Freescale Semiconductor Data Sheet Document Number: MSC8157E Rev. 2, 12/2013 MSC8157E Six-Core Digital Signal Processor with Security * Six StarCore SC3850 DSP subsystems, each with an SC3850 DSP core, 32 Kbyte L1 instruction cache, 32 Kbyte L1 data cache, unified 512 Kbyte L2 cache configurable as M2 memory in 64 Kbyte increments, memory management unit (MMU), extended programmable interrupt controller (EPIC), two general-purpose 32-bit timers, debug and profiling support, low-power Wait, Stop, and power-down processing modes, and ECC/EDC support. * Chip-level arbitration and switching system (CLASS) that provides full fabric non-blocking arbitration between the cores and other initiators and the M2 memory, shared M3 memory, DDR SRAM controller, device configuration control and status registers, MAPLE-B, and other targets. * 3072 Kbyte 128-bit wide M3 memory, 2048 Kbytes of which can be turned off to save power. * 96 Kbyte boot ROM. * Three input clocks (one global and two differential). * Six PLLs (three global, two Serial RapidIO, one DDR PLLs). * Second generation Multi-Accelerator Platform Engine for Baseband (MAPLE-B2) with a second generation programmable system interface (PSIF2); Turbo encoding and decoding; Viterbi decoding; FFT/iFFT and DFT/iDFT processing; downlink chip rate processing; CRC processing and insertion; equalization processing and matrix inversion; uplink batch and fast processing. Some MAPLE-B2 processors can be disabled when not required to reduce overall power consumption. * Security Engine (SEC) optimized to process all the algorithms associated with IPSec, IKE, SSL/TLS, 3GPP, and LTE using 4 crypto-channels with multi-command descriptor chains, integrated controller for assignment of the eight execution units (PKEU, DEU, AESU, AFEU, MDEU, KEU, SNOW, and the random number generator (RNG), and XOR engine to accelerate parity checking for RAID storage applications. * One DDR controllers with up to a 667 MHz clock (1333 MHz data rate), 64/32 bit data bus, supporting up to a total 2 Gbyte in up to four banks (two per controller) and support for DDR3. * DMA controller with 32 unidirectional channels supporting 16 memory-to-memory channels with up to 1024 buffer descriptors per channel, and programmable priority, buffer, and multiplexing configuration. It is optimized for DDR SDRAM. (c) 2011-2013 Freescale Semiconductor, Inc. FC-PBGA-783 29 mm x 29 mm * High-speed serial interface with a 10-lane SerDes PHY that supports two Serial RapidIO interfaces, one PCI Express interface, six CPRI lanes, and two SGMII interfaces (multiplexed). The Serial RapidIO interfaces support x1/x2/x4 operation up to 5 Gbaud with an enhanced messaging unit (eMSG) and two DMA units. The PCI Express controller supports 32- and 64-bit addressing, x1/x2/x4 link. The six CPRI controllers can support six lanes up to 6.144 Gbaud. * QUICC Engine technology subsystem with dual RISC processors, 48 Kbyte multi-master RAM, 48 Kbyte instruction RAM, supporting two communication controllers for two Gigabit Ethernet interfaces (RGMII or SGMII), to offload scheduling tasks from the DSP cores, and an SPI. * I/O Interrupt Concentrator consolidates all chip maskable interrupt and non-maskable interrupt sources and routes then to INT_OUT/CP_TX_INT, NMI_OUT/CP_RX_INT, and the cores. * UART that permits full-duplex operation with a bit rate of up to 6.25 Mbps. * Two general-purpose 32-bit timers for RTOS support per SC3850 core, four timer modules with four 16-bit fully programmable timers, two timer modules with four 32-bit fully programmable timers; and eight software watchdog timers (SWT). * Eight programmable hardware semaphores. * Up to 32 virtual interrupts and a virtual NMI asserted by simple write access. * I2C interface. * Up to 32 GPIO ports, sixteen of which can be configured as external interrupts. * Boot interface options include Ethernet, Serial RapidIO interface, I2C, and SPI. * Supports IEEE Std. 1149.6 JTAG interface * Low power CMOS design, with low-power standby and power-down modes, and optimized power-management circuitry. * 45 nm SOI CMOS technology. Table of Contents 1 2 3 4 5 6 Pin Assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.1 FC-PBGA Ball Layout Diagram . . . . . . . . . . . . . . . . . . . .3 1.2 Signal Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 2.