PIC12F683 FIGURE 16-36: MINIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE -40C to +85C 10 9 Typical: Statistical Mean @25C Maximum: Mean (Worst-case Temp) + 3 (-40C to 125C) 8 7 Time (s) 85C 6 25C 5 -40C 4 3 2 1 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) FIGURE 16-37: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (25C) 5 4 Change from Calibration (%) 3 2 1 0 -1 -2 -3 -4 -5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) (c) 2007 Microchip Technology Inc. DS41211D-page 155 PIC12F683 FIGURE 16-38: TYPICAL HFINTOSC FREQUENCY CHANGE OVER DEVICE VDD (85C) 5 4 Change from Calibration (%) 3 2 1 0 -1 -2 -3 -4 -5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) FIGURE 16-39: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (125C) 5 4 Change from Calibration (%) 3 2 1 0 -1 -2 -3 -4 -5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) DS41211D-page 156 (c) 2007 Microchip Technology Inc. PIC12F683 FIGURE 16-40: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (-40C) 5 4 Change from Calibration (%) 3 2 1 0 -1 -2 -3 -4 -5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VDD (V) (c) 2007 Microchip Technology Inc. DS41211D-page 157 PIC12F683 NOTES: DS41211D-page 158 (c) 2007 Microchip Technology Inc. PIC12F683 17.0 PACKAGING INFORMATION 17.1 Package Marking Information 8-Lead PDIP Example 12F683 I/P e3 017 0415 XXXXXXXX XXXXXNNN YYWW 8-Lead SOIC (3.90 mm) 12F683 e3 I/SN0415 017 XXXXXXXX XXXXYYWW NNN 8-Lead DFN (4x4x0.9 mm) XXXXXX XXXXXX YYWW NNN Legend: XX...X Y YY WW NNN e3 * Note: * Example 12F683 I/MD e3 0415 017 8-Lead DFN-S (6x5 mm) XXXXXXX XXXXXXX XXYYWW NNN Example Example 12F683 I/MF e3 0415 017 Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week `01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package. In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Standard PIC(R) device marking consists of Microchip part number, year code, week code and traceability code. For PIC device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price. (c) 2007 Microchip Technology Inc. DS41211D-page 159 PIC12F683 17.2 Package Details The following sections give the technical details of the packages. 8-Lead Plastic Dual In-Line (P or PA) - 300 mil Body [PDIP] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging N NOTE 1 E1 1 3 2 D E A2 A L A1 c e eB b1 b Units Dimension Limits Number of Pins INCHES MIN N NOM MAX 8 Pitch e Top to Seating Plane A - - .210 Molded Package Thickness A2 .115 .130 .195 Base to Seating Plane A1 .015 - - Shoulder to Shoulder Width E .290 .310 .325 Molded Package Width E1 .240 .250 .280 Overall Length D .348 .365 .400 Tip to Seating Plane L .115 .130 .150 Lead Thickness c .008 .010 .015 b1 .040 .060 .070 b .014 .018 .022 eB - - Upper Lead Width Lower Lead Width Overall Row Spacing .100 BSC .430 Notes: 1. Pin 1 visual index feature may vary, but must be located with the hatched area. 2. Significant Characteristic. 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side. 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-018B DS41211D-page 160 (c) 2007 Microchip Technology Inc. PIC12F683 8-Lead Plastic Small Outline (SN or OA) - Narrow, 3.90 mm Body [SOIC] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D e N E E1 NOTE 1 1 2 3 h b h A2 A c L A1 L1 Units Dimension Limits Number of Pins MILLIMETERS MIN N NOM MAX 8 Pitch e Overall Height A - 1.27 BSC - Molded Package Thickness A2 1.25 - - Standoff A1 0.10 - 0.25 Overall Width E Molded Package Width E1 3.90 BSC Overall Length D 4.90 BSC 1.75 6.00 BSC Chamfer (optional) h 0.25 - 0.50 Foot Length L 0.40 - 1.27 Footprint L1 1.04 REF Foot Angle 0 - 8 Lead Thickness c 0.17 - 0.25 Lead Width b 0.31 - 0.51 Mold Draft Angle Top 5 - 15 Mold Draft Angle Bottom 5 - 15 Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Significant Characteristic. 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side. 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-057B (c) 2007 Microchip Technology Inc. DS41211D-page 161 PIC12F683 8-Lead Plastic Dual Flat, No Lead Package (MD) - 4x4x0.9 mm Body [DFN] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D e b N N L E E2 K EXPOSED PAD 1 2 2 1 NOTE 1 NOTE 1 D2 TOP VIEW BOTTOM VIEW A3 A A1 NOTE 2 Units Dimension Limits Number of Pins MILLIMETERS MIN N NOM MAX 8 Pitch e Overall Height A 0.80 0.90 1.00 Standoff A1 0.00 0.02 0.05 Contact Thickness A3 Overall Length D Exposed Pad Width E2 Overall Width E Exposed Pad Length 0.80 BSC 0.20 REF 4.00 BSC 0.00 2.20 2.80 4.00 BSC D2 0.00 3.00 Contact Width b 0.25 0.30 0.35 Contact Length L 0.30 0.55 0.65 Contact-to-Exposed Pad K 0.20 - Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Package may have one or more exposed tie bars at ends. 3. Package is saw singulated. 4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. 3.60 - Microchip Technology Drawing C04-131C DS41211D-page 162 (c) 2007 Microchip Technology Inc. PIC12F683 8-Lead Plastic Dual Flat, No Lead Package (MF) - 6x5 mm Body [DFN-S] PUNCH SINGULATED Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D D1 e b N L N K E E2 E1 EXPOSED PAD NOTE 1 2 2 1 1 NOTE 1 D2 TOP VIEW BOTTOM VIEW A2 A A1 A3 NOTE 2 Units Dimension Limits Number of Pins MILLIMETERS MIN N NOM MAX 8 Pitch e Overall Height A - 1.27 BSC 0.85 Molded Package Thickness A2 - 0.65 0.80 Standoff A1 0.00 0.01 0.05 Base Thickness A3 0.20 REF Overall Length D 4.92 BSC Molded Package Length D1 Exposed Pad Length D2 Overall Width E Molded Package Width E1 Exposed Pad Width E2 2.16 2.31 Contact Width b 0.35 0.40 0.47 Contact Length L 0.50 0.60 0.75 Contact-to-Exposed Pad K 0.20 - - Model Draft Angle Top - - 12 1.00 4.67 BSC 3.85 4.00 4.15 5.99 BSC 5.74 BSC 2.46 Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. Package may have one or more exposed tie bars at ends. 3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-113B (c) 2007 Microchip Technology Inc. DS41211D-page 163 PIC12F683 NOTES: DS41211D-page 164 (c) 2007 Microchip Technology Inc. PIC12F683 APPENDIX A: DATA SHEET REVISION HISTORY Revision A APPENDIX B: MIGRATING FROM