April 2011 DM00026637 Rev 1 1/61
1
AV5205
24-bit, 102dB SNR audio DAC
with supply modulation headphone amplifier
Features
•DAC
102 dB SNR for the whole path
Vrms output noise (-6dB channel gain)
24-bit au dio DAC
Sampling rate: 8 kHz to 192 kHz
Supply
Direct co nne cti on to the battery
(2.3 V to 4.8 V)
Supply Modulation Audio Buffer (SMABTM)
for headphone amplifier efficiency
optimization
I/O supply: 1.62 V to 3.6 V
Power consumption
Stand-by: 5 µW Rev 1Playba ck
consumption: 14 mW (no music), 17 mW
with 50 mVrms signal, 31 mW with
300 mVrms signal
Audio interface
–I
2S input
Stereo single ended or differential analog
input
•Clock
System clock input: 32 kHz, 13 MHz,
19.2 MHz, 26 MHz and 38.4 MHz
Automatic startup sequence
I²C con trol interface
internal PLL generating audio clocks from
32 kHz
Analog output drivers
–SMAB
TM stereo headset amplifier
- ‘True ground’ output amplifier
(no coupling capacitor).
- 2x17 mW on 32Ω or 16Ω
- 84 dB programmable gain
- Plug detection
- T rue “pop and artefact free” thanks to
internal start-up and shut down sequencing
Independent right & left channel control
Stereo differential line out
Description
The AV5205 is a 24-bit high performance DAC for
mobile handset application.
The headphone amplifier is supplied with an
embedded positive/negative DC-DC converter.
SMABTM system scales the voltage of this
positive/negative supply following the signal
amplitude improving widely the amplifier
efficiency.
The Pop noise canceller function consists of one
state machine sequencing automatically the
power-up/down of all blocks, plus an offset
cancellation system attached to the output
ampl ifi er.Thes e two sy stem s all ow to supp ress all
possible sources of audio transient artefact using
a very simple register setting.
Embedded power management allows direct
connection to the battery, reducing overall bill of
material.
No additional quartz is required when the PLL is
driven by the 32 kHz frequency.
VFBGA-49 4x4x0.91mm 0.5mm pitch
www.stericsson.com
Contents AV5205
2/61 DM00026637
Contents
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Audio quality improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 Wake up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.6 “Pop and click” noise cancel lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.6.1 Fade in, fade out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.6.2 Pop Smooth Machine (PSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6.3 Start-up and stop sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7 Audio playback data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.8 Supply modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.9 Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.10 Audio digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.10.1 Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.10.2 Supported operating formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.11 Control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.12 Ana log inputs: LINE IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.13 Analog outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.13.1 Headphone output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.13.2 Line output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.14 DAC p a th . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.15 Gain programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.16 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.17 PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.18 Ana log-only operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
AV5205 Contents
DM000266373/61
4.19 Plug detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1 Platform integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Line i n co nnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1 Register details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1.1 ID registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1.2 Interface configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.1.3 Gain configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.1.4 Interrupt registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.5 Status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7 General electrical requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2 Operat ing condition s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.1.1 Digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.1.2 Analog interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.2 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.3 Audio specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.4 Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.4.1 Power consumption tables for all the paths . . . . . . . . . . . . . . . . . . . . . . 55
8.4.2 Power consumption curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.1 VFBGA49 4 mm x 4 mm x 0.91 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
List of tables AV5205
4/61 DM00026637
List of tables
Table 1. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2. Wake up timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3. Audio interface I²S timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 4. Control interface I²C timings for standard mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 5. Control interface I²C timings for fast mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 6. List of material when master clock is provided to AV5205 . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 7. List of material when master clock is provided by AV5205. . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 8. Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 9. Chip ID (address: 00h-03h read-only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 10. Digital audio interface configuration 1 (address 04h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 11. Digital audio interface configuration 2 (address 05h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 12. Data transfer mode (address 06h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 13. Audio mode (address 07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 14. Line in left configuration (address 08h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 15. Line in right configuration (address 09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 16. Headset left output configuration (address 0Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 17. Headset right output configuration (address 0Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 18. DAC left configuration (address 0Ch). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 19. DAC right configuration (address 0Dh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 20. Line out left configuration (address 0Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 21. Line out right configuration (address 0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 22. Interrupt polarity control (address 10h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 23. Interrupt open drain control (address 11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 24. Interrupt mask control (address 12h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 25. Interrupt status (address 13h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 26. Chip status (address 14h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 27. Reserved (address 15h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 28. Balance configuration (address 16h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 29. Clock configuration register (address 17h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 30. Chip configuration (address 18h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 31. PSM configuration (address 19h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 32. SMAB configuration (address 1Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 33. Reserved (address 1Bh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 34. Fade in (address 1Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 35. Reserved (address 1Dh => FFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 36. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 37. Qualified DC operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 38. Digital interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 39. Analog interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 40. Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 41. DAC to HS specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 42. DAC to Line out specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 43. Line in to HS specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 44. Line in to Line out specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 45. Digital filters specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 46. 32 kHz input clock signal specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 47. CLK_OUT output specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 48. Digital interface Clock frequencies in I²S master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
AV5205 List of tables
DM000266375/61
Table 49. Current consumption with silent audio signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 50. Power consumption with 1 kHz sine wave in 2 x 32 ohm load . . . . . . . . . . . . . . . . . . . . . . 56
Table 51. VFBGA49 4 mm x 4 mm x0.91 mm, pitch 0.5 dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 52. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 53. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
List of fig ure s AV5205
6/61 DM00026637
List of figures
Figure 1. Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2. Pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 3. Wake up sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4. Waveforms with SMAB_THRESHOLD=28h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 5. Audio interfaces: delayed format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 6. Audio interfaces: left justified format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 7. Audio interfaces: right-justified format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 8. Audio interface timing: master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 9. Audio interface timing: slave mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 10. Control interface I²C format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 11. Control interface I²C format timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 12. Platform integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 13. Application schematic: application provides system clock to AV5205 . . . . . . . . . . . . . . . . 27
Figure 14. Application schematic: AV5205 provides system clock to the application . . . . . . . . . . . . . 28
Figure 15. Line in single ended application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 16. Load model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 17. DAC to HS path dynamic range versus 32 kHz input jitter . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 18. DAC to HS power consumption with 1 kHz sine wave, HSLEVEL = 0. . . . . . . . . . . . . . . . 57
Figure 19. DAC to HS power consumption with 1 kHz sine wave, HSLEVEL = 1. . . . . . . . . . . . . . . . 57
Figure 20. VFBGA49 4 mm x 4 mm x 0.91 mm, pitch 0.5 view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
AV5205 Overview
DM00026637 7/61
1 Overview
The AV5205 is designed to fit in most audio systems where high audio performance and
long playback time are needed.
The AV5205 can work with optimal performance with a 32 kHz real time clock only. In
addition, thanks to an integrated PLL, the AV5205 can provide system clock to the
applic ati on all owing to turn off all other clock sou rces .
A sample rate converter then manages sampling rates from 8 kHz up to 192 kHz.
The headphone amplifier supply of the AV5205 is symmetrical, provided by a Switch Mode
Power Supply (SMPS) for the positive side and a charge pump for the negative side. For the
positive side, SMPS gives additional power efficiency improvement compared to a charge
pump. The “Supply Modulation Audio Buffer” (SMABTM) allows to reach a good power
efficiency whatever the audio signal amplitude is, keeping low harmonic distortion and noise
floor.
The AV5205 control registers are accessed with an I²C compatible interface.
Functional block diagram AV5205
8/61 DM00026637
2 Functional block diagram
Figure 1. Functional block diagram
Charge
pump
Digital
I/F
Ste re o
DAC
VBAT
VDIG
VANAVIO CPCL GNDCP
HSL
HSR
LINILN
DA_SYNC
DA_CK
DA_DATA
SCL
SDA
CLK_IN VPLL
VINCP
2 x NC
GNDP
HDET
CPFN CPFP
Digital
Processing
Plug
detection
IRQ_HDET
PLL
Clock
generator
Vref
Sa mpe Rate
Conversion
VANA
GNDA
LINOLP
LINOLN
LINORP
LINORN
CLK_OUT
VREF
LINILP
LINIRN
LINIRP
GNDD CAP1 CAP2
LDO
DIG LDO
Analog SMPS
VFBVINSMPS VLX
VDDHS
GNDS
CID
GNDHS
VSSHS
GNDA
NRST
AV5205 Pin description
DM00026637 9/61
3 Pin description
Figure 2. Pin configuration (top view)
Table 1. Pin description
Pin
number Name Type Description
F7 VBAT P Positive power supply. Operating range 2.3 V to 4.8 V.
G7 VINSMPS P Positive power supply for SMPS. Operating range 2.3 V to 4.8 V
A2 VIO P Positive supply for IO’s and digital. Operating range 1.62 V to 3.6 V
F1 VINCP P Positive supply for charge pump. Connected to VFB and VDDHS.
D1 VPLL P Positive supply for PLL
G6 GNDS P SMPS negative supply. 0 V
F2 GNDCP P Charge pump neg ati ve su ppl y. 0 V
D2 GNDA P Analog negative supply. 0 V
B2 GNDD P Digital negative supply. 0 V
A3 VDIG AO Digital LDO output
IRQ-HDET
VSSHS
CLK_IN
LINORN
CPFP
VINCP
GNDS
GNDA
LINIRP
CAP1
CPCL
CPFN
LINILN LINOLN
HSR
VIO
LINOLP
CLK_OUT
DA_CK
VDDHS
DA_DATA
CID
HSL VINSMPS
LINORP
SDA
DA_SYNC
VFB VLX VBAT
VANA
NC
SCL
HDET
GNDD
VDIGNC
CAP2
A
B
C
D
E
F
G
1 2 3 4 5 6 7
GNDHSGNDPVREF
VPLL
GNDCP
LINIRNLINILP
NRSTNC NC
NC
Pin description AV5205
10/61 DM00026637
E7 VANA AO Analog LDO output
F5 VFB AIO Feedback sensing for SMPS. To be connected to VDDHS
F6 VLX AO SMPS output. To be connected to 4.7µH coil
G5 VDDHS AI SMAB amplifier positive su ppl y. To be connected to VFB
G1 CPCFP AIO Charge pump fly capacitor
G2 CPCFN AIO Charge pump fly capacitor
G3 CPCL AO Charge pump output
F3 VSSHS AI HS amplifier negative supply. To be connected to CPCL
E4 LINILP AI Line left channel positive input
D4 LINILN AI Line left channel negative input
E6 LINIRP AI Line right channel positive input
E5 LINIRN AI Line right channel negative input
C5 LINOLP AO Line left channel positive output
D5 LINOLN AO Line left channel negative output
C6 LINORP AO Line right channel positive output
D6 LINORN AO Line right channel negative output
G4 HSL AO Left output for headphone. Provides negative voltage down to -2 V.