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 2.2 Recommended Operating Conditions . . . . . . . . . . . . . .40 2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .41 2.4 CLKIN/MCLKIN Requirements . . . . . . . . . . . . . . . . . . .41 2.5 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .41 2.6 AC Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . .54 Hardware Design Considerations . . . . . . . . . . . . . . . . . . . . . .73 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Product Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 List of Figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. MSC8157E Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 2 MSC8157E FC-PBGA Package, Top View . . . . . . . . . . . 3 Differential Voltage Definitions for Transmitter/Receiver 43 Receiver of SerDes Reference Clocks . . . . . . . . . . . . . 44 SerDes Transmitter and Receiver Reference Circuits. . 45 Differential Reference Clock Input DC Requirements (External DC-Coupled) . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 7. Differential Reference Clock Input DC Requirements (External AC-Coupled) . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 8. Single-Ended Reference Clock Input DC Requirements 47 Figure 9. DDR3 SDRAM Interface Input Timing Diagram . . . . . . 55 Figure 10.MCK to MDQS Timing . . . . . . . . . . . . . . . . . . . . . . . . . 56 Figure 11.DDR SDRAM Output Timing . . . . . . . . . . . . . . . . . . . . . 57 Figure 12.DDR3 Controller Bus AC Test Load. . . . . . . . . . . . . . . . 57 Figure 13.DDR3 SDRAM Differential Timing Specifications . . . . . 57 Figure 14.Differential Measurement Points for Rise and Fall Time 59 Figure 15.Single-Ended Measurement Points for Rise and Fall Time Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 16.Test Measurement Load . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 17.Single Frequency Sinusoidal Jitter Limits for Data Rates for 3.125 Gbps and Below . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure 18.Single Frequency Sinusoidal Jitter Limits for Data Rate 5.0 Gbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure 19.SGMII AC Test/Measurement Load . . . . . . . . . . . . . . . . 66 Figure 20.Single Frequency Sinusoidal Jitter Limits for Baud Rate <3.125 Gbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Figure 21.Single Frequency Sinusoidal Jitter Limits for Baud Rate 3.125 Gbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Figure 22.Timer AC Test Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Figure 23.MII Management Interface Timing . . . . . . . . . . . . . . . . . 68 Figure 24.RGMII AC Timing and Multiplexing . . . . . . . . . . . . . . . . 69 Figure 25.SPI AC Test Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Figure 26.SPI AC Timing in Slave Mode (External Clock) . . . . . . . 70 Figure 27.SPI AC Timing in Master Mode (Internal Clock) . . . . . . 71 Figure 28.Test Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . 72 Figure 29.Boundary Scan (JTAG) Timing . . . . . . . . . . . . . . . . . . . 72 Figure 30.Test Access Port Timing . . . . . . . . . . . . . . . . . . . . . . . . 