OTHER PIC(R) DEVICES This is a new data sheet. This discusses some of the issues in migrating from other PIC devices to the PIC12F683 device. Revision B B.1 Rewrites of the Oscillator and Special Features of the CPU sections. General corrections to Figures and formatting. TABLE B-1: Revision C Revisions throughout document. Incorporated Golden Chapters. Revision D Replaced Package Drawings; Revised Product ID Section (SN package to 3.90 mm); Replaced PICmicro with PIC; Replaced Dev Tool Section. PIC16F676 to PIC12F683 FEATURE COMPARISON Feature Max Operating Speed Max Program Memory (Words) PIC12F683 20 MHz 20 MHz 1024 2048 SRAM (bytes) 64 128 A/D Resolution 10-bit 10-bit Data EEPROM (Bytes) 128 256 Timers (8/16-bit) 1/1 2/1 Oscillator Modes 8 8 Brown-out Reset Y Y Internal Pull-ups RA0/1/2/4/5 GP0/1/2/4/5, MCLR Interrupt-on-change RA0/1/2/3/4/5 GP0/1/2/3/4/5 Comparator 1 1 ECCP N N Ultra Low-Power Wake-Up N Y Extended WDT N Y Software Control Option of WDT/BOR N Y 4 MHz 32 kHz8 MHz N Y INTOSC Frequencies Clock Switching Note: (c) 2007 Microchip Technology Inc. PIC16F676 This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device. DS41211D-page 165 PIC12F683 NOTES: DS41211D-page 166 (c) 2007 Microchip Technology Inc. PIC12F683 INDEX A A/D Specifications.................................................... 133, 134 Absolute Maximum Ratings .............................................. 115 AC Characteristics Industrial and Extended ............................................ 125 Load Conditions ........................................................ 124 ADC .................................................................................... 61 Acquisition Requirements ........................................... 67 Associated registers.................................................... 69 Block Diagram............................................................. 61 Calculating Acquisition Time....................................... 67 Channel Selection....................................................... 61 Configuration............................................................... 61 Configuring Interrupt ................................................... 64 Conversion Clock........................................................ 62 Conversion Procedure ................................................ 64 GPIO Configuration..................................................... 61 Internal Sampling Switch (RSS) IMPEDANCE ................ 67 Interrupts..................................................................... 63 Operation .................................................................... 63 Operation During Sleep .............................................. 64 Reference Voltage (VREF)........................................... 62 Result Formatting........................................................ 63 Source Impedance...................................................... 67 Special Event Trigger.................................................. 64 Starting an A/D Conversion ........................................ 63 ADCON0 Register............................................................... 65 ADRESH Register (ADFM = 0) ........................................... 66 ADRESH Register (ADFM = 1) ........................................... 66 ADRESL Register (ADFM = 0)............................................ 66 ADRESL Register (ADFM = 1)............................................ 66 Analog Input Connection Considerations............................ 52 Analog-to-Digital Converter. See ADC ANSEL Register .................................................................. 33 Assembler MPASM Assembler................................................... 112 B Block Diagrams (CCP) Capture Mode Operation ................................. 76 ADC ............................................................................ 61 ADC Transfer Function ............................................... 68 Analog Input Model ............................................... 52, 68 CCP PWM................................................................... 78 Clock Source............................................................... 19 Comparator ................................................................. 51 Compare ..................................................................... 77 Crystal Operation ........................................................ 22 External RC Mode....................................................... 23 Fail-Safe Clock Monitor (FSCM) ................................. 29 GP1 Pin....................................................................... 37 GP2 Pin....................................................................... 37 GP3 Pin....................................................................... 38 GP4 Pin....................................................................... 38 GP5 Pin....................................................................... 39 In-Circuit Serial Programming Connections.............. 100 Interrupt Logic ............................................................. 93 MCLR Circuit............................................................... 86 On-Chip Reset Circuit ................................................. 85 PIC12F683.................................................................... 5 Resonator Operation................................................... 22 Timer1......................................................................... 44 (c) 2007 Microchip Technology Inc. Timer2 ........................................................................ 49 TMR0/WDT Prescaler ................................................ 41 Watchdog Timer (WDT).............................................. 96 Brown-out Reset (BOR)...................................................... 87 Associated .................................................................. 88 Calibration .................................................................. 