Common mode is 0 V
F4 HSR AO Right output for headphone. Provides negative voltage down to -
2 V. Common mode is 0 V
E3 GNDHS AI Sense ground for headphone drivers. 0 V
A7 HDET AI Plug detection
B4 CLK_OUT DO Master clock output : 19.2 MHz to 78 MHz
B1 CAP1 AIO Capacitor for VCO of the PLL
C1 CAP2 AIO Capacitor for VCO of the PLL
B3 CLK_IN DI Master clock input. 32 kHz to 38.4 MHz.
C7 IRQ_HDET DO Plug detection interrupt request. Programmable open drain
E1 VREF AIO External decoupling for audio reference voltage
E2 GNDP AIO Ground for reference voltage
B7 SCL DI I²C clock
A6 SDA DIO I²C data
B6 DA_DATA DI I²S data
A5 DA_CK DIO I²S serial clock
B5 DA_SYNC DIO I²S frame sync
A4 CID DI I²C chip identification
Table 1. Pin description (continued)
Pin
number Name Type Description
AV5205 Pin description
DM00026637 11/61
C4 NRST DI Asynchronous reset
A1 NC DI For engineering purpose. Must be left unconnected
C2, C3,
D3, D7 NC - Non connected
Table 1. Pin description (continued)
Pin
number Name Type Description
Functional description AV5205
12/61 DM00026637
4 Functional description
4.1 General description
This product is optimized for:
Very high audio quality
Long audio playback time
AV5205 int egr ate s:
•SMAB
TM amplifier for headphone amplifier efficiency optimization
High dynamic range digital to analog converter
17 mW headphone driver
Power man age men t
One LDO for analog power supply
One LDO for the digital power supply
One charge pump for the headphone amplifier negative supply
One SMPS for the headphone amplifier positive supply and for the negative
charge pump supply
One LDO for PLL
•One PLL
4.2 Audio quality improvement
Digital to analog converter performance:
24-bit stereo
102 dB dyn ami c range
The stereo headphone amplifi er has re al re ferenc e to gro und (0 vo lts):
No need for an external serial capacitor
-80 dB to +4 dB programmable gain
4.3 Power management
The AV5205 includes 3 low-dropout linear regulators, a positive-negative switch mode
power supply able to generate the supplies needed for its own operation:
VDIG for digital section at 1.2 V nominal.
VANA for analog section at 2.0 V nominal
VPLL for PLL at 1.8V
HS capless SMABTM amplifier supply:
VNCP for negative supply from -0.8 V to -1.7 V
VSMPS for positive supply from 1.2 V to 2.2 V
Control of SMABTM supply is done by the register.
These regulated voltages are not able to drive any other external load. The AV5205
performance is not guaranteed if these supplies are used for external components.
AV5205 Functional description
DM00026637 13/61
The VIO voltage must be provided from the system.
Warning: Although AV5205 features wide supply ranges for VBAT and
VIO, VBAT must always be higher than VIO in orde r to avoid
leakages and potential destruction of the circuit.
4.4 Clocking
System using AV5205 can be configured following 3 clock configurations:
1. Master clock is provided by the system clock connected to CLK_IN pin. System clock
frequency can be 13 MHz, 19.2 MHz, 26 MHz or 38.4 MHz. The CLK_OUT output
clock must be disabled in
Clock configuration register (address 17h)
register (default
state). 32kHz clock is not needed in that configuration.
2. Master clock is provided to the system by the AV5205 from 32 kHz real time clock
through CLK_OUT pin. Master clock provided to the system can be 19.2 MHz, 26 MHz,
38.4 MHz, 52 MHz, 76.8 MHz or 78 MHz. This mode allows to power down modem
clock which is generally much more consuming than this embedded PLL. The
CLK_OUT output clock frequency must be configured in
Clock configuration register
(address 17h)
registe r.
3. AV5205 uses the 32 kHz real time clock but does not provide master clock to the
system. The CLK_OUT output clock must be disabled in
Clock configuration register
(address 17h)
register (default state). Only 32 kHz real time clock is needed for the
AV5205.
4.5 Wake up
The wake-up mechanism involves battery and IO voltage management. Once VBAT power
is on and VIO voltage valid, the AV5205 can be reset by the NRST pin.
Figure 3
describes the wake-up and stop sequence.
4.6 “Pop and click” noise cancellation
AV5205 includes a set of features ensuring audio artefact removal. These artefacts or
audible effects, commonly named “pop and click” noise, are naturally generated when
amplifiers are powered up, when audio switches configuration is changing or when gain is
changed. All these potential audio artefact sources are managed inside the AV5205 with
“anti-click” and “Pop Smooth Machine (PSM)”.
4.6.1 Fade in, fade out
Fade in and fade out allow to operate a smooth step by step transition on gains when
changing from one value to another. The time to change from one gain step to another must
be set in
Fade in (address 1Ch )
register according the desired audio effect.
Fade in can be bypassed in
Fade in (address 1Ch)
register if not needed.
Functional description AV5205
14/61 DM00026637
Fade out is always active when audio channel is powered down through register.
4.6.2 Pop Smooth Machine (PSM)
AV5205 includes a sequencer (PSM) that reduces drastically software driver complexity. In
addition, it sequences the power up and power down of the different blocks of the audio
channel in order to avoid any audio artefact like “pop noise”.
All actions relative to PSM are included in the register. The PSM is launched automatically
after register writing. The end of the sequence can be checked interrupt on IRQ_HDET
output if the interrupt is unmasked in the
Interrupt mask control (address 12h)
register. The
polarity of this interrupt signal and open-drain control are also programmable by the
Interrupt polarity control (address 10h)
and
Interrupt open drain control (address 11h)
regist er s. T he
PSM_END
bit of the
Interrupt status (address 13h)
register is then set, and is
automatically reset after reading. The IRQ_HDET output is reset after reading the
Interrupt
status (address 13h)
registe r.
ISEL
and
OSEL
bits in register allows to enable respectively the input (DAC or line in) and
the output (headphone or line out driver). Once written, the PSM is launched and the audio
path is set according the inputs/outputs selection.
To set a new
ISEL
,
OSEL
configuration (change input/output or shut-down), it is needed that
PSM cycle has finished.
register must be written after digital interface, data transfer mode, interrupt and master
clock setting for power up (see
Figure 3
).
Figure 3. Wake up sequence
chip configuration PSM configuration interrupt status PSM configuration interrupt status
Registers not acc essible
VBAT
VIO
NRST
I²C
CLK_IN
Audio data transfer
I²S t4
t4
Power man agement
& audio channel PMU+PLL+Audio off PMU+PLL+audio on
IRQ_HDET
Register @19h Register @19h
PSM start PSM end PSM start PSM end
power up power dow n
t3
OTP(2) Read trimming performed
t2(1)
t1
AV5205 Functional description
DM00026637 15/61
4.6.3 Start-up and stop sequences
1. Start-up:
I2C setting + digital interface configuration: @04h, @05h
Clock configuration, audio sample rate: @07h, @17h
Data transfer mode (Data transfer enabled): @06h
Gain configuration (line in, DAC, line out, headphone): @08h -> @0Fh
Interrupt configuration: @10h -> @12h
Headphone load model, Vbat min.: @18h
HS configuration (threshold, enable): @1Ah
Fade-in bypass configuration: @1Ch
ISEL, OSEL configuration (audio path selection): @19h
2. Stop sequence:
ISEL, OSEL configuration (audio path disabled): @19h
Soft reset: @18h
4.7 Audio playback data transf er
A sample rate converter allows fully asynchronous transfer from the modem or audio
processor to the AV5205. 8, 11.025, 12, 16, 22.05, 24, 32, 44.1, 48, 96 and 192 kHz
sampling rates are supported. PLL can be bypassed and shut down to save power
consumption if CLK_IN frequency is 19.2 MHz(a), 26 MHz or 38.4 MHz. PLL must be
powered up if CLK_IN frequency is 13 MHz.
CLK_OUT can be configured to provide master clock to the system: 19.2 MHz, 26 MHz,
38.4 MHz, 52 MHz, 76.8 MHz or 78 MHz are supported.
The
CLK_IN_FREQ
and
SRATE
sections of the
Audio mode (address 07h)
register must be
written to give the AV5205 the information for its internal clock system management. The
jitter and spectral properties of the system master clock have a direct impact on the DAC
performance.
Table 2. Wake up timings
Symbol Parameter Min. Max. Unit
t1 Delay of VIO rising from VBAT valid 500 µs
t2(1) Chip auto-trimming through OTP(2) reading 5 ms
t3 chip configuration using sequence described in
4.6.3
(fade in not
included, I²C frequency 400 kHz) 2ms
t4 PSM delay 10 ms
1. t2 occurs only once when VIO voltage is rising. This sequence is not done for the following power-up if VIO is kept
2. OTP stands for One Time Programmable memory used to trim electrical parameters inside the chip
a. For 192kHz sample rate with CLK_IN=19.2MHz, PLL must be on
Functional description AV5205
16/61 DM00026637
4.8 Supply modulation
AV5205 includes SMABTM. This system performs an envelope detection on the audio signal
and adapts the positive and negative supplies of the headphone amplifier to the minimum
value needed by the amplifier to ensure good audio quality, suppressing un-needed drop-
out losses commonly affecting AB class amplifiers.
The headphone amplifier supply takes two values depending on the envelope detection
level. This detection level can be programmed to find the better compromise between power
efficiency and audio performance for the whole system, including the headphone.
The detection level can be set from 0% to 100% of the DAC signal full dynamic (0dBFS) in
the register. 0% means supply is always at high level, 100% means supply is always at low
level whatever the audio signal is. The SMABTM threshold integrates the channel gain
programming (digital and analog), allowing to adapt headphone supply to the true audio
output signal level (there is no need to change threshold value in the register if gain is
changed).
The threshold level is set with the
SMAB_THRESHOLD[6:0]
bits following the formula:
SMABTM threshold = 2BDEPTH. SMAB_THRESHOLD[6:0]
Default state is SMAB_THRESHOLD[6:0] = ‘100000’ co rresponding to 32% or +/-452mV,
corresponding to 320mVrms output signal when channel gain is 0dB.
For example:
SMAB_THRESHOLD[6:0] is set to ‘101000’ (40 in decimal, 40% of the full scale digital input signal)
BDEPTH[1:0] is set to ‘01’ (24 bits words)
HSGL[1:0] is set to ‘110’ (0dB gain on headset amplifier)
DACGL[5:0] is set to111101 (0dB on DAC gain)
SMABTM threshold = +/-3355443 in decimal (40% of the full scale digital input signal), corresponding
to +/-566mV or 400mVrms output signal (see
Figure 4
).
AV5205 Functional description
DM00026637 17/61
Figure 4. Waveforms with SMAB_THRESHOLD=28h
An attack and decay time is added to the envelope signal to build the supply modulation
signal. This prevents fast switching of the switch mode power supply from one state to
another, avoiding power losses and audible artefacts. An ‘or’ mask is used between positive
and negative envelope of the left and right channel to produce the supply modulation signal
for the stereo path.