73 Figure 31.TRST Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Figure 32.MSC8157E Mechanical Information, 783-ball FC-PBGA Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 DDR Interface 64/32-bit 1333 MHz data rate JTAG IEEE 1149.6 I/O-Interrupt Concentrator M3 Memory 3072 Kbyte DDR Controller UART Clocks Timers CLASS Reset Semaphores Two SGMII High-Speed Serial Interface CPRI data WR MAPLE-B2 SEC QUICC EngineTM Subsystem 32 Kbyte 32 Kbyte L1 L1 ICache DCache 512 Kbyte DMA 32 ch CLASS1 SC3850 DSP Core Virtual Interrupts Boot ROM I2 C Other Modules L2 Cache / M2 Memory Six DSP Cores at 1 GHz Two RGMII SPI Note: The arrow direction indicates master or slave. Two Serial RapidIO x1/x2/x4 up to 5 Gbaud Six lanes CPRI v4.1 up to 6.144 Gbaud PCI-Express x1/x2/x4 up to 5 Gbaud Two SGMII Figure 1. MSC8157E Block Diagram MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 2 Freescale Semiconductor Pin Assignment 1 Pin Assignment This section includes a MSC8157E package ball grid array layout and table listing the signal allocation by ball location. 1.1 FC-PBGA Ball Layout Diagram The top view of the FC-PBGA package is shown in Figure 2 with the ball location index numbers. Only the first multiplexed signal is shown. See Table 1 for a complete signal list by ball location. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 VSS MDQ57 GVDD VSS MDQ63 GVDD NC NC NC NC NC CLKOUT EE0 VSS MDQ60 MDQ59 MDQS7 MDQS7 MDQ62 MDQ58 MDQ56 NC VSS NC VSS NC VSS TDO TMS A B C D E F G VSS GVDD MDQ61 VSS GVDD MDM7 VSS MDQ49 MDQ48 MDQS6 MDQS6 MDQ50 MDQ51 MDQ52 MDQ53 VSS MDQ55 GVDD VSS MDQ54 GVDD GVDD MDM5 VSS GVDD MDQ46 NC NC NC NC NC EE1 NC NC VSS NC VSS NC VSS NC NMI NC INT_ OUT VSS NC NC NC NC NC 17 VSS VSS 18 19 CLKIN VSS GPIO29 GPIO31 VSS VSS GE2_TX_ VSS CLK DFT_TEST PORESET VSS VSS HRESET_ IN VSS HRESET TCK VSS TDI VDD VSS VDD NC NC VSS NC NMI_ OUT VDD VSS VDD VSS NC NC NC NC QVDD STOP_BS TRST MDQ40 MDQ41 MDQS5 MDQS5 MDQ43 MDQ47 MDM6 VSS NC 16 MCLKIN VSS (optional) VSS 20 21 22 23 24 25 26 27 28 GE1_TX_ GE1_GTX GE1_TX_ GE1_TD0 GE1_TD2 GE1_TD1 GE1_TD3 A CTL _CLK CLK GPIO18 B GE2_GTX GE2_TX_ GPIO15 GE2_TD2 GE2_TD1 GE2_TD0 GPIO30 GPIO20 GE_MDIO GPIO21 _CLK CTL C GPIO13 NVDD GE2_TD3 VSS GE_MDC GPIO0 GPIO17 GPIO1 E F GPIO28 GE1_RD3 GE1_RD2 NVDD GPIO27 NVDD GPIO16 VSS GE2_RX_ GE2_RX_ VSS GE2_RD2 GE2_RD0 GE2_RD1 GPIO26 GPIO6 GPIO22 GPIO23 GPIO8 CTL CLK VSS GPIO5 VSS D NVDD GE2_RD3 VSS VSS GPIO25 GPIO10 VSS VSS VSS VSS GE1_RX_ GE1_RX_ VSS NVDD GPIO19 CLK CTL VSS GE1_RD0 NVDD GE1_RD1 VSS VSS VSS GPIO11 G H MDQ38 MDQS4 MDQS4 MDQ44 MDQ45 MDQ42 VSS VDD VSS VDD VSS VSS NC QVDD VSS VDD VSS VDD VSS NVDD GPIO14 NVDD GPIO12 H J MDQ37 VSS MDQ35 GVDD MDQ33 MDQ36 VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS NVDD GPIO24 GPIO9 RCW_ LSEL0 RCW_ LSEL3 RCW_ LSEL2 RC21 GPIO3 J K MCAS MCS0 MCS1 MDQ39 MDQ32 MDQ34 VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VSS RCW_ LSEL1 NVDD GPIO7 VSS GPIO2 K NC VSS VSS VSS GPIO4 L VSS GVDD NC VSS GVDD MDM4 VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS NVDD NC SXCVSS SXCVDD L M MCK0 MCK0 MA13 MWE NC NC VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD NC NC SD_A_ SD_A_ SD_A_ SD_A_ SXPVDD SXPVSS RX TX TX RX M N MRAS VSS NC GVDD VSS MODT1 CRPEVDD VSS CRPEVDD VSS CRPEVDD VSS VDD VSS VDD VSS VDD VSS VDD VSS NC NC SXPVDD SXPVSS SD_B_ SD_B_ SXCVSS SXCVDD TX TX N P MCK2 MA10 NC MA4 NC MODT0 CRPEVDD VSS CRPEVDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD NC SD_IMP_ CAL_RX R MCK2 GVDD MA0 VSS GVDD MBA0 T VSS VSS MCK1 MA1 MAPAR_ MA3 OUT U MAVDD VSS MCK1 GVDD VSS V MVREF VSS MA8 MA2 MA6 W Y VSS MA11 VSS MA9 MA5 MA12 VSS MA7 VSS GVDD VDD VSS CRPEVDD VSS VDD VSS VDD VSS VDD VSS VDD VSS NC NC NC NC SXPVDD SXPVSS SD_B_ SD_B_ RX RX P NC SD_C_ SD_C_ SXCVSS SXCVDD TX TX R T VSS GVDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD NC NC NC NC SD_C_ SD_C_ SXPVDD SXPVSS RX RX MBA1 GVDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS NC NC NC NC SD_D_ SD_D_ SXCVSS SXCVDD TX TX U MCKE1 VSS GVDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD NC NC NC NC SD_D_ SD_D_ RX RX V GVDD MMDIC1 GVDD NC VSS NC MMDIC0 VSS VSS GVDD VDD VSS VSS VDD M3VDD VSS VSS M3VDD M3VDD VSS VSS M3VDD M3VDD VSS VSS CPRIVDD CPRIVDD VSS VSS CPRIVDD VDD VSS VSS NC NC NC NC NC NC SD_PLL1 SD_PLL1 _AVDD _AGND NC NC NC NC SXCVSS SXCVDD W NC SD_REF_ SD_REF_ Y CLK1 CLK1 VDD NC NC NC NC SD_E_ SD_E_ SXCVSS SXCVDD AA TX TX VSS GVDD VSS M3VDD VSS M3VDD VSS CPRIVDD VSS CPRIVDD VSS CPRIVDD NC SD_IMP_ CAL_TX MAPAR_ MBA2 IN MDQ2 MDQ1 MDQ0 VSS M3VDD VSS M3VDD VSS CPRIVDD VSS CPRIVDD NC NC NC NC NC NC SXPVDD SXPVSS MDQ25 GVDD MDQ3 VSS GVDD VSS M3VDD VSS CPRIVDD VSS NC NC NC NC NC NC NC NC SD_F_ SD_F_ SXCVSS SXCVDD AC TX TX MDQ6 VSS VSS VSS VSS VSS NC SD_PLL2 _AVDD NC NC NC NC NC NC SXPVDD SXPVSS VSS MDQ9 VSS VSS VSS VSS NC SD_PLL2 _AGND NC SD_J_TX SXPVDD SD_I_ TX SXPVDD NC SD_G_ SD_G_ SXCVSS SXCVDD AE TX TX AF MDQS2 MDQ17 MDQ21 MDQ16 MDQ30 MDQ27 MDQ28 MDQ7 MDQ14 MDQ11 MDQ8 MDQ10 VSS VSS VSS VSS NC NC NC SD_J_TX SXPVSS SD_I_ SXPVSS TX NC SXPVDD SXPVSS AG MDQ12 VSS VSS VSS VSS NC SXCVSS SD_REF_ SD_J_ SD_I_ SD_H_ SD_H_ SXCVSS SXCVSS SXCVSS SXCVSS SXCVDD AG CLK2 RX RX TX TX AH MDQ20 MDQ19 MDQ23 MDM2 MDQS3 MDQS3 MDM3 MDQ31 MDQS1 MDQS1 MDQ15 MDM1 VSS PLL2_ AVDD NC SXCVDD SD_REF_ SD_J_ SD_H_ SD_H_ SXCVDD SXCVDD SD_I_RX SXCVDD SXPVDD SXPVSS AH CLK2 RX RX RX 16 17 18 AA MDQS8 GVDD VSS AB MDQS8 MDM8 MECC2 MECC1 NC AC MECC4 VSS VSS GVDD MA14 VSS GVDD MA15 MCKE0 VSS AD MECC7 MECC6 MECC0 MECC5 MECC3 MDQ24 MDM0 MDQS0 MDQS0 MDQ4 AE MDQS2 VSS 1 VSS GVDD 2 MDQ18 MDQ22 3 GVDD VSS 4 VSS GVDD MDQ29 MDQ26 5 6 GVDD VSS 7 VSS GVDD 8 MDQ5 MDQ13 9 GVDD VSS 10 GVDD 11 12 13 PLL0_ PLL1_ AVDD AVDD 14 15 19 20 21 22 23 24 25 26 SD_E_ SD_E_ AB RX RX SD_F_ SD_F_ AD RX RX SD_G_ SD_G_ AF RX RX 27 28 Figure 2. MSC8157E FC-PBGA Package, Top View Note: See Figure 32 as a reference for correct ball grid layout. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 3 Pin Assignment 1.2 Signal Lists Table 1 presents the signal list sorted by ball number. Table 2 presents the signal list by signal name. When designing a board, make sure that the power rail for each signal is appropriately considered. The specified power rail must be tied to the voltage level specified in this document if any of the related signal functions are used (active) Note: The information in Table 1 distinguishes among three concepts. First, the power pins are the balls of the device package used to supply specific power levels for different device subsystems (as opposed to signals). Second, the power rails are the electrical lines on the board that transfer power from the voltage regulators to the device. They are indicated here as the reference power rails for signal lines; therefore, the actual power inputs are listed as N/A with regard to the power rails. Third, symbols used in these tables are the names for the voltage levels (absolute, recommended, and so on) and not the power supplies themselves. Table 1. Signal List by Ball Number Signal Name1,2 Ball Number Pin Type3 Power Rail Name A2 VSS A3 MDQ57 Ground N/A I/O GVDD A4 GVDD Power N/A A5 VSS Ground N/A A6 MDQ63 I/O GVDD A7 GVDD Power N/A A8 NC Non-user N/A A9 NC Non-user N/A A10 NC Non-user N/A A11 NC Non-user N/A A12 NC Non-user N/A A13 CLKOUT O QVDD A14 EE0 I QVDD A15 VSS Ground N/A A16 MCLKIN (optional) I QVDD A17 VSS A18 CLKIN A19 VSS A20 A21 Ground N/A I QVDD Ground N/A GPIO29/UART_TXD/CP_LOS2 I/O NVDD GPIO31/I2C_SDA I/O NVDD A22 GE1_TX_CTL O NVDD A23 GE1_GTX_CLK O NVDD A24 GE1_TD0 O NVDD A25 GE1_TX_CLK I NVDD A26 GE1_TD2 O NVDD A27 GE1_TD1 O NVDD A28 GE1_TD3 O NVDD B1 MDQ60 I/O GVDD B2 MDQ59 I/O GVDD B3 MDQS7 I/O GVDD B4 MDQS7 I/O GVDD B5 MDQ62 I/O GVDD B6 MDQ58 I/O GVDD B7 MDQ56 I/O GVDD B8 NC Non-user N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 4 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name B9 VSS Ground N/A B10 NC Non-user N/A B11 VSS Ground N/A B12 NC Non-user N/A B13 VSS Ground N/A B14 TDO O QVDD B15 TMS I QVDD B16 VSS Ground N/A B17 VSS Ground N/A B18 VSS Ground N/A B19 VSS Ground N/A B20 GE2_TX_CLK I NVDD B21 VSS Ground N/A B22 VSS Non-user N/A B23 VSS Ground N/A B24 GPIO25/TMR2/RCW_SRC1 I/O NVDD B25 VSS B26 GE_MDC B27 VSS B28 GPIO18/SPI_MOSI/CP_LOS4 C1 Ground N/A O NVDD Ground N/A I/O NVDD VSS Ground