87 Specifications ........................................................... 129 Timing and Characteristics ....................................... 128 C C Compilers MPLAB C18.............................................................. 112 MPLAB C30.............................................................. 112 Calibration Bits.................................................................... 85 Capture Module. See Capture/Compare/PWM (CCP) Capture/Compare/PWM (CCP) .......................................... 75 Associated registers w/ Capture, Compare and Timer1 ......................................................... 81 Associated registers w/ PWM and Timer2.................. 81 Capture Mode............................................................. 76 CCPx Pin Configuration.............................................. 76 Compare Mode........................................................... 77 CCPx Pin Configuration...................................... 77 Software Interrupt Mode ............................... 76, 77 Special Event Trigger ......................................... 77 Timer1 Mode Selection................................. 76, 77 Prescaler .................................................................... 76 PWM Mode................................................................. 78 Duty Cycle .......................................................... 79 Effects of Reset .................................................. 80 Example PWM Frequencies and Resolutions, 20 MHZ .................................. 79 Example PWM Frequencies and Resolutions, 8 MHz .................................... 79 Operation in Sleep Mode.................................... 80 Setup for Operation ............................................ 80 System Clock Frequency Changes .................... 80 PWM Period ............................................................... 79 Setup for PWM Operation .......................................... 80 Timer Resources ........................................................ 75 CCP. See Capture/Compare/PWM (CCP) CCP1CON Register............................................................ 75 Clock Sources External Modes........................................................... 21 EC ...................................................................... 21 HS ...................................................................... 22 LP ....................................................................... 22 OST .................................................................... 21 RC ...................................................................... 23 XT ....................................................................... 22 Internal Modes............................................................ 23 Frequency Selection........................................... 25 HFINTOSC ......................................................... 23 INTOSC .............................................................. 23 INTOSCIO .......................................................... 23 LFINTOSC.......................................................... 25 Clock Switching .................................................................. 27 Code Examples A/D Conversion .......................................................... 64 Assigning Prescaler to Timer0.................................... 42 Assigning Prescaler to WDT....................................... 42 Changing Between Capture Prescalers ..................... 76 Data EEPROM Read.................................................. 73 Data EEPROM Write .................................................. 73 DS41211D-page 167 PIC12F683 Indirect Addressing ..................................................... 18 Initializing GPIO .......................................................... 31 Saving STATUS and W Registers in RAM ................. 95 Ultra Low-Power Wake-up Initialization ...................... 35 Write Verify ................................................................. 73 Code Protection .................................................................. 99 Comparator ......................................................................... 51 C2OUT as T1 Gate ..................................................... 57 Configurations ............................................................. 53 I/O Operating Modes................................................... 53 Interrupts ..................................................................... 55 Operation .............................................................. 51, 54 Operation During Sleep .............................................. 56 Response Time ........................................................... 54 Synchronizing COUT w/Timer1 .................................. 57 Comparator Module Associated registers.................................................... 59 Comparator Voltage Reference (CVREF) Response Time ........................................................... 54 Comparator Voltage Reference (CVREF) ............................ 58 Effects of a Reset........................................................ 56 Specifications ............................................................ 132 Comparators C2OUT as T1 Gate ..................................................... 45 Effects of a Reset........................................................ 56 Specifications ............................................................ 132 Compare Module. See Capture/Compare/PWM (CCP) CONFIG Register................................................................ 84 Configuration Bits................................................................ 83 CPU Features ..................................................................... 83 Customer Change Notification Service ............................. 171 Customer Notification Service........................................... 171 Customer Support ............................................................. 