Functional description AV5205
18/61 DM00026637
4.9 Control registers
The AV5205 internal control registers are accessed through the I²C interface.
Refer to
Section 6
for register descriptions.
4.10 Audio digital interface
Audio digital interface is I²S like. the interface can have different rates and can work in
different formats and modes. It can operate in Slave or Master mode
The pins used by the interfaces are: DA_SYNC, DA_CK and DA_DA TA word clock, bit clock
and data, respectively.
Data is exchanged with left channel data first in all formats. Channel order (left/right) can be
switched with bit
DACHSW
.
4.10.1 Master mode
When Master mode is selected (bit
DAMAST
set) the DA_SYNC and DA_CK clocks are
generated internally, and are provided to the external pads (DA_CK and DA_SYNC are
outputs). The DA_SYNC frequency is generated by the internal clock system. DA_CK is
equally spaced within the DA_SYNC frame. The number of bit clock in each I2S word is
programmed by the bit
FLENGTH
in regi ster
Digital audio interface configuration 2 (address
05h)
.
It delivers the number of cycles corresponding to the word length programmed in the
Digital
audio interface configuration 1 (address 04h)
register. DA_CK is generated by a fractional
divider which produces cycle-to-cycle jitter below 40 ns.
Table 48
shows the true DA_SYNC and DA_CK frequencies for the different master clock
frequencies in master mode.
4.10.2 Supported operating formats
Delayed format (I²S compatible) (
DAFORM
= 00): the audio interface is I²S compatible
(see
Figure 5
). The number of CK periods within one SYNC period is not relevant, as long
as enough CK periods are used to transfer the data and the maximum frequency limit
specified for bit clock is not exceeded. CK can be either a continuous clock or a sequence of
bursts. Bits
DASYNC
and
DACKP
affect the interface format inverting the polarity of
DA_SYNC and DA_CK pins respectively.
Figure 5. Audio interfaces: delayed format
AV5205 Functional description
DM00026637 19/61
The LSB satisfies the general I²S data property. It is ignored if the programmed word size is
smaller than the word size of the audio processor, and it is ‘0’ padded if the programmed
word size is greater than the word size of audio processor.
Left-aligned format (
DAFORM
= 01): this format is equivalent to delayed format without the
1 bit clock delay at the beginning of each frame (see
Figure 6
). Data is exchanged with MSB
first (
ENDIAN
= 0) or LSB first (
ENDIAN
= 1).
Figure 6. Audio interfaces: left justified format
The left-justified format is not strictly I²S compatible. The MSB (or LSB respectively) is sent
just after the falling edge of the synchronization signal. Bits after the LSB (or MSB
respectively) are ignored.
Right-aligned format (
DAFORM
= 10): this format is equivalent to delayed format, except
that the audio data are right aligned (see
Figure 7
). Data is exchanged with MSB first
(
ENDIAN
= 0) or LSB first (
ENDIAN
= 1).
Figure 7. Audio interfaces: right-justified format
The righ t-j usti fied fo rmat is n ot str ictl y I ²S comp atible . The LSB (o r MSB respec tivel y) is sent
just before the rising edge of the synchronization signal. Bits before the MSB (or LSB
respectively) are ignored.
For left and right justified format, I²S frame length has to be programmed by the
FLENGTH
section of the
Digital audio interface configuration 2 (address 05h)
register. It can be
programmed as 2 x 32 bits, 2 x 24 bits or 2 x 16 bits.
Functional description AV5205
20/61 DM00026637
Timings
Figure 8. Audio interface timing: master mode
Figure 9. Audio interface timing: slave mode
tDSY
tSDDA tHDDA
tHSY tSSY tHCK tLCK
tSDDA tHDDA
tCPK
AV5205 Functional description
DM00026637 21/61
4.11 Control interface
The AV5205 control interface is a standard I²C interface described in the I²C specification of
Philips Semiconductor version 2.1 of January 2000:
A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START (S)
condition.
A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP (P)
condition.
S and P conditions are always generated by the master.
START (S) and repeated START (Sr) conditions are functionally identical. In this
document, S is used for S or Sr conditions.
Data is transmitted MSB first
Acknowledge is a zero data line pull down done by the slave
Not Acknowledge is a high-impedance data line done by the slave
The control interface supports both standard mode (100 kHz) and fast mode (400 kHz).
The device address can be changed with the CID pin connection:
CID tied to ground: chip address is 00111000(38h) for writing, 00111001(39h) for reading
CID tied to VIO: chip address is 00111010(3Ah) for writing, 00111011(3Bh) for reading
Table 3. Audio interface I²S timings
Symbol Parameter Test conditions Min. Typ. Max. Unit
tDSY
Delay of DA_SYNC
edge from DA _CK active
edge Master mode - - 0.8* tPCK ns
tSDDA Setup time DA_DATA to
DA_CK active edge -5--ns
tHDDA Hold time DA_DA TA from
DA_CK active edge -4--ns
tSSY Setup tim e DA _SYNC to
DA_CK active edge Slave mode 0.2* tPCK --ns
tHSY Hold time DA_SYNC
from DA_CK active edge Slave mode 5 - - ns
tPCK Period of DA_CK Slave mode 20 - - ns
tHCK
DA_CK pulse width high
measured from VIH to
VIH - 0.35* tPCK --ns
tLCK
DA_CK pulse width low
measured from VIL to
VIL - 0.35* tPCK --ns
Functional description AV5205
22/61 DM00026637
Figure 10. Control interface I²C format
Figure 11. Control interface I²C format timing
DEVICE ADDRESS REGn ADDRESS
REGn Data In
WRITE
SINGLE BYTE
START
ACK ACK
ACK
STOP
DEVICE ADDRESS REGn ADDRESS REGn Data In
START
ACK ACK ACK
WRITE
MULTI BYTE REGn+m Data In ACK
STOP
m+1 data bytes
ACK
DEVICE ADDRESS REGn ADDRESS
START
ACK ACK
DEVICE ADDRESS REGn Data Out
START
ACK NO ACK
RANDOM ADDR
SINGLE BYTE
READ
DEVICE ADDRESS
REGn ADDRESS
START
ACK ACK
DEVICE ADDRESS
START
Reg n data out ACK NO ACK
STOP
m+1 data bytes
ACK
RANDOM ADDR
MULTI BYTE
READ
ACK
00111000
00111000
00111000
00111001 Reg n+m data out
00111001
00111000
StopStart repeatedStop
tbuf thd_sta
tf
tlow
tr
thigh
thd_dat tsu_dat
Start
SDA
SCL
tsu_sta
thd_sta
tsu_sto
AV5205 Functional description
DM00026637 23/61
Table 4. Control interface I²C timings for standard mode
Symbol Parameter Conditions Min. Typ. Max. Unit
fSCL Clock frequency - - - 100 kHz
tHIGH Clock pulse width high - 600 - - ns
tLOW Clock pulse width low - 1300 - - ns
tRSDA and SCL rise time From 30% to 70% - - 1000 ns
tFSDA and SCL fall time From 30% to 70% - - 300 ns
tHD:STA Start condition hold time - 4000 - - ns
tSU:STA Start condition setu p time - 4000 - - ns
tHD:DAT Data input hold time - 5 - - ns
tSU:DAT Data input se tup tim e - 4000 - - ns
tSU:STO S t op condition se tup time - 600 - - ns
tBUF Bus free time - 4700 - - ns
Table 5. Control interface I²C timings for fast mode
Symbol Parameter Conditions Min. Typ. Max. Unit
fSCL Clock frequency - - - 400 kHz
tHIGH Clock pulse width high - 600 - - ns
tLOW Clock pulse width low - 1300 - ns
tRSDA and SCL rise time From 30% to 70% 20+0.1* Cb(1) - 1000 ns
tFSDA and SCL fall time From 30% to 70% 20+0.1*Cb - 300 ns
tHD:STA Start condition hold time - 600 - - ns
tSU:STA Start condition setup time - 600 - - ns
tHD:DAT Data input hold time - 5 - - ns
tSU:DAT Data input setup time - 250 - - ns
tSU:STO Stop conditio n setup ti me - 600 - - ns
tBUF Bus free time - 1300 - - ns
1. Cb = total capacitance of one bus line in pF.
Functional description AV5205
24/61 DM00026637
4.12 Analog inputs: LINE IN
The AV5205 has a stereo line single-ended or differential input amplifier. If single-ended
inputs are used, the complementary input must be grounded through a 100 nF capacitor
(
Figure 15
). The input gain is in the range -42 dB up to 20 dB. The Line-In amplifier gains
are controll ed by the
Line in left configuration (address 08h)
and registers. If balance is
enabled in
Balance configuration (address 16h)
, left channel gain setting is duplicated on
right channel.
4.13 Analog outputs
4.13.1 Headphone output
The AV5205 provides a stereo single ended output referred to real ground (0 V) supplied
from the negative side by a negative charge pump.
This headphone driver is intended to feed a headphone with 16 Ω load minimum
impedance. To ensure amplifier stability with any headphone, a serial resistor plus a parallel
capacitor must be placed before the load (see
Table
for components value). The output
gain is regulated in the -18 to +2 dB range. Additional gain range is provided by the digital
gain from -62 to 2 dB which provides a -80 to +4 dB overall gain range.
The stereo headphone amplifier gains are controlled by the
Headset left output
configuration (a ddress 0Ah)
and registers. If balance is enabled in
Balanc e con fig ur ati on
(address 16h)
, left channel gain setting is duplicated on right channel.
4.13.2 Line output
A stereo differential output is able to drive an external loudspeaker amplifier with a
programmable gain from -30 dB to 0 dB by 3 dB steps. The line-output amplifier gains are
controlled by the
Line out left configuration (address 0Eh)
and
Line out right configuration
(address 0Fh)
registers. If balance is enabled in
Balance co nfi gurati on (a ddres s 16h)
, left
channel gain setting is duplicated on right channel.
4.14 DAC path
The DAC path converts digital data from the audio interface to analog domain and feeds it to
the headphone and line-out amplifier.
The DAC path includes a digital gain control in the range of -62 to 2 dB. The DAC gain is
controlled by the
DAC left configuration (address 0Ch)
and registers. If balance is enabled
in
Balance configuration (address 16h)
, left channel gain setting is duplicated on right
channel.
When A V5205 uses the 32 kHz real time clock, the jitter could impact the audio performance
(dynamic range and SNR). Refer to
Figure 17
.
AV5205 Functional description
DM00026637 25/61
4.15 Gain programming
There are two programing modes for gain, depending on the configuration of the
Balance
configurati on (address 16h)
register.
In the default state, the left register drives both left and right paths in terms of gain.
When the balance bit is set for one block, left and right channel programming are
independent in terms of gain.
Swapping from one mode to another does not change the left or right path. Only a register
update changes the state effectively.