N/A C2 GVDD Power N/A C3 MDQ61 I/O GVDD C4 VSS Ground N/A C5 GVDD Power N/A C6 MDM7 O GVDD C7 VSS Ground N/A C8 NC Non-user N/A C9 NC Non-user N/A C10 NC Non-user N/A C11 NC Non-user N/A C12 NC Non-user N/A C13 NC Non-user N/A C14 EE1 O QVDD C15 NC Non-user N/A C16 DFT_TEST I QVDD C17 PORESET I QVDD C18 VSS C19 GPIO15/DDN0/IRQ15/RC15 Ground N/A I/O NVDD NVDD C20 GE2_TD2/CP_LOS3 I/O C21 GE2_GTX_CLK/CP_LOS4 I/O NVDD C22 GE2_TX_CTL O NVDD C23 GE2_TD1 O NVDD C24 GE2_TD0 O NVDD C25 GPIO30/I2C_SCL I/O NVDD C26 GPIO20/SPI_SL/CP_LOS6 I/O NVDD MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 5 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name C27 GE_MDIO I/O NVDD C28 GPIO21/TMR6 I/O NVDD D1 MDQ49 I/O GVDD D2 MDQ48 I/O GVDD D3 MDQS6 I/O GVDD D4 MDQS6 I/O GVDD D5 MDQ50 I/O GVDD D6 MDQ51 I/O GVDD D7 MDQ52 I/O GVDD D8 NC Non-user N/A D9 VSS Ground N/A D10 NC Non-user N/A D11 VSS Ground N/A D12 NC Non-user N/A D13 VSS Ground N/A D14 NC Non-user N/A D15 NMI I QVDD D16 VSS Ground N/A I QVDD D17 HRESET_IN D18 VSS Ground N/A D19 VSS Non-user N/A D20 GPIO13/IRQ13/RC13 D21 NVDD D22 GE2_TD3/CP_LOS5 D23 VSS D24 GPIO5/IRQ5/RC5/CP_SYNC4 D25 NVDD D26 GPIO16/TMR5/RC16 D27 VSS` D28 I/O NVDD Power N/A I/O NVDD Ground N/A I/O NVDD Power N/A I/O NVDD Ground N/A GPIO10/IRQ10/RC10 I/O NVDD E1 MDQ53 I/O GVDD E2 VSS Ground N/A E3 MDQ55 I/O GVDD E4 GVDD Power N/A E5 VSS Ground N/A E6 MDQ54 I/O GVDD E7 GVDD Power N/A E8 VSS Ground N/A E9 NC Non-user N/A E10 NC Non-user N/A E11 NC Non-user N/A E12 NC Non-user N/A E13 NC Non-user N/A E14 NC Non-user N/A E15 INT_OUT/CP_TX_INT O QVDD E16 HRESET I/O QVDD MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 6 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name E17 TCK I QVDD E18 VSS Ground N/A Power N/A I NVDD E19 NVDD E20 GE2_RD3\CP_LOS2 E21 VSS Ground N/A E22 VSS Non-user N/A E23 NVDD Power N/A E24 GPIO27/TMR4/RCW_SRC0 I/O NVDD E25 VSS E26 GPIO0/IRQ0/RC0/CP_SYNC1 E27 GPIO17/SPI_SCK/CP_LOS3 I/O NVDD E28 GPIO1/IRQ1/RC1/CP_SYNC2 I/O NVDD F1 MDQ40 I/O GVDD F2 MDQ41 I/O GVDD F3 MDQS5 I/O GVDD F4 MDQS5 I/O GVDD F5 MDQ43 I/O GVDD F6 MDQ47 I/O GVDD F7 MDM6 O GVDD F8 VDD Power N/A F9 VSS Ground N/A F10 VDD Power N/A F11 NC Non-user N/A F12 NC Non-user N/A F13 VSS Ground N/A F14 NC Non-user N/A O QVDD Ground N/A I/O NVDD F15 NMI_OUT/CP_RX_INT F16 VSS Ground N/A F17 TDI I QVDD F18 VSS Ground N/A F19 GE2_RD2/CP_LOS1 I NVDD F20 GE2_RX_CTL I NVDD F21 GE2_RD0/CP_LOS6 I NVDD F22 GE2_RX_CLK I NVDD F23 GE2_RD1 I NVDD F24 GPIO26/TMR3 I/O NVDD F25 GPIO6/IRQ6/RC6/CP_SYNC5 I/O NVDD F26 GPIO22 I/O NVDD F27 GPIO23/TMR0/BOOT_SPI_SL I/O NVDD F28 GPIO8/IRQ8/RC8 I/O NVDD G1 VSS Ground N/A G2 GVDD Power N/A G3 MDM5 O GVDD G4 VSS Ground N/A G5 GVDD Power N/A G6 MDQ46 I/O GVDD MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 7 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name G7 VDD Power N/A G8 VSS Ground N/A G9 VDD Power N/A G10 VSS Ground N/A G11 NC Non-user N/A G12 NC Non-user N/A G13 NC Non-user N/A G14 NC Non-user N/A G15 QVDD G16 STOP_BS G17 TRST G18 VSS G19 GPIO28/UART_RXD/CP_LOS1 G20 G21 G22 GE1_RX_CLK G23 VSS G24 GE1_RX_CTL Power N/A I QVDD I QVDD Ground N/A I/O NVDD GE1_RD3 I NVDD GE1_RD2 I NVDD I NVDD G25 NVDD G26 GPIO19/SPI_MISO/CP_LOS5 G27 VSS G28 Ground N/A I NVDD Power N/A I/O NVDD Ground N/A GPIO11/IRQ11/RC11 I/O NVDD H1 MDQ38 I/O GVDD H2 MDQS4 I/O GVDD H3 MDQS4 I/O GVDD H4 MDQ44 I/O GVDD H5 MDQ45 I/O GVDD H6 MDQ42 I/O GVDD H7 VSS Ground N/A H8 VDD Power N/A H9 VSS Ground N/A H10 VDD Power N/A H11 VSS Ground N/A H12 VSS Non-user N/A H13 NC Non-user N/A H14 QVDD Power N/A H15 VSS Ground N/A H16 VDD Power N/A H17 VSS Ground N/A H18 VDD Power N/A H19 VSS Ground N/A H20 NVDD Power N/A H21 VSS Ground N/A H22 GE1_RD0 I NVDD H23 NVDD Power N/A H24 GE1_RD1 I NVDD MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 8 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name H25 VSS H26 GPIO14/DRQ0/IRQ14/RC14 Ground N/A I/O NVDD H27 NVDD Power N/A