171 D Data EEPROM Memory Associated Registers .................................................. 74 Code Protection .................................................... 71, 74 Data Memory Organization ................................................... 7 Map of the PIC12F683 .................................................. 8 DC and AC Characteristics Graphs and Tables ................................................... 137 DC Characteristics Extended and Industrial ............................................ 121 Industrial and Extended ............................................ 117 Development Support ....................................................... 111 Device Overview ................................................................... 5 E EEADR Register ................................................................. 71 EECON1 Register ............................................................... 72 EECON2 Register ............................................................... 72 EEDAT Register.................................................................. 71 EEPROM Data Memory Avoiding Spurious Write.............................................. 74 Reading....................................................................... 73 Write Verify ................................................................. 73 Writing ......................................................................... 73 Effects of Reset PWM mode ................................................................. 80 Electrical Specifications .................................................... 115 Enhanced Capture/Compare/PWM (ECCP) Specifications ............................................................ 131 Errata .................................................................................... 3 DS41211D-page 168 F Fail-Safe Clock Monitor ...................................................... 29 Fail-Safe Condition Clearing....................................... 29 Fail-Safe Detection ..................................................... 29 Fail-Safe Operation..................................................... 29 Reset or Wake-up from Sleep .................................... 29 Firmware Instructions ....................................................... 101 Fuses. See Configuration Bits G General Purpose Register File ............................................. 8 GPIO................................................................................... 31 Additional Pin Functions ............................................. 32 ANSEL Register ................................................. 32 Interrupt-on-Change ........................................... 32 Ultra Low-Power Wake-up............................ 32, 35 Weak Pull-up ...................................................... 32 Associated Registers .................................................. 39 GP0 ............................................................................ 36 GP1 ............................................................................ 37 GP2 ............................................................................ 37 GP3 ............................................................................ 38 GP4 ............................................................................ 38 GP5 ............................................................................ 39 Pin Descriptions and Diagrams .................................. 36 Specifications ........................................................... 127 GPIO Register .................................................................... 31 I ID Locations........................................................................ 99 In-Circuit Debugger........................................................... 100 In-Circuit Serial Programming (ICSP)............................... 100 Indirect Addressing, INDF and FSR Registers ................... 18 Instruction Format............................................................. 101 Instruction Set................................................................... 101 ADDLW..................................................................... 103 ADDWF..................................................................... 103 ANDLW..................................................................... 103 ANDWF..................................................................... 103 BCF .......................................................................... 103 BSF........................................................................... 103 BTFSC ...................................................................... 103 BTFSS ...................................................................... 104 CALL......................................................................... 104 CLRF ........................................................................ 104 CLRW ....................................................................... 104 CLRWDT .................................................................. 104 COMF ....................................................................... 104 DECF ........................................................................ 104 DECFSZ ................................................................... 105 GOTO ....................................................................... 105 INCF ......................................................................... 105 INCFSZ..................................................................... 105 IORLW ...................................................................... 105 IORWF...................................................................... 105 MOVF ....................................................................... 106 MOVLW .................................................................... 106 MOVWF .................................................................... 106 NOP .......................................................................... 