4.16 Mixing
It is possible to mix analog line input with the DAC path. Channel mixing is controlled by the
ISEL
and
OSEL
bits in registers. If both DAC and LINE IN are enabled, they are mixed
together.
4.17 PLL
A low jitter PLL is used to generate internal clock and/or external clock for the platform. PLL
is activated automatically by PSM once
ISEL
and
OSEL
bits in registers are set (see
Section 4.6: “Pop and click” noise cancellation
).
The PLL is activated only if it is required by the channel configuration. For instance, if Line in
to Line out path is selected, the PLL is powered down.
4.18 Analog-only operation
When pure analog path is selected (Line in to Line out or Line in to HS) the PLL is powered
down automatically after
ISEL
and
OSEL
bits in register.
4.19 Plug detection
The AV5205 can detect the plug-in or plug-out of a headphone connector through a switch
that grounds the HDET input when the plug is inserted.
A pull-up resistor to VIO must be placed on the HDET line (see
Figure 13
and
Figure 14
for
application schematics). If plug detection is not used, HDET pin must be grounded and
interrupt masked in
Interrupt status (address 13h)
.
When the HDET input is low (below 0.9 V), an interrupt signal is sent at the IRQ_HDET
output if the interrupt is unmasked in the
Interrupt mask control (address 12h)
register. The
polarity of this interrupt signal and open-drain control are also programmable by the
Interrupt polarity control (address 10h)
and
Interrupt open drain control (address 11h)
registers. The
HDET
bit of the
Interrupt status (address 13h)
register is then set, and is
automatically reset after reading. The IRQ_DET output is reset after reading.
In the same way, an unplug generates an interrupt on the IRQ_DET pin provided the
interrupt has been reset by a previous read. The
HEADSET
bit of
Chip status (address 14h)
registers gives the information if headset is connected or not.
Application information AV5205
26/61 DM00026637
5 Application information
5.1 Platform integration
The AV5205 device has enhanced audio quality and playback duration. An example of easy
integration is shown in
Figure 12
.
Figure 12. Platform integration
AV5205 Application information
DM00026637 27/61
5.2 Application schematic
Figure 13. Application schematic: application provides system clock to AV5205
Note: Capacitors connected to CPCF1, CPCF2, CPCL and VINSMPS pins must be routed as
close as possible from the chip.
VBAT
VDIG
VANAVIO CPCLGNDCP
HSL
HSR
DA_SYNC
DA_CK
DA_DATA
SCL
SDA
CLK_IN VPLL
VINCP
2 x NCGNDP
HDET
CPFN CPFP
IRQ_HDET
LINOLP
LINOLN
LINORP
LINORN
CLK_OUT
VREF
GNDD CAP1 CAP2
VFBVINSMPS VLX
VDDHS
GNDS
CID
GNDHS
VSSHS
GNDA
VIO
C2
1µF
C1
1µF
C3
1µF
Battery
C4
1µF
C5
2.2µF C6
4.7µF C7
4.7µF
Battery
L1
4.7µH C8
10µF
Loudspeaker
amplifiers
R1
12
P
l
u
g
i
n
s
e
r
t
i
o
n
jack connector
C9
3.3nF
C10
3.3nF
System clock
I²C bus
I²S bus
C16
Stereo
Analog
C11
100nF
C15
C14
C13 R2
12
100nF
NRST
From host
processor
VIO
R3
1M
Charge
pump
Digital
I/F
Stereo
DAC
Digital
Processing
Plug
detection
PLL
Clock
generator
Vref
VANA
GNDA
LDO
DIG LDO
Analog SMPS
Sam pe R a te
Conversion
Table 6. List of material when master clock is provided to AV5205
Name Min Nominal Max Unit Code order Provider
C8 4.1 10 µF (CC0603) C1608X5R0J106M TDK
C6, C7 1.3 4.7 µF (CC0603) C1608X5R0J475M TDK
C5 0.9(1) 2.2 2.7 µF (CC0603) C1608X5R0J225K TDK
C1, C2, C3,
C4 0.4 1 2.7 µF (CC0402) C1005X5R0J105K TDK
C11,C13,
C14, C15,
C16 100 nF (CC0402) C1005X5R0J104K TDK
C9, C10 3.3nF (CC0201) C0603X5R1E332K TDK
R1,R2 12 - - Ω--
Application information AV5205
28/61 DM00026637
Figure 14. Application schematic: AV5205 provides system clock to the application
Note: Capacitors connected to CPCF1, CPCF2, CPCL and VINSMPS pins must be routed as
close as possible from the chip.
R3 1 ΜΩ --
L1 3.3 4.7 6.1 µH MIPSZ2012D4R7 FDK
1. Including DC bias drift, temperature and aging
Table 6. List of material when master clock is provided to AV5205 (continued)
Name Min Nominal Max Unit Code order Provider
VBAT
VDIG
VANAVIO CPCLGNDCP
HSL
HSR
DA_SYNC
DA_CK
DA_DATA
SCL
SDA
CLK_IN VPLL
VINCP
2 x NCGNDP
HDET
CPFN CPFP
IRQ_HDET
LINOLP
LINOLN
LINORP
LINORN
CLK_OUT
VREF
GNDD CAP1 CAP2
VFBVINSMPS VLX
VDDHS
GNDS
CID
GNDHS
VSSHS
GNDA
VIO
C2
1µF
C1
1µF
C3
1µF
Battery
C4
1µF
C5
2.2µF C6
4.7µF C7
4.7µF
Battery
L1
4.7µH C8
10µF
Loudspeaker
amplifiers
R1
12
P
l
u
g
i
n
s
e
r
t
i
o
n
jack connector
C9
3.3nF
C10
3.3nF
RT C 32 kHz
C12
1µF
System clock
I²C bus
I²S bus
C16
Stereo
Analog
C11
100nF
C15
C14
C13 R2
12
100nF
NRST
Fromhost
processor
VIO
R3
1M
C17 100nF
Charge
pump
Digital
I/F
Stereo
DAC
Digital
Processing
Plug
detection
PLL
Clock
generator
Vref
VANA
GNDA
LDO
DIG LDO
Analog SMPS
Sa mpe R ate
Conversion
Table 7. List of material when master c lock is provided by AV5205
Name Min Nominal Max Unit Code order Provider
C8 4.1 10 µF (CC0603) C1608X5R0J106M TDK
C6, C7 1.3 4.7 µF (CC0603) C1608X5R0J475M TDK
C5 0.9(1) 2.2 2.7 µF (CC0603) C1608X5R0J225K TDK
AV5205 Application information
DM00026637 29/61
5.3 Line in connection
Line in amplifier can be used in single ended. In that configuration, unused inputs must be
grounded through 100nF capacitors.
Figure 15. Line in single ended application schematic
C1, C2, C3,
C4, C12 0.4 1 2.7 µF (CC0402) C1005X5R0J105K TDK
C11, C13,
C14, C15,
C16, C17 100 nF (CC0402) C1005X5R0J104K TDK
C9, C10 3.3nF (CC0201) C0603X5R1E332K TDK
R1,R2 12 - - Ω--
R3 1 ΜΩ --
L1 3.3 4.7 6.1 µH MIPSZ2012D4R7 FDK
1. Including DC bias drift, temperature and aging
Table 7. List of material when master clock is provided by AV5205 (continued)
Name Min Nominal Max Unit Code order Provider
LINLN
LINLP
LINRP
LINRN
100nF
100nF
100nF
100nF
Register map AV5205
30/61 DM00026637
6 Register map
Table 8. Register map
Register set Field name Size (bits) Register
address (8 bits) Access Reference
Chip ID
Vendor ID Low 8 00h Rd
Table 9
Vendor ID High 8 01h Rd
Product ID Low 8 02h Rd
Product ID High 8 03h Rd
Digital audio interface
configu r ati on 1 - 8 04h Rd/Wr
Table 10
Digital audio interface
configu r ati on 2 - 8 05h Rd/Wr
Table 11
Data transfer mode - 8 06h Rd/Wr
Table 12
Audio mode - 8 07h Rd/Wr
Table 13
Line in left configuration - 8 08h Rd/Wr
Table 14
Line in right configuration - 8 09h Rd/Wr
Table
Headset output left
configuration - 8 0Ah Rd/Wr
Table 16
Headset output right
configuration - 8 0Bh Rd/Wr
Table 17
DAC left configuration - 8 0Ch Rd/Wr
Table 18
DAC right configuration - 8 0Dh Rd/Wr
Table 19
Line out left configuration - 8 0Eh Rd/Wr
Table 20
Line out right configuration - 8 0Fh Rd/Wr
Table 21
Interrupt polarity control - 8 10h Rd/Wr
Table 22
Interrupt open drain control - 8 11h Rd/Wr
Table 23
Interrupt mask control - 8 12h Rd/Wr
Table 24
Interrupt status - 8 13h Rd/Clear
Table 25
Chip status - 8 14h Rd
Table 26
Reserved - 8 15h -
Balance configuration - 8 16h Rd/Wr
Table 28
Clock configuration register - 8 17h Rd/Wr
Table 29
Chip configuration - 8 18h Rd/Wr
Table 30
PSM configuration - 8 19h Rd/Wr
Table 31
SMAB configuration - 8 1Ah Rd/Wr
Table 32
Reserved - 8 1Bh -
AV5205 Register map
DM00026637 31/61
6.1 Register details
6.1.1 ID registers
Fade in - 8 1Ch Rd/Wr
Table 34
Reserved - 8 1Dh -> FFh -
Table 8. Register map (continued)
Register set Field name Size (bits) Register
address (8 bits) Access Reference
Table 9. Chip ID (address: 00h-03h read-only)
Field name Bits Access Reset Description
Vendor ID Low 7:0 rd 83h Lower byte of Vendor ID
Vendor ID High 7:0 rd 04h Upper byte of Vendor ID
Product ID Low 7:0 rd 01h Lower byte of Product ID
Product ID High 7:0 rd 11h Upper byte of Product ID
Register map AV5205
32/61 DM00026637
6.1.2 Interface configuration registers
Table 10. Digit al audio interface configuration 1 (address 04h)
Field name Bits Access Default Descripti on
UNUSED 0 - 0 Reserved
DAMAST 6rd/wr 0
Slave/master mode selection:
0: Slave
1: Master
DASYNC 5rd/wr 0
DA_SYNC polarity inverting:
0: Falling edge of DA_SYNC starts a frame
1: Rising edge of DA_SYNC starts a frame
DACKP 4rd/wr 0
DA_CK polarity inverting:
0: DA_SYNC and D A_CK falling ed ges a re s yn chr ono us
1: DA_SYNC falling and DA_CK rising edges are
synchronous
DACHSW 3rd/wr 0
precedence of left and right channel relative to
DA_SYNC active edge:
0: Left first
1: Right first
DAFORM 2:1 rd/wr 00
I²S format selection
00: Delaye d
01: Lef t align ed
10: Right align ed
11: Delayed
ENDIAN 0rd/wr 0
Endian selec tion:
0: MSB first
1: LSB first
Table 11. Digital audio interface configuratio n 2 (address 05h)
Field name Bits Access Default Descripti on
UNUSED 7:6 - 00 Reserved for future use
I2CVR 5rd/wr 0
I2C typical voltage range
0: 1.8V +/-10%
1: 3.3V +/-10%
FMFEN 4rd/wr 1
I2C High speed filter enable
0: disable
1: enable (50ns spike suppression)
AV5205 Register map
DM00026637 33/61
BDEPTH 3:2 rd/wr 01
Bit length in I²S format selection for each channel
00: 32 bits
01: 24 bits
10: 16 bits
11: 16 bits
FLENGTH 1:0 rd/wr 01
Data len gth selec tion
00: 2x32 bits
01: 2x24 bits
10: 2x16 bits
11: 2x16 bits
Table 11. Digital audio interface configuration 2 (address 05h) (continued)
Field name Bits Access Default Descripti on
Table 12. Data transfer mode (address 06h)
Field name Bits Access Default Descripti on
UNUSED 7 - 1 Reserved for future use
SUSPEND_N 6rd/wr 0
Data tran sfe r enabl e:
0: Data transfer disabled
1: Data transfer enabled
UNUSED 5:0 - 001000 Reserved for future use
Register map AV5205
34/61 DM00026637
Table 13. Audio mode (address 07h)
Field name Bits Access Default Descripti on
SRATE 7:4 rd/wr 1001
Input sample rate:
0000: 8 kHz
0001: 11.025 kHz
0010: 12 kHz
..