H28 GPIO12/IRQ12/RC12 I/O NVDD J1 MDQ37 I/O GVDD J2 VSS Ground N/A J3 MDQ35 I/O GVDD J4 GVDD Power N/A J5 MDQ33 I/O GVDD J6 MDQ36 I/O GVDD J7 VDD Power N/A J8 VSS Ground N/A J9 VDD Power N/A J10 VSS Ground N/A J11 VDD Power N/A J12 VSS Ground N/A J13 VDD Power N/A J14 VSS Ground N/A J15 VDD Power N/A J16 VSS Ground N/A J17 VDD Power N/A J18 VSS Ground N/A J19 VDD Power N/A J20 VSS Ground N/A J21 NVDD Power N/A J22 GPIO24/TMR1/RCW_SRC2 I/O NVDD J23 GPIO9/IRQ9/RC9 I/O NVDD J24 RCW_LSEL0/RC17 I/O NVDD J25 RCW_LSEL3/RC20 I/O NVDD J26 RCW_LSEL2/RC19 I/O NVDD J27 RC21 I NVDD J28 GPIO3/DRQ1/IRQ3/RC3 I/O NVDD K1 MCAS O GVDD K2 MCS0 O GVDD K3 MCS1 O GVDD K4 MDQ39 I/O GVDD K5 MDQ32 I/O GVDD K6 MDQ34 I/O GVDD K7 VSS Ground N/A K8 VDD Power N/A K9 VSS Ground N/A K10 VDD Power N/A K11 VSS Ground N/A K12 VDD Power N/A K13 VSS Ground N/A K14 VDD Power N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 9 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name K15 VSS Ground N/A K16 VDD Power N/A K17 VSS Ground N/A K18 VDD Power N/A K19 VSS Ground N/A K20 VDD Power N/A K21 VSS Ground N/A K22 GPIO4/DDN1/IRQ4/RC4 I/O NVDD K23 VSS K24 RCW_LSEL1/RC18 K25 NVDD K26 GPIO7/IRQ7/RC7/CP_SYNC6 K27 VSS K28 GPIO2/IRQ2/RC2/CP_SYNC3 L1 VSS Ground N/A I/O NVDD Power N/A I/O NVDD Ground N/A I/O NVDD Ground N/A L2 GVDD Power N/A L3 NC Non-user N/A L4 VSS Ground N/A L5 GVDD Power N/A L6 MDM4 O GVDD L7 VDD Power N/A L8 VSS Ground N/A L9 VDD Power N/A L10 VSS Ground N/A L11 VDD Power N/A L12 VSS Ground N/A L13 VDD Power N/A L14 VSS Ground N/A L15 VDD Power N/A L16 VSS Ground N/A L17 VDD Power N/A L18 VSS Ground N/A L19 VDD Power N/A L20 VSS Ground N/A L21 NVDD Power N/A L22 NC NC N/A L23 NC NC N/A L24 VSS Non-user N/A L25 VSS Non-user N/A L26 VSS Non-user N/A L27 SXCVSS Ground N/A L28 SXCVDD Power N/A M1 MCK0 O GVDD M2 MCK0 O GVDD M3 MA13 O GVDD M4 MWE O GVDD MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 10 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name M5 NC Non-user N/A M6 NC Non-user N/A N/A M7 VSS Ground M8 VDD Power N/A M9 VSS Ground N/A M10 VDD Power N/A M11 VSS Ground N/A M12 VDD Power N/A M13 VSS Ground N/A M14 VDD Power N/A M15 VSS Ground N/A M16 VDD Power N/A M17 VSS Ground N/A M18 VDD Power N/A M19 VSS Ground N/A M20 VDD Power N/A M21 NC NC N/A M22 NC NC N/A M23 SD_A_TX O SXPVDD M24 SD_A_TX O SXPVDD M25 SXPVDD Power N/A M26 SXPVSS Ground N/A M27 SD_A_RX I SXCVDD M28 SD_A_RX I SXCVDD N1 MRAS O GVDD N2 VSS Ground N/A N3 NC Non-user N/A N4 GVDD Power N/A N5 VSS Ground N/A N6 MODT1 O GVDD N7 CRPEVDD Power N/A N8 VSS Ground N/A N9 CRPEVDD Power N/A N10 VSS Ground N/A N11 CRPEVDD Power N/A N12 VSS Ground N/A N13 VDD Power N/A N14 VSS Ground N/A N15 VDD Power N/A N16 VSS Ground N/A N17 VDD Power N/A N18 VSS Ground N/A N19 VDD Power N/A N20 VSS Ground N/A N21 NC NC N/A N22 NC NC N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 11 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name N23 SXPVDD Power N/A N24 SXPVSS Ground N/A N25 SD_B_TX O SXPVDD N26 SD_B_TX O SXPVDD N27 SXCVSS Ground N/A N28 SXCVDD Power N/A O GVDD O GVDD P1 MCK2 P2 MA10 P3 NC P4 MA4 P5 NC P6 MODT0 P7 VSS P8 CRPEVDD Power N/A P9 VSS Ground N/A Non-user N/A O GVDD Non-user N/A O GVDD Ground N/A P10 CRPEVDD Power N/A P11 VSS Ground N/A P12 VDD Power N/A P13 VSS Ground N/A P14 VDD Power N/A P15 VSS Ground N/A P16 VDD Power N/A P17 VSS Ground N/A P18 VDD Power N/A P19 VSS Ground N/A P20 VDD Power N/A P21 NC P22 SD_IMP_CAL_RX P23 NC P24 NC NC N/A P25 SXPVDD Power N/A P26 SXPVSS Ground N/A P27 SD_B_RX I SXCVDD P28 SD_B_RX I SXCVDD R1 MCK2 O GVDD R2 GVDD Power N/A R3 MA0 O GVDD R4 VSS Ground N/A R5 GVDD Power N/A R6 MBA0 O GVDD R7 GVDD Power N/A R8 VSS Ground N/A NC N/A I SXCVDD NC N/A R9 VDD Power N/A R10 VSS Ground N/A R11 CRPEVDD Power N/A R12 VSS Ground N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 12 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name R13 VDD Power N/A R14 VSS Ground N/A R15 