106 RETFIE ..................................................................... 107 RETLW ..................................................................... 107 RETURN................................................................... 107 RLF ........................................................................... 108 RRF .......................................................................... 108 SLEEP ...................................................................... 108 (c) 2007 Microchip Technology Inc. PIC12F683 SUBLW ..................................................................... 108 SUBWF ..................................................................... 109 SWAPF ..................................................................... 109 XORLW..................................................................... 109 XORWF..................................................................... 109 INTCON Register ................................................................ 14 Internal Oscillator Block INTOSC Specifications............................................ 126, 127 Internal Sampling Switch (RSS) IMPEDANCE ........................ 67 Internet Address................................................................ 171 Interrupts ............................................................................. 92 ADC ............................................................................ 64 Associated Registers .................................................. 94 Comparator ................................................................. 55 Context Saving............................................................ 95 Data EEPROM Memory Write .................................... 72 GP2/INT ...................................................................... 92 GPIO Interrupt-on-change .......................................... 93 Interrupt-on-Change.................................................... 32 Timer0......................................................................... 93 TMR1 .......................................................................... 46 INTOSC Specifications ............................................. 126, 127 IOC Register ....................................................................... 34 L Load Conditions ................................................................ 124 M MCLR .................................................................................. 86 Internal ........................................................................ 86 Memory Organization Data EEPROM Memory.............................................. 71 Microchip Internet Web Site .............................................. 171 Migrating from other PIC Devices ..................................... 165 MPLAB ASM30 Assembler, Linker, Librarian ................... 112 MPLAB ICD 2 In-Circuit Debugger ................................... 113 MPLAB ICE 2000 High-Performance Universal In-Circuit Emulator .................................................... 113 MPLAB ICE 4000 High-Performance Universal In-Circuit Emulator .................................................... 113 MPLAB Integrated Development Environment Software .. 111 MPLAB PM3 Device Programmer .................................... 113 MPLINK Object Linker/MPLIB Object Librarian ................ 112 O OPCODE Field Descriptions ............................................. 101 OPTION Register .......................................................... 13, 43 OSCCON Register .............................................................. 20 Oscillator Associated registers.............................................. 30, 48 Oscillator Module ................................................................ 19 EC ............................................................................... 19 HFINTOSC.................................................................. 19 HS ............................................................................... 19 INTOSC ...................................................................... 19 INTOSCIO................................................................... 19 LFINTOSC .................................................................. 19 LP................................................................................ 19 RC............................................................................... 19 RCIO ........................................................................... 19 XT ............................................................................... 19 Oscillator Parameters ....................................................... 126 Oscillator Specifications .................................................... 125 Oscillator Start-up Timer (OST) Specifications............................................................ 129 (c) 2007 Microchip Technology Inc. Oscillator Switching Fail-Safe Clock Monitor .............................................. 29 Two-Speed Clock Start-up ......................................... 27 OSCTUNE Register............................................................ 24 P Packaging ......................................................................... 159 Details....................................................................... 160 Marking..................................................................... 159 PCL and PCLATH............................................................... 18 Computed GOTO ....................................................... 18 Stack........................................................................... 18 PCON Register ............................................................. 17, 88 PICSTART Plus Development Programmer..................... 114 PIE1 Register ..................................................................... 15 Pin Diagram .......................................................................... 2 Pinout Descriptions PIC12F683 ................................................................... 