0100: 16 kHz
0101: 22.05 kHz
0110: 24 kHz
..
1000: 32 kHz
1001: 44.1 kHz
1010: 48 kHz
..
1110: 96 kHz
1111: 192 kHz
..
Other: 44.1 kHz
CLK_IN_FREQ 3:1 rd/wr 000
Master clock frequency input:
000: disabled
001 to 011: 32 kHz
100: 13 MHz
101: 19.2 MHz
110: 26 MHz
111: 38.4 MHz
PLL_BYPASS 0rd/wr 0
PLL bypass:
0: PLL is used
1: PLL is bypassed and off
6.1.3 Gain configuration registers
Table 14. Line in left configuration (address 08h)
Field name Bit s Access Default Descr iptio n
LINGL 7:3 rd/wr 10101
Line In left Gain selection
00000: -42 dB
00001: -40 dB
..s tep 2 dB
10101: 0 dB
..
11111: +20 dB
UNUSED 2:0 rd/wr 010 Reserved for future use
AV5205 Register map
DM00026637 35/61
Table 15. Line in right configuration (address 09h)
Field name Bits Access De fault Description
LINGR 7:3 rd/wr 10101
Line In right gain selection
00000: -42 dB
00001: -40 dB
..step 2 dB
10101: 0 dB
..
11111: +20 dB
UNUSED 2:0 rd/wr 010 Reserved for future use
Table 16. Headset left output configuration (address 0Ah)
Field name Bits Access De fault Description
HSGL 7:4 rd/wr 1011
Headset right gain selection
0000 to 0101: -18 dB
0110: -16dB
..step 2 dB
1011: -6dB
..
1111: +2 dB
UNUSED 3:0 rd/wr 0010 Reserved for future use
Table 17. Headset right output configuration (address 0Bh)
Field name Bits Access De fault Description
HSGR 7:4 rd/wr 1011
Headset left gain selection
0000 to 0101: -18 dB
0110: -16dB
..step 2 dB
1011: -6dB
..
1111: +2 dB
UNUSED 3:0 rd/wr 0010 Reserved for future use
Register map AV5205
36/61 DM00026637
Table 18. DAC left configuration (a ddress 0Ch)
Field name Bits Access Default Description
DACGL 7:2 rd/wr 111101
DAC left gain selection
000000: -62 dB
000001: -60.5 dB
000010: -59 dB
..step 1 dB
110111: -6dB
..
111101: 0 dB
..
111111: +2 dB
UNUSED 1:0 rd/wr 10 Reserved for futu re use
Table 19. DAC right configuration (address 0Dh)
Field name Bits Access De fault Description
DACGR 7:2 rd/wr 111101
DAC right Gain selection
000000: -62 dB
000001: -60.5 dB
000010: -59 dB
..step 1 dB
110111: -6dB
..
111101: 0 dB
..
111111: +2 dB
UNUSED 1:0 rd/wr 10 Reserved for future use
Table 20. Line out left configuration (address 0Eh)
Field name Bit s Access Default Descr iptio n
LOUGL 7:4 rd/wr 1010
Line Out left Gain selection
0000: -30 dB
0001: -27 dB
.. step 3 dB
1000: -6 dB
..
1010 to 1111: 0 dB
UNUSED 3:0 rd/wr 0010 Reserved for future use
AV5205 Register map
DM00026637 37/61
6.1.4 Interrupt registers
Table 21. Line out right configuration (address 0Fh)
Field name Bits Access De fault Description
LOUGR 7:4 rd/wr 1010
Line Out right Gain selection
0000: -30 dB
0001: -27 dB
..step 3 dB
1000: -6 dB
..
1010 to 1111: 0 dB
UNUSED 3:0 rd/wr 0010 Reserved for future use
Table 22. Interrupt polarity control (address 10h)
Field name Bits Access De fault Description
HDETPOL 7rd/wr 0
IRQ-HDET interrupt output polarity selection:
0: active low
1: active high
UNUSED 6:0 rd/wr 000000 Reserved for future use
Table 23. Interrupt open drain control (address 11h)
Field name Bits Access De fault Description
HDETOD 7rd/wr 0
IRQ_HDET pad open drain control:
0: open drain (active low)
1: CMOS (polarity defined in Interrupt polarity control
register)
UNUSED 6:0 rd/wr 000000 Reserved for future use
Table 24. Interrupt mask control (address 12h)
Field name Bits Access De fault Description
HDETENABLE 7rd/wr 1
Head pho ne plu g interrupt mask set:
0: interrupt is masked (but memorized)
1: interrupt is enabled (physical line is IRQ_HDET)
UNUSED 6 rd/wr 0 R eserved for future use
PSMENABLE 5rd/wr 0
Pop Smooth Machine interrupt mask set:
0: interrupt is masked (but memorized)
1: interrupt is enabled (physical line is IRQ_HDET)
UNUSED 4:0 rd/wr 00000 Reserved for future use
Register map AV5205
38/61 DM00026637
)
Table 25. Interrupt status (address 13h)
Field name Bits Access De fault Description
HDET 7 rd / clear 0 Headphone plug insertion is detected when “1”
This bit is cleared after reading and it resets the
IRQ_HDET interrupt line.
UNUSED 6 rd/wr 0 R eserved for future use
PSM_END 5 rd / clear 0 Pop Smooth Machine has finished when “1”
This bit is cleared after reading and it resets the
IRQ_HDET interrupt line.
UNUSED 4:0 rd 0 0000 Reserved for future use
6.1.5 Status registers
Table 26. Chip status (address 14h)
Field name Bits Access Default Description
UNUSED 7:5 - 000 Reserved for engineering.
HEADSET 4rd -
Headset connection:
0: Headset not connected
1: Headset connected
UNUSED 3:0 rd 0000 Reserved for future use
Table 27. Reserved (address 15h)
Field name Bits Access De fault Description
UNUSED 7:0 - - R eserved for engineering
Table 28. Balance configuration (address 16h)
Field name Bits Access De fault Description
DACB 7rd/wr 0
DAC balance enable:
0: left channel gain setting is duplicated on right channel
1: both channels gain setting are independent
HSB 6rd/wr 0
HS balance enable:
0: left channel gain setting is duplicated on right channel
1: both channels gain setting are independent
LINB 5rd/wr 0
Line in balance enable:
0: left channel gain setting is duplicated on right channel
1: both channels gain setting are independent
LOUB 4rd/wr 0
Line out balance enable:
0: left channel gain setting is duplicated on right channel
1: both channels gain setting are independent
UNUSED 3:0 rd/wr 0000 Reserved for future use
AV5205 Register map
DM00026637 39/61
Table 29. Clock configuration register (address 17h)
Field name Bits Access De fault Description
UNUSED 7:5 rd/wr 000 Reserved for future use
CLK_OUT_FREQ 4:2 rd/wr 000
Master clock output frequency:
000: 19.2 MHz
001: 38.4 MHz
010: 76.8 MHz
011: 19.2 MHz
100: 26 MHz
101: 52 MHz
110: 78 MHz
111: 26 MHz
CLK_OUT_ENA 1rd/wr 0
Master clock generation enable
0: CLK_OUT is disabled
1: CLK_OUT is enabled, frequency is selected by
CLK_OUT_FREQ[4:2]
UNUSED 0 rd/wr 0 R eserved for future use
Table 30. Chip configuration (address 18h)
Field name Bits Access De fault Description
RESERVED 7:6 - 10 Reserved for future use
HS_LEVEL(1) 5rd/wr 0
SMAB high level SMPS output voltage control:
0: 2.2V, allows 1Vrms output on HS with minimum
battery voltage 2.5V
1: 1.8V, allows 0.8Vrms output on HS with minimum
battery voltage 2.3V
DRESET_N 4rd/wr 1
Digital reset:
0: digital section is in reset
1: digital section is active
SOFT_RESET(2) 3rd/wr 0
Registers reset: all registers recover their default value.
0: normal behavior
1: all register s recover their defaul t valu e
UNUSED 2:0 rd/wr 000 Reserved for future use
1. HS_LEVEL has an impact on power consumption, see
Table 50
2. When “1” is written, all registers recover their default value, including this register. A new read on this bit will show “0”. It is
not possible to read “1” on this bit
Register map AV5205
40/61 DM00026637
Note: Device Inputs (ISEL) and Outputs (OSEL) must be configured at the same time in this
register, to generate only one interrupt when PSM has finished
Table 31. PSM configuration (address 19h)
Field name Bits Access De fault Description
UNUSED 7:4 rd/wr 0000 Reserved for future use
ISEL(1) 3:2 rd/wr 00
Input selection:
00: no input select ed
01: Digit al input sel ec ted
10: Line input selected
11: Both digital and line inputs selected
OSEL(2) 1:0 rd/wr 00
Output selection:
00: no output selec ted
01: Head pho ne out put selected
10: Line output selected
11: Both headphone and line outputs selected
1. Writing this register will generate an interrupt when PSM has finished
2. Writing this register will generate an interrupt when PSM has finished
Table 32. SMAB configuration (address 1Ah)
Field name Bits Access De fault Description
SMAB_ENABLE 7rd/wr 0
SMAB enable:
0: disabled
1: enabled
SMAB_THRESHOLD 6:0 rd/wr 0100000
Signal level detection for SMAB supply threshold:
0000000: supply switch from low to high when digital
input is higher than 2BDEPTH x0%, means supply is
always at high level
0000001: supply switch from low to high when digital
input is higher than 2BDEPTH x 1%
..step 1%
0100000: supply switch from low to high when digital
input is higher than 2BDEPTH x 32%
..