VDD Power N/A R16 VSS Ground N/A R17 VDD Power N/A R18 VSS Ground N/A R19 VDD Power N/A R20 VSS Ground N/A R21 NC NC N/A R22 NC NC N/A R23 NC NC N/A R24 NC NC N/A R25 SD_C_TX O SXPVDD R26 SD_C_TX O SXPVDD R27 SXCVSS Ground N/A R28 SXCVDD Power N/A T1 VSS Ground N/A T2 VSS Ground N/A T3 MCK1 O GVDD T4 MA1 O GVDD T5 MA3 O GVDD T6 MAPAR_OUT O GVDD T7 VSS Ground N/A T8 GVDD Power N/A T9 VSS Ground N/A T10 VDD Power N/A T11 VSS Ground N/A T12 VDD Power N/A T13 VSS Ground N/A T14 VDD Power N/A T15 VSS Ground N/A T16 VDD Power N/A T17 VSS Ground N/A T18 VDD Power N/A T19 VSS Ground N/A T20 VDD Power N/A T21 NC NC N/A T22 NC Non-user N/A T23 NC Non-user N/A T24 NC NC N/A T25 SXPVDD Power N/A T26 SXPVSS Ground N/A T27 SD_C_RX I SXCVDD T28 SD_C_RX I SXCVDD U1 MAVDD Power N/A U2 VSS Ground N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 13 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name U3 MCK1 O GVDD U4 GVDD Power N/A U5 VSS Ground N/A U6 MBA1 O GVDD U7 GVDD Power N/A U8 VSS Ground N/A U9 VDD Power N/A U10 VSS Ground N/A U11 VDD Power N/A U12 VSS Ground N/A U13 VDD Power N/A U14 VSS Ground N/A U15 VDD Power N/A U16 VSS Ground N/A U17 VDD Power N/A U18 VSS Ground N/A U19 VDD Power N/A U20 VSS Ground N/A U21 NC NC N/A U22 NC NC N/A U23 NC NC N/A U24 NC NC N/A U25 SD_D_TX O SXPVDD U26 SD_D_TX O SXPVDD U27 SXCVSS Ground N/A U28 SXCVDD Power N/A V1 MVREF Power N/A V2 VSS Ground N/A V3 MA8 O GVDD V4 MA2 O GVDD V5 MA6 O GVDD V6 MCKE1 O GVDD V7 VSS Ground N/A V8 GVDD Power N/A N/A V9 VSS Ground V10 VDD Power N/A V11 VSS Ground N/A V12 VDD Power N/A V13 VSS Ground N/A V14 VDD Power N/A V15 VSS Ground N/A V16 VDD Power N/A V17 VSS Ground N/A V18 VDD Power N/A V19 VSS Ground N/A V20 VDD Power N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 14 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name V21 NC NC N/A V22 NC NC N/A V23 NC NC N/A V24 NC NC N/A V25 NC NC N/A V26 NC NC N/A V27 SD_D_RX I SXCVDD V28 SD_D_RX I SXCVDD W1 VSS Ground N/A W2 VSS Ground N/A W3 MA5 O GVDD W4 VSS Ground N/A W5 GVDD Power N/A W6 MMDIC1 I/O GVDD W7 GVDD Power N/A N/A W8 VSS Ground W9 VDD Power N/A W10 VSS Ground N/A W11 M3VDD Power N/A W12 VSS Ground N/A W13 M3VDD Power N/A W14 VSS Ground N/A W15 M3VDD Power N/A W16 VSS Ground N/A W17 CPRIVDD Power N/A W18 VSS Ground N/A W19 VDD Power N/A W20 VSS Ground N/A W21 NC NC N/A W22 NC NC N/A W23 NC NC N/A W24 SD_PLL1_AVDD Power N/A W25 SD_PLL1_AGND Ground N/A W26 NC NC N/A W27 SXCVSS Ground N/A W28 SXCVDD Power N/A Y1 MA11 O GVDD Y2 MA9 O GVDD Y3 MA12 O GVDD Y4 MA7 O GVDD Y5 NC Y6 MMDIC0 Y7 Y8 Non-user N/A I/O GVDD VSS Ground N/A GVDD Power N/A Y9 VSS Ground N/A Y10 VDD Power N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 15 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name Y11 VSS Ground N/A Y12 M3VDD Power N/A Y13 VSS Ground N/A Y14 M3VDD Power N/A Y15 VSS Ground N/A Y16 CPRIVDD Power N/A Y17 VSS Ground N/A Y18 CPRIVDD Power N/A Y19 VSS Ground N/A Y20 VDD Power N/A Y21 NC NC N/A Y22 NC NC N/A Y23 NC NC N/A Y24 NC NC N/A Y25 NC NC N/A Y26 NC NC N/A Y27 SD_REF_CLK1 I SXCVDD Y28 SD_REF_CLK1 I SXCVDD AA1 MDQS8 I/O GVDD AA2 VSS AA3 MA14 AA4 GVDD Power N/A AA5 VSS Ground N/A Ground N/A O GVDD AA6 MA15 O GVDD AA7 MCKE0 O GVDD AA8 VSS Ground N/A AA9 GVDD Power N/A AA10 VSS Ground N/A AA11 M3VDD Power N/A AA12 VSS Ground N/A AA13 M3VDD Power N/A N/A AA14 VSS Ground AA15 CPRIVDD Power N/A AA16 VSS Ground N/A AA17 CPRIVDD Power N/A AA18 VSS Ground N/A AA19 CPRIVDD Power N/A AA20 NC AA21 SD_IMP_CAL_TX NC N/A I SXPVDD AA22 NC NC N/A AA23 NC NC N/A AA24 NC NC N/A AA25 SD_E_TX O SXPVDD AA26 SD_E_TX O SXPVDD AA27 SXCVSS Ground N/A AA28 SXCVDD Power N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 16 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AB1 MDQS8 I/O GVDD AB2 MDM8 O GVDD AB3 MECC2 I/O GVDD AB4 MECC1 I/O GVDD AB5 NC Non-user N/A AB6 MAPAR_IN I GVDD AB7 MBA2 O GVDD AB8 MDQ2 I/O GVDD AB9 MDQ1 I/O GVDD AB10 MDQ0 I/O GVDD AB11 VSS