6 PIR1 Register ..................................................................... 16 Power-Down Mode (Sleep)................................................. 98 Power-On Reset (POR) ...................................................... 86 Power-up Timer (PWRT) .................................................... 86 Specifications ........................................................... 129 Precision Internal Oscillator Parameters .......................... 127 Prescaler Shared WDT/Timer0................................................... 42 Switching Prescaler Assignment ................................ 42 Program Memory Organization............................................. 7 Map and Stack for the PIC12F683 ............................... 7 Programming, Device Instructions.................................... 101 R Reader Response............................................................. 172 Read-Modify-Write Operations ......................................... 101 Registers ADCON0 (ADC Control 0) .......................................... 65 ADRESH (ADC Result High) with ADFM = 0) ............ 66 ADRESH (ADC Result High) with ADFM = 1) ............ 66 ADRESL (ADC Result Low) with ADFM = 0).............. 66 ADRESL (ADC Result Low) with ADFM = 1).............. 66 ANSEL (Analog Select) .............................................. 33 CCP1CON (CCP1 Control) ........................................ 75 CMCON0 (Comparator Control) Register................... 56 CMCON1 (Comparator Control) Register................... 57 CONFIG (Configuration Word) ................................... 84 EEADR (EEPROM Address) ...................................... 71 EECON1 (EEPROM Control 1) .................................. 72 EECON2 (EEPROM Control 2) .................................. 72 EEDAT (EEPROM Data) ............................................ 71 GPIO........................................................................... 31 INTCON (Interrupt Control) ........................................ 14 IOC (Interrupt-on-Change GPIO) ............................... 34 OPTION_REG (OPTION)..................................... 13, 43 OSCCON (Oscillator Control)..................................... 20 OSCTUNE (Oscillator Tuning).................................... 24 PCON (Power Control Register)................................. 17 PCON (Power Control) ............................................... 88 PIE1 (Peripheral Interrupt Enable 1) .......................... 15 PIR1 (Peripheral Interrupt Register 1) ........................ 16 Reset Values .............................................................. 90 Reset Values (Special Registers)............................... 91 STATUS ..................................................................... 12 T1CON ....................................................................... 47 T2CON ....................................................................... 50 TRISIO (Tri-State GPIO) ............................................ 32 VRCON (Voltage Reference Control) ......................... 58 DS41211D-page 169 PIC12F683 WDTCON (Watchdog Timer Control).......................... 97 WPU (Weak Pull-Up GPIO) ........................................ 34 Resets ................................................................................. 85 Brown-out Reset (BOR) .............................................. 85 MCLR Reset, Normal Operation ................................. 85 MCLR Reset, Sleep .................................................... 85 Power-on Reset (POR) ............................................... 85 WDT Reset, Normal Operation ................................... 85 WDT Reset, Sleep ...................................................... 85 Revision History ................................................................ 165 S Sleep Power-Down Mode ..................................................... 98 Wake-up...................................................................... 98 Wake-up Using Interrupts ........................................... 98 Software Simulator (MPLAB SIM)..................................... 112 Special Event Trigger.......................................................... 64 Special Function Registers ................................................... 8 STATUS Register................................................................ 12 T T1CON Register.................................................................. 47 T2CON Register.................................................................. 50 Thermal Considerations .................................................... 123 Time-out Sequence............................................................. 88 Timer0 ................................................................................. 41 Associated Registers .................................................. 43 External Clock ............................................................. 42 Interrupt................................................................. 13, 43 Operation .............................................................. 41, 44 Specifications ............................................................ 130 T0CKI .......................................................................... 42 Timer1 ................................................................................. 44 Associated registers.................................................... 48 Asynchronous Counter Mode ..................................... 45 Reading and Writing ........................................... 45 Interrupt....................................................................... 46 Modes of Operation .................................................... 44 Operation During Sleep .............................................. 46 Oscillator ..................................................................... 45 Prescaler ..................................................................... 