0110010: supply switch from low to high when digital
input is higher than 2BDEPTH x 50%
..
1100100 to 1111111: supply switch from low to high
when digital input is higher than 2BDEPTH x 100%,
means supply is always at low level
Table 33. Reserved (address 1Bh)
Field name Bits Access De fault Description
UNUSED 7:0 - - Reserved for future use
AV5205 Register map
DM00026637 41/61
Table 34. Fade in (address 1Ch)
Field name Bits Access De fault Description
FADE_BYPASS 7rd/wr 0
Anti-click activation(1):
0: active
1: not active
FADE_DELAY 6:4 rd/wr 011
Delay between each gain change(2):
000: 46µs for DAC, 30µs for line in and line out
001: 92µs for DAC, 61µs for line in and line out
010: 184µs for DAC, 122µs for line in and line out
011: 369µ s for DAC, 244µs for line in and line out
100: 738µs for DAC, 488µs for line in and line out
101: 1.48ms for DAC, 977µs for line in and line out
110: 2.95ms for DAC, 1.95ms for line in and line out
111: 5.9ms for DAC, 3.91ms for line in and line out
UNUSED 3:0 rd/wr 0000 Reserved for future use
1. Fade out cannot be bypassed when audio path is powered down through PSM register
2. Delay for both fade in and fade out. Timing given for DAC can vary from +/-15% depending on clock input frequency.
Minimum delay must be programmed if fade out is not needed
Table 35. Reserved (address 1Dh => FFh)
Field name Bits Access De fault Description
UNUSED 7:0 - - R eserved for engineering
General electrical requirements AV5205
42/61 DM00026637
7 General electrical requirements
7.1 Absolute maximum ratings
Caution: “Absolute Maximum Ratings” may cause permanent damage to the device. These are
stress ratings only, and functional operation of the device at these or any other conditions
beyond those indicated in the operational sections of the specifications is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability.
7.2 Operating conditions
Table 36. Absolute maximum ratings
Symbol Parameter Min. Typ. Max. Unit
VBAT to GND -0.5 - 6 V
VIO to GND -0.5 - 6 V
Storage temperature range -40 - 125 °C
ESD HBM (human body model)
S tandard: JESD22-A114 -1 - +1 kV
ESD CDM (charged device model)
Sta nda rd: JESD 2 2-C10 1 -500 - +500 V
Table 37. Qualified DC operating conditions
Symbol Parameter Min. Typ. Max. Unit
Operating temperature range -30 - 85 °C
VBAT Positive supply 2.3 - 4.8 V
VIO IO voltag e 1.62 - 3.6 V
AV5205 Electrical characteristics
DM00026637 43/61
8 Electrical characteristics
Unless otherwise specified, VBAT = 3.6 V, VIO = 1.8 V, TAMB = 25 °C; signal frequency =
1kHz, channel gain = 0dB, sample rate = 44.1kHz; all signals are referenced to GND,
32 kHz clock jitter < 300 ppm. All signals measured at the chip pin level with RSHS=12 Ω
and CPHS=3 .3 nF (see
Table 16
). SMABTM on
8.1 Interface
8.1.1 Digital interface
Table 38. Digital interface
Symbol Parameter Conditions Min. Typ. Max. Unit
VIL Input low volt ag e - -0.3 - 0.35 x VIO V
VIH Input high voltage - 0.65 x VIO - VIO + 0.3 V
IIL Low level input current - -1.0 - 1.0 µA
IIh High level input current - -1.0 - 1.0 µA
VOL Output low voltage Output sink current 4 mA - - 0.3 V
VOH Output hig h voltage Outp ut source current
4mA VIO - 0.3 - - V
COD Capacitive load on
output pads --50-pF
CIN Input capacitance - - - 10 pF
VOD Open drain output low
voltage Output sink current 4 mA 0 - 0.3 V
I2CPU Pull-up resistance on I2C
bus 10pF < Cbus < 100pF 2300 2700 Ω
100pF < Cbus < 400pF 600 800 Ω
TrIRQ IRQ rise time Capacitive load = CL2+0.3 x CL3+0.4 x CLns
Electrical characteristics AV5205
44/61 DM00026637
8.1.2 Analog interface
Figure 16. Load model
Table 39. Analog interface
Symbol Parameter Conditions Min. Typ. Max. Unit
RILIN Line in input resistance differential 20(1) -250
(2) kΩ
RLHS HS drivers load
resistance HS to GND single ended 16 32 - Ω
CLHS+CPAR
+CPHS HS drivers total load
capacitance RSHS=12 Ω, RLHS=16 Ω2.5 5 nF
RSHS=12 Ω, RLHS=10 kΩ2.5 100 nF
RLLIN Line out drivers load
resistance In differential, CSLIN=1 μF 10 - - kΩ
CLLIN Line out drivers load
capacitance - - - 200 pF
HDRES
External res istance
from plug to ground for
plug detection ---10Ω
HDDEB
Headset plug- in
detection debounce
time -30-ms
1. Line in gain dependant
2. Line in gain dependant
AV5205 Electrical characteristics
DM00026637 45/61
8.2 Power management
The AV5205 is self powered from battery thanks to 2 low drop-out voltage regulators and
one negative charge pump. These power management sources cannot be used to supply
external devices.
Table 40. Power management
Parameter Conditions Min. Typ. Max. Unit
LDO’s VDIG, VANA and VPLL
supply range 2.3 - 4.8 V
LDO VANA output voltag e 1.94 2 2 .06 V
LDO VDIG output voltage 1.16 1.2 1.24 V
LDO VPLL output voltage 1.74 1.8 1.85 V
SMPS supply range 2.3 - 4.8 V
SMPS output voltage external components
describ ed in
Table
1.14 - 2.31 V
SMPS output current external components
describ ed in
Table
--160mA
SMPS power efficiency 5mVrms audio signal
external components
describ ed in
Table
-82-%
SMPS frequency
HS drivers enabled,
current from 0 to 160mA
external components
describ ed in
Table
25 1760 kHz
Negative Charge pump supply
range 1.14 - 2.31 V
Negative Charge pump output
voltage external components
describ ed in
Table
-2.3 - -0.8 V
Charge pump frequency
HS drivers enabled,
current from 0 to 120mA
external components
describ ed in
Table
45 800 880 kHz
Electrical characteristics AV5205
46/61 DM00026637
8.3 Audio specifications
Table 41. DAC to HS specifications
Symbol Parameter Conditions Min. Typ. Max. Unit
HSLVL DAC to HS output
reference
Analog sinus oi d output
voltage obtained at HS
driver output with a full-
scale digital input word
and all gains in the path
set to 0 dB without load
With or without load ,
HS_LEVEL=0 -0
1
2.82 -dBVrms
Vrms
Vpp
With or without load ,
HS_LEVEL=1 --1.94
0.8
2.26 -dBVrms
Vrms
Vpp
Digital gain range - -62 - +2 dB
Digital gain step - - 1(1) dB
Analog gain range - -18 - +2 dB
Analog gain step - - 2 dB
Total channel gain error Any gain -0.6 +0.6 dB
Analog gain mismatch L to R -0.2 - +0.2 dB
DR Dyna mic range(2)
RLHS=32 Ω, RS HS=12 Ω, CPHS=3.3 nF, Aweighted,, 0 dBFS input signal
HS_LEVEL=0 gain 0 dB 98 102 - dB
HS_LEVEL=1 gain -2 dB 97 100 - dB
THD+N THD plus noise
RLHS=32 Ω, RSHS=12 Ω, CPHS= 3.3 nF, Aweighte d, gain 0 dB, input s ignal
at -10dBFS
HS_LEVEL=0 75 78 - dB
HS_LEVEL=1 75 78 - dB
SNR Signal to noise ratio(3)
RLHS=32 Ω, RS HS=12 Ω, CPHS=3.3 nF, Aweighted, gain -2 dB, 0 dBFS
input si gnal
HS_LEVEL=0 99 102 - dB
HS_LEVEL=1 97 100 - dB
EN Integrated noise in
[20 Hz, 20 kHz] band
RLHS=32 Ω, RS HS=12 Ω, CPHS=3.3 nF, Aweighted
HS gain = +2dB - 8.9 12.6 µVrms
HS gain = 0dB - 7.9 11.2 µVrms
HS gain = -6dB - 5.7 8.1 µVrms
HS gain = -12dB - 4.5 6.3 µVrms
HS gain = -18dB - 3.7 5.3 µVrms
AV5205 Electrical characteristics
DM00026637 47/61
HSTHD Total harmonic distortion
RLHS=32 Ω, RS HS=12 Ω, CPHS=3.3 nF, 1 kHz, 0dB gain, HS_LEVEL=0
HS out = -2dBVrms 0.013 %
HS out = -6dBVrms 0.013 %
HS out = -20dBVrms 0.013 %
RLHS=32 Ω, RS HS=12 Ω, CPHS=3.3 nF, 1 kHz, 0dB gain, HS_LEVEL=1
HS out = -4dBVrms 0.013 %
HS out = -20dBVrms 0.013 %
Common mode voltage - - 0 - V
Offs et Gain 0dB -0.8 - +0.8 mV
Crosstalk between left
and right channel Without load - -86 -80 dB
PSRHS Power supply rejection
0.5 Vpp signal @3.6 V on VBAT
1kHz
5kHz
20 kHz -100
90
80 -dB
0.2 Vpp signal @2.4 V on VBAT
1kHz
5kHz
20 kHz
95
85
75 --dB
1. 2 first steps are 1.5dB: -62dB to -60.5dB and -60.5dB to -59dB
2. THD + noise in [20 Hz; 20 kHz] band, measured at -60 dBFS adding 60 dB, Aweighted, SMAB_LEV EL=0
3. Ratio between HSLVL and integrated noise floor Aweighted adding 60 dB, SMAB _LEV EL=0
Table 41. DAC to HS specifications
Symbol Parameter Conditions Min. Typ. Max. Unit
Table 42. DAC to Line out specification
Symbol Parameter Conditions Min. Typ. Max. Unit
LOUTdifLVL
DAC to line out
diffe rential output
reference
Analog sinus oi d output
voltage obtained at line
out driver output in
differential m ode with a
full scale digital input
word an all gains in the
path set to 0 dB
-0
1
2.82 -dBVrms
Vrms
Vpp dif f
LOUTseLVL DAC to line out single
ended output reference
Analog sinus oi d output
voltage obtained at line
out driver output in
single ended mode with
a full scale digital input
word an all gains in the
path set to 0 dB
--6
0.5
1.41 -dBVrms
Vrms
Vpp
Digital gain range - -62 - +2 dB
Digital ga in step - - 1 - dB
Electrical characteristics AV5205
48/61 DM00026637
Analog gain range - -30 - 0 dB
Analog gain step - - 3 - dB