45 Specifications ............................................................ 130 Timer1 Gate Inverting Gate ..................................................... 45 Selecting Source........................................... 45, 57 Synchronizing COUT w/Timer1 .......................... 57 TMR1H Register ......................................................... 44 TMR1L Register .......................................................... 44 Timer2 Associated registers.................................................... 50 Timers Timer1 T1CON................................................................ 47 Timer2 T2CON................................................................ 50 Timing Diagrams A/D Conversion ......................................................... 135 A/D Conversion (Sleep Mode) .................................. 135 Brown-out Reset (BOR) ............................................ 128 Brown-out Reset Situations ........................................ 87 CLKOUT and I/O....................................................... 127 Clock Timing ............................................................. 125 Comparator Output ..................................................... 51 Enhanced Capture/Compare/PWM (ECCP) ............. 131 Fail-Safe Clock Monitor (FSCM) ................................. 30 DS41211D-page 170 INT Pin Interrupt ......................................................... 94 Internal Oscillator Switch Timing ................................ 26 Reset, WDT, OST and Power-up Timer ................... 128 Time-out Sequence on Power-up (Delayed MCLR) ... 89 Time-out Sequence on Power-up (MCLR with VDD) .. 89 Timer0 and Timer1 External Clock ........................... 130 Timer1 Incrementing Edge ......................................... 46 Two Speed Start-up.................................................... 28 Wake-up from Sleep Through Interrupt ...................... 99 Timing Parameter Symbology .......................................... 124 TRISIO Register ................................................................. 32 Two-Speed Clock Start-up Mode........................................ 27 U Ultra Low-Power Wake-up............................................ 32, 35 V Voltage Reference. See Comparator Voltage Reference (CVREF) Voltage References Associated registers ................................................... 59 VREF. SEE ADC Reference Voltage W Wake-up Using Interrupts ................................................... 98 Watchdog Timer (WDT)...................................................... 96 Associated Registers .................................................. 97 Clock Source .............................................................. 96 Modes ......................................................................... 96 Period ......................................................................... 96 Specifications ........................................................... 129 WDTCON Register ............................................................. 97 WPU Register ..................................................................... 34 WWW Address ................................................................. 171 WWW, On-Line Support ....................................................... 3 (c) 2007 Microchip Technology Inc. PIC12F683 THE MICROCHIP WEB SITE CUSTOMER SUPPORT Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: Users of Microchip products can receive assistance through several channels: * Product Support - Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software * General Technical Support - Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing * Business of Microchip - Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives * * * * * Distributor or Representative Local Sales Office Field Application Engineer (FAE) Technical Support Development Systems Information Line Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://support.microchip.com CUSTOMER CHANGE NOTIFICATION SERVICE Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions. (c) 2007 Microchip Technology Inc. DS41211D-page 171 PIC12F683 READER RESPONSE It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document. To: Technical Publications Manager RE: Reader Response Total Pages Sent ________ From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ FAX: (______) _________ - _________ Application (optional): Would you like a reply? Device: PIC12F683 Y N Literature Number: DS41211D Questions: 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs? 3. Do you find the organization of this document easy to follow? If not, why? 4. What additions to the document do you think would enhance the structure and subject? 5. What deletions from the document could be made without affecting the overall usefulness? 6. Is there any incorrect or misleading information (what and where)? 7. How would you improve this document? DS41211D-page 172 (c) 2007 Microchip Technology Inc. PIC12F683 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. X /XX XXX Device Temperature Range Package Pattern Examples: a) b) Device: PIC12F683(1), PIC12F683T(2) VDD range 2.0V to 5.5V Temperature Range: I E = -40C to +85C(Industrial) = -40C to +125C (Extended) Package: P MD MF SN = = = = Pattern: 3-digit Pattern Code for QTP (blank otherwise) PIC12F683-E/P 301 = Extended Temp., PDIP package, 20 MHz, QTP pattern #301 PIC12F683-I/SN = Industrial Temp., SOIC package, 20 MHz Plastic DIP Dual-Flat, No Leads (DFN-S, 4x4x0.9 mm) Dual-Flat, No Leads (DFN-S, 6x5 mm) 8-lead Small Outline (3.90 mm) Note 1: (c) 2007 Microchip Technology Inc. 2: F = Standard Voltage Range LF = Wide Voltage Range T = in tape and reel PLCC, and TQFP packages only. DS41211D-page 173 WORLDWIDE SALES AND SERVICE AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Habour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302 China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256 12/08/06 DS41211D-page 174 (c) 2007 Microchip Technology Inc.