Total channel gain error Any gain -0.6 +0.6 dB
Analog gain mismatch L to R -0.2 - +0.2 dB
DR Dynamic range(1)
RLLIN=10 kΩ, gain 0 dB
Differential mode 99 101 - dB
Single ended mo de TBD T BD - dB
SNR Signal to noise ratio(2)
RLLIN=10 kΩ, gain 0 dB
Differential mode 99 101 - dB
Single ended mode 8 9 92 - dB
EN Integrated noise in
[20 Hz, 20 kHz] band
RLLIN=10 kΩ, gain 0 dB
Differential mode - 9 11.2 µVrms
Single ended mode - 12.8 17.8 µVrms
LINTHD Total harmonic distortion
Differential mode, 1 kHz, RLLIN=10 kΩ 0dB gain
Line Out = -2dBVrms - 0.01 %
Line Out = -6dBVrms - TBD %
Line Out = -20dBVrms - TBD %
Single ended mode, 1 kHz, RLLIN=5 kΩ 0dB gain
Line Out = -8dBVrms - 0.01 %
Line Out = -20dBVrms - TBD %
Comm on mo de vol t ag e - 0.95 - V
Crosstalk between left
and right channel RLLIN=10 KΩ--85-70dB
PSRLO Power supply rejection
1 kHz, 0.5 V pp signal @3.6 V on VBAT
Differential mode - 90 - dB
Single ended mode - 80 - dB
1 kHz, 0.2 V pp signal @2.4 V on VBAT
Differential mode 85 - - dB
Single ended mode 7 5 - - dB
1. THD + noise in [20 Hz ; 20 kHz] band, measured at -60 dBFS adding 60 dB , Aweighted
2. Ratio between LINLVL and integrated noise floor Aweighted adding 60 dB
Table 42. DAC to Line out specification (continued)
Symbol Parameter Conditions Min. Typ. Max. Unit
AV5205 Electrical characteristics
DM00026637 49/61
Table 43. Line in to HS specification
Symbol Parameter Conditions Min. Typ. Max. Unit
LINdifLVL Line in differential to HS
output reference
Analog sinusoid output
voltage obtained at HS
driver output with 1 Vrms
at line in input in
differential mode and all
gains in the path set to
0dB
-0
1
2.82 -dBVrms
Vrms
Vpp
LINseLVL Line in single ended to
HS output refe renc e
Analog sinusoid output
voltage obtained at HS
driver output with
0.5 V rms at line in input in
single ended mode and
all gai ns in the path set to
0dB
--6
0.5
1.41 -dBVrms
Vrms
Vpp
Line in gain range - -42 - +20 dB
Line in gain step - 1.8 2 2.2 dB
Left / right gain matching - -0.2 - 0.2 dB
HS driver gai n range - -18 - +2 dB
HS driver gai n step - - 2 - dB
Total channel gain error Any gain -0.6 +0.6 dB
Input level Differential mode 1 Vrms
Single ended mode 0.5 Vrms
DR Dynamic range(1)
Differential mode, Line in gain 0 dB, RL HS=32 Ω, RSHS=12 Ω,
CPHS=3.3 nF
HS_LEVEL=0 95 98 - dB
HS_LEVEL=1 93 96 - dB
Single end ed, Line in gain +6 dB, RLHS=32 Ω, RSHS=12 Ω, CPHS=3.3 nF
HS_LEVEL=0 88 90 - dB
HS_LEVEL=1 86 88 - dB
SNR Signal to noise ratio(2)
Differential mode, Line in gain 0 dB, RL HS=32 Ω, RSHS=12 Ω,
CPHS=3.3 nF
HS_LEVEL=0 95 98 - dB
HS_LEVEL=1 93 96 - dB
Single end ed, Line in gain +6 dB, RLHS=32 Ω, RSHS=12 Ω, CPHS=3.3 nF
HS_LEVEL=0 90 93 - dB
HS_LEVEL=1 88 91 - dB
Electrical characteristics AV5205
50/61 DM00026637
EN Integrated noise in
[20 Hz, 20 kHz] ba nd
Differential mode, Line in gain 0 dB, RL HS=32 Ω, RSHS=12 Ω,
CPHS=3.3 nF
HS gain +2 dB - 16 23 µVrms
HS ga in 0 dB - 12 17 µVrms
HS ga in -6 dB - 9 13 µVrms
HS gain -12 dB - 7 10 µVrms
HS gain -18 dB - 7 10 µVrms
Single ended mode, Line in gain +6 dB, RLHS=32 Ω, RSHS=12 Ω,
CPHS=3.3 nF
HS gain +2 dB - 29 41 µVrms
HS ga in 0 dB - 22 31 µVrms
HS gain -6 dB - 17 23 µVrms
HS ga in -12 dB - 13 18 µVrms
HS ga in -18 dB - 13 18 µVrms
HSTHD Total harmonic distortion
Differential mode, Line in gain 0 dB, HS gain 0 dB, RLHS=32 Ω,
RSHS=12 Ω, CPHS=3.3 nF
HS_LEVEL = 0
HS out = -2dBVrms - 0.013 - %
HS ou t = -6 dBVrms - TB D - %
HS ou t = -2 0dBVrms - TBD - %
Differential mode, Line in gain 0 dB, HS gain 0 dB, RLHS=32 Ω,
RSHS=12 Ω, CPHS=3.3 nF
HS_LEVEL = 1
HS out = -4dBVrms - 0.013 - %
HS ou t = -2 0dBVrms - TBD - %
Single ended mode, Line in gain +6 dB, HS gain 0 dB, RLHS=32 Ω,
RSHS=12 Ω, CPHS=3.3 nF
HS_LEVEL = 0
HS out = -2dBVrms - 0.03 - %
HS ou t = -6 dBVrms - TB D - %
HS ou t = -2 0dBVrms - TBD - %
Single ended mode, Line in gain +6 dB, HS gain 0 dB, RLHS=32 Ω,
RSHS=12 Ω, CPHS=3.3 nF
HS_LEVEL = 1
HS out = -4dBVrms - 0.03 - %
HS ou t = -2 0dBVrms - TBD - %
Common mode voltage - - 0 - V
Offset Gain 0dB -0.8 - +0.8 mV
Table 43. Line in to HS specification (continued)
Symbol Parameter Conditions Min. Typ. Max. Unit
AV5205 Electrical characteristics
DM00026637 51/61
Cross t al k betw e en left
and right channel Without load - -86 -80 dB
PSRHS Power supply rejection
0.5 Vpp signal @3.6 V on VBAT
1kHz
5kHz
20 kHz -90
80
70 -dB
0.2 Vpp signal @2.4 V on VBAT
1kHz
5kHz
20 kHz
85
75
65 --dB
1. THD + noise in [20 Hz ; 20 kHz] band, measured at 2.8mVpp differential at line in adding 60 dB, Aweighted,
SMAB_LEVEL=0
2. Ratio between HSLVL and integrated noise floor Aweighted adding 60 dB, SMAB _LEV EL=0
Table 43. Line in to HS specification (continued)
Symbol Parameter Conditions Min. Typ. Max. Unit
Table 44. Line in to Line out specification
Symbol Parameter Conditions Min. Typ. Max. Unit
LINOUTdifL
VL
Line in differential to line
out differential ou tput
reference
Analog sinus oi d output
voltage obtained at line
out driver output in
differential mode with
1Vrms at line in input in
differential mode and
all gains in the path set
to 0 dB
-0
1
2.82 -dBVrms
Vrms
Vppdiff
LINOUTseL
VL
Line in single ended to
line out single ended
output reference
Analog sinus oi d output
voltage obtained at line
out driver output in
single ended mode with
1Vrms at line in input in
single ended mod e and
all gains in the path set
to 0 dB
--12
0.25
0.71 -dBVrms
Vrms
Vpp
Line in gain range - -42 - +20 dB
Line in gain step - - 2 - dB
Line out gain range - -29 - +1 dB
Line out gain step - - 3 - dB
Total gain error any gain -0.6 - +0.6 dB
Left / right gain matching - -0.2 - 0.2 dB
Input level Differential mode - 1 - Vrms
Single ended mo de - 0.5 - Vrm s
Electrical characteristics AV5205
52/61 DM00026637
LINML Output level
RLLIN=10 kΩ, Line out differential, Line out gain 0 dB
Lin in Differential mode
Line in gain 0 dB -1-Vrms
Line in Single ended
mode,
Line in gain + 6 dB -1-Vrms
DR Dynamic range(1) RLLIN=10 kΩ, gain 0 dB
dif ferential mo de on Line
in and Line out 92 95 - dB
SNR Signal to noise ratio(2) RLLIN=10 kΩ, gain 0 d B
dif ferential mo de on Line
in and Line out 92 95 - dB
EN Integrated noise in
[20 Hz, 20 kHz] band
output load =10 kΩ,
Awei ghted, gain 0 dB
dif ferential mo de on Line
in and Line out
-1825µVrms
LINTHD Total harmonic distortion
1kHz, LIN
LVL=1Vrms,
RLLIN=10 kΩ, gain 0 dB
dif ferential mo de on Line
in and Line out
-0.05-%
Comm on mo de vol t ag e - - 0.95 - V
Crosstalk RLLIN=10 kΩ
LINLVL=2.9 dBVrms,
gain 0 dB --90-70dB
PSRLO Power supply rejection 1 kHz, 0.5 Vpp signa l
@3.6 V on VBAT 90 100 - dB
1. THD + noise in [20 Hz ; 20 kHz] band, measured at 2.8 mVpp differential at line in adding 60 dB, Aweighted
2. Ratio between LINML and integrated noise floor Aweighted
Table 44. Line in to Line out specification (continued)
Symbol Parameter Conditions Min. Typ. Max. Unit
Table 45. Digital filters specific atio ns
Symbol Parameter Conditions Min. Typ. Max. Unit
Pass band - - 0.45 x Fs - -
Stop band - - 0.54 x Fs - -
Pass band ripple - -0.5 - 0 dB
Out of band attenuation - 95 - - dB
Attenuation at 0.5 x Fs - 15 - - dB
Latency From I²S to HS output - 690 - µs
AV5205 Electrical characteristics
DM00026637 53/61
Figure 17. DAC to HS path dynamic range versus 32 kHz input jitter
Table 46. 32 kHz input clock signal specifications
Symbol Parameter Conditions Min. Typ. Max. Unit
Duty cycle - 40 - 60 %
Input frequency
tolerance @ 25 °C -30 - +30 ppm
Input fre quency v ariation
temperature inclu ded From -30 °C to 85 °C 32758.2
(-300 ppm) 32768 32777.8
(+300 ppm) Hz
Input jitter without SNR
downgrading Short term jitter
from 2 up to 2000 cycles - - 1000 ppm
Table 47. CLK_OUT output specification
Symbol Parameter Conditions Min. Typ. Max. Unit
Load capacitance PCB paras itic
capacitance on
CLK_OUT pin 20 pF
Duty cycle - 45 55 %
Output frequency
CLK_OUT_FREQ[2:0] =
000
001
010
100
101
110
19.2
38.4
76.8
25.999
51.997
77.996
MHz
Output frequency
va riation temperature
included From -30 °C to 85 °C related to 32 kHz variation Hz
Electrical characteristics AV5205
54/61 DM00026637
Output jitter in [10 kHz:3 MHz] band 30 ps
Pow er co nsumption
PLL consumption with
CLK_OUT_ENA = 0 0.5 mA
PLL consumption with
20 pF loa d on pad:
CLK_OUT_FREQ[2:0] =
x00
x01
x10
x11
1.4
2.3
2.9
4.1
mA
Table 47. CLK_OUT output specification (continued)
Symbol Parameter Conditions Min. Typ. Max. Unit
Table 48. Digital interface Clock frequencies in I²S master mode
CLK_IN
frequency PLL CLK_OUT
frequency
(MHz)
DA_SYNC frequency
(kHz)
deviation from exac t
sample rate
(ppm)
32 kHz ON
19.2 8.000, 16.000, 32000
11.034; 22. 069 , 44.13 8
12.030, 24.060, 48.120
96.241, 192.481
0
+3136
+2500
+2505
38.4
76.8
25.999 8.005, 16.010, 32.020
11.016, 22. 033 , 44.06 6
12.036, 24.073, 48.146
96.291, 192.583
+625
+1500
+3042
+3036
51.997
77.996
13 MH z or
26 MHz ON N.A.
8.005, 16.010, 32.020
11.017, 22. 034 , 44.06 8
12.037, 24.074, 48.148,
96.296, 192.593
+625
+1545
+3083
+3089
19.2 MHz or
38.4 MHz ON N.A.
8.005, 16.011, 32.021
11.018, 22. 035 , 44.07 0
12.038, 24.075, 48.151,
96.301, 192.603
+656
+1591
+3146
+3141
26 MHz OFF N.A.
8.000, 16.000, 32.000
11.009, 22. 018 , 44.03 4,
12.000, 24.000, 48.000,
96.000, 192.000
+0
+773
+0
+0
19.2 MHz(1) or
38.4 MHz
1. If CLK_IN = 19.2 MHz PLL must be on to support 192kHz sampling rate
OFF N.A.
8.005, 16.010, 32.020
11.017, 22. 034 , 44.06 8
12.037, 24.074, 48.148,
96.296, 192.593
+625
+1545
+3083
+3089
AV5205 Electrical characteristics
DM00026637 55/61
8.4 Power consumption
8.4.1 Power consumption tables for all the paths
Characteristics are specified at VBAT = 3.6 V, VIO = 1.8V, TAMB = 25°C, CLK_OUT_ENA=0,
RLHS=32 Ω, RSHS=12 Ω, CPHS=3.3 nF
Table 49. Current consumption with silent audio signal
Parameter Conditions VBAT VIO Unit
Stand-by current Default state 500 200 nA
Power consumption DAC to HS
CLK_IN = 26 MHz, PLL off
44.1 kHz or 48 kHz sample rate
HS_LEVEL= 0(1) SMAB 50% 2 .9 1.5
mA
SMAB off 3.7 1.5
HS_LEVEL = 1(2) SMAB 50% 2.9 1.5
SMAB off 3.5 1.5
Power consumption DAC to HS
CLK_IN frequency = 32 kHz, PLL on,
CLK_OUT off
44.1 kHz or 48 kHz sample rate
HS_LEVEL= 0 SMAB 50% 3.4 1.5
SMAB off 4.2 1.5
HS_LEVEL = 1 SMAB 50% 3.4 1.5
SMAB off 4 1.5
Power consumption DAC to Line out,
CLK_IN = 26 MHz, PLL off
44.1 kHz or 48 kHz sample rate - 2.8 1. 7
Power consumption DAC to Line out
CLK_IN frequency = 32 kHz, PLL on,
CLK_OUT off 3.4 1.7
Power consumption in analog mode, Line
in to HS, CLK_IN = 26 MHz, PLL off HS_LEVEL= 0 3.2 0.08
HS_LEVEL = 1 3 0.08
Power consumption in analog mode, Line
in to HS, CLK_IN = 32 kHz, PLL on HS_LEVEL= 0 4.7 0.001
HS_LEVEL = 1 4.5 0.001
Power consumption in analog mode, Line
in to Line out -2.40.001
1. Maximum headphone output level = 1 Vrms
2. Maximum headphone output level = 0.8 Vrms
Electrical characteristics AV5205
56/61 DM00026637
Table 50. Power consumption with 1 kHz sine wave in 2 x 32 ohm load
Parameter Output
signal level Conditions Power on
VBAT Power on
VIO Unit
Power consumption DAC to HS
CLK_IN = 26 MHz, PLL off
44.1 kHz or 48 kHz sample rate
5mVrms
HS_LEVEL = 0(1) SMAB 50% 10.4
3.8
mW
SMAB off 13.1
HS_LEVEL = 1(2) SMAB 50% 10.4
SMAB off 12.2
50mVrms
HS_LEVEL = 0 SMAB 50% 12.6
3.9
SMAB off 16.9
HS_LEVEL = 1 SMAB 50% 12.6
SMAB off 15.5
100mVrms
HS_LEVEL = 0 SMAB 50% 17.7
4.0
SMAB off 24
HS_LEVEL = 1 SMAB 50% 17.7
SMAB off 21.8
300mVrms
HS_LEVEL = 0 SMAB 50% 27.1
4.1
SMAB off 41.5
HS_LEVEL = 1 SMAB 50% 27.1
SMAB off 36.2
Power consumption DAC to HS
CLK_IN frequency = 32 kHz,
PLL on, CLK_OUT off
44.1 kHz or 48 kHz sample rate
5mVrms
HS_LEVEL = 0 SMAB 50% 12.4
3.8
SMAB off 15
HS_LEVEL = 1 SMAB 50% 12.4
SMAB off 14.2
50mVrms
HS_LEVEL = 0 SMAB 50% 14.6
3.9
SMAB off 18.8
HS_LEVEL = 1 SMAB 50% 14.6
SMAB off 17.5
100mVrms
HS_LEVEL = 0 SMAB 50% 17.5
4.0
SMAB off 23.8
HS_LEVEL = 1 SMAB 50% 17.5
SMAB off 21.6
300mVrms
HS_LEVEL = 0 SMAB 50% 29.2
4.1
SMAB off 43.6
HS_LEVEL = 1 SMAB 50% 29.2
SMAB off 38.6
1. Maximum headphone output level = 1 Vrms
2. Maximum headphone output level = 0.8Vrms
AV5205 Electrical characteristics
DM00026637 57/61
8.4.2 Power consumption curves
Curves are specified at VBAT = 3.6 V, VIO = 1.8V, TAMB = 25°C, CLK_OUT_ENA=0, DAC to HS,
CLK_IN = 26 MHz, PLL off, 44.1 kHz or 48 kHz sample rate, RLHS=32 Ω, RSHS=12 Ω, CPHS=3.3 nF
Figure 18. DAC to HS power consumption with 1 kHz sine wave, HSLEVEL = 0
Figure 19. DAC to HS power consumption with 1 kHz sine wave, HSLEVEL = 1
Package mechanical data AV5205
58/61 DM00026637
9 Package mechanical data
9.1 VFBGA49 4 mm x 4 mm x 0.91 mm
Table 51. VFBGA49 4 mm x 4 mm x0.91 mm, pitch 0.5 dimensions
Reference DATABOOK DRAWING Notes
Min. Typ. Max. Min. Typ. Max.
A1.000.91
(1)
1. - VFBGA stands for Very thin Profile Fine Pitch Ball Grid Array.
- Thin Profile: The total profile height (Dim A) is measured from the seating plane to the top of the
component.
- Thin profile: 0.80 < A < 1.00mm, Fine pitch: e < 1.00mm pitch
- The maximum total package height is calculated by the following methodology: A1 Typ+A2 Typ+ A4 Typ
+ (A1² + A2² + A4² tolerance values)1/2
A1 0.15 0.16 0.21 0.26
A2 0.20 0.16 0.20 0.24
A4 0.435 0.42 0.435 0.45
b 0.25 0.30 0.35 0.25 0.30 0.35 (2)
2. The typical ball diameter before mounting is 0.30mm
D 3.85 4.00 4.15 3.92 4.00 4.08
D1 3.00 3.00
E 3.85 4.00 4.15 3.92 4.00 4.08
E1 3.00 3.00
e0.50 0.50
F0.50 0.50
ddd 0.08 0.08
eee 0.15 0.15 (3)
3. The tolerance of position that controls the location of the pattern of balls with respect to datums A and B.
For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true
position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball
must lie within this tolerance zone.
fff 0.05 0.05 (4)
4. The tolerance of position that controls the location of the balls within the matrix with respect to each other.
For each ball there is a cylindrical tolerance zone perpendicular to datum C and located on true position
as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each
tolerance zone in the array is contained entirely in the respective zone eee above. The axis of each ball
must lie simultaneously in both tolerance zones.
AV5205 Package mechanical data
DM00026637 59/61
Figure 20. VFBGA49 4 mm x 4 mm x 0.91 mm, pitch 0.5 view
Ordering information AV5205
60/61 DM00026637
10 Ordering information
11 Revision history
Table 52. Order codes
Part number Package Packing
AV5205C)4 VFBGA49 4 mm x 4 mm x 0.91mm, pitch 0.5 mm Tray
AV5205C)4T VFBGA49 4 mm x 4 mm x 0.91mm, pitch 0.5 m m Tape and reel
Table 53. Document revision history
Date Revision Changes
13-Apr-2011 1 Initial release.
AV5205
DM0002663761/61
Please Read Carefully:
The contents of this document are subject to change without prior notice. ST-Ericsson makes no representation or warranty of any nature
whatsoev er (nei ther ex press ed nor implie d) with r espect to the mat ters addre ssed in thi s document , in cluding but not limit ed to warr anties of
merchantab ilit y or fi tness for a pa rticu lar purpo se, in terpre tabilit y or in terope rabi lity o r, again st in fringeme nt of third p arty i ntellec tual prop ert y
rights, and in no event shall ST-Ericsson be liable to any party for any direct, indirect, incidental and or consequential damages and or loss
whatsoev er (including but not limit ed to monetary losse s or loss of data) , that might ari se from the use of this docum ent or the informa tion in it.
ST-Erics son and the ST-Eric sson logo are t rademarks of the ST -Ericsson group of companies or used under a license from
STMicroelec tronics NV or Telef onaktiebola get LM Ericsson.
All other names are the proper ty of their res pective owners.
© ST-Ericsson, 2011 - All rights reserved
Contact information at www.stericsson.com under Contacts
www.stericsson.com