Ground N/A AB12 M3VDD Power N/A AB13 VSS Ground N/A AB14 M3VDD Power N/A AB15 VSS Ground N/A AB16 CPRIVDD Power N/A AB17 VSS Ground N/A AB18 CPRIVDD Power N/A AB19 NC NC N/A AB20 NC Non-user N/A AB21 NC NC N/A AB22 NC NC N/A AB23 NC NC N/A AB24 NC NC N/A AB25 SXPVDD Power N/A AB26 SXPVSS Ground N/A AB27 SD_E_RX I SXCVDD AB28 SD_E_RX I SXCVDD AC1 VSS Ground N/A AC2 GVDD Power N/A AC3 MECC4 I/O GVDD AC4 VSS Ground N/A AC5 GVDD Power N/A AC6 MDQ25 I/O GVDD AC7 VSS Ground N/A AC8 GVDD Power N/A AC9 MDQ3 I/O GVDD AC10 VSS Ground N/A AC11 GVDD Power N/A N/A AC12 VSS Ground AC13 M3VDD Power N/A AC14 VSS Ground N/A AC15 CPRIVDD Power N/A AC16 VSS Ground N/A AC17 NC NC N/A AC18 NC NC N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 17 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AC19 NC NC N/A AC20 NC Non-user N/A AC21 NC NC N/A AC22 NC NC N/A AC23 NC NC N/A AC24 NC NC N/A AC25 SD_F_TX O SXPVDD AC26 SD_F_TX O SXPVDD AC27 SXCVSS Ground N/A AC28 SXCVDD Power N/A AD1 MECC7 I/O GVDD AD2 MECC6 I/O GVDD AD3 MECC0 I/O GVDD AD4 MECC5 I/O GVDD AD5 MECC3 I/O GVDD AD6 MDQ24 I/O GVDD AD7 MDM0 O GVDD AD8 MDQS0 I/O GVDD AD9 MDQS0 I/O GVDD AD10 MDQ4 I/O GVDD AD11 MDQ6 I/O GVDD AD12 VSS Non-user N/A AD13 VSS Non-user N/A AD14 VSS Non-user N/A AD15 VSS Ground N/A AD16 VSS Ground N/A AD17 NC AD18 SD_PLL2_AVDD AD19 NC N/A Power N/A NC NC N/A AD20 NC NC N/A AD21 NC NC N/A AD22 NC NC N/A AD23 NC NC N/A AD24 NC NC N/A AD25 SXPVDD Power N/A AD26 SXPVSS Ground N/A AD27 SD_F_RX I SXCVDD AD28 SD_F_RX I SXCVDD I/O GVDD AE1 MDQS2 AE2 VSS Ground N/A AE3 MDQ18 I/O GVDD AE4 GVDD Power N/A AE5 VSS Ground N/A AE6 MDQ29 I/O GVDD AE7 GVDD Power N/A AE8 VSS Ground N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 18 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AE9 MDQ5 I/O GVDD AE10 GVDD Power N/A Ground N/A I/O GVDD AE11 VSS AE12 MDQ9 AE13 VSS Non-user N/A AE14 VSS Ground N/A AE15 VSS Ground N/A AE16 VSS Ground N/A AE17 NC NC N/A AE18 SD_PLL_AGND Ground N/A AE19 NC NC N/A AE20 SD_J_TX O SXPVDD AE21 SXPVDD Power N/A AE22 SD_I_TX O SXPVDD AE23 SXPVDD Power N/A AE24 NC NC N/A AE25 SD_G_TX O SXPVDD AE26 SD_G_TX O SXPVDD AE27 SXCVSS Ground N/A AE28 SXCVDD Power N/A AF1 MDQS2 I/O GVDD AF2 MDQ17 I/O GVDD AF3 MDQ21 I/O GVDD AF4 MDQ16 I/O GVDD AF5 MDQ30 I/O GVDD AF6 MDQ27 I/O GVDD AF7 MDQ28 I/O GVDD AF8 MDQ7 I/O GVDD AF9 MDQ14 I/O GVDD AF10 MDQ11 I/O GVDD AF11 MDQ8 I/O GVDD AF12 MDQ10 I/O GVDD AF13 VSS Non-user N/A AF14 VSS Ground N/A AF15 VSS Ground N/A AF16 VSS Ground N/A AF17 NC NC N/A AF18 NC NC N/A AF19 NC NC N/A AF20 SD_J_TX O SXPVDD AF21 SXPVSS Ground N/A AF22 SD_I_TX O SXPVDD AF23 SXPVSS Ground N/A AF24 NC AF25 AF26 NC N/A SXPVDD Power N/A SXPVSS Ground N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 19 Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AF27 SD_G_RX I SXCVDD AF28 SD_G_RX I SXCVDD AG1 VSS Ground N/A AG2 GVDD Power N/A AG3 MDQ22 I/O GVDD AG4 VSS Ground N/A AG5 GVDD Power N/A AG6 MDQ26 I/O GVDD AG7 VSS Ground N/A AG8 GVDD Power N/A AG9 MDQ13 I/O GVDD AG10 VSS Ground N/A AG11 GVDD Power N/A AG12 MDQ12 I/O GVDD AG13 VSS Ground N/A AG14 VSS Ground N/A AG15 VSS Ground N/A AG16 VSS Ground N/A AG17 NC AG18 SXCVSS AG19 SD_REF_CLK2 AG20 SXCVSS Ground N/A AG21 SD_J_RX I SXCVDD AG22 SXCVSS Ground N/A AG23 SD_I_RX I SXCVDD AG24 SXCVSS Ground N/A AG25 SD_H_TX O SXPVDD AG26 SD_H_TX O SXPVDD AG27 SXCVSS Ground N/A AG28 SXCVDD NC N/A Ground N/A I SXCVDD Power N/A AH1 MDQ20 I/O GVDD AH2 MDQ19 I/O GVDD AH3 MDQ23 I/O GVDD AH4 MDM2 O GVDD AH5 MDQS3 I/O GVDD AH6 MDQS3 I/O GVDD AH7 MDM3 O GVDD AH8 MDQ31 I/O GVDD AH9 MDQS1 I/O GVDD AH10 MDQS1 I/O GVDD AH11 MDQ15 I/O GVDD AH12 MDM1 O GVDD AH13 VSS Ground N/A AH14 PLL0_AVDD Power N/A AH15 PLL1_AVDD Power N/A AH16 PLL2_AVDD Power N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 20 Freescale Semiconductor Pin Assignment Table 1. Signal List by Ball Number (continued) Signal Name1,2 Ball Number AH17 NC AH18 SXCVDD Pin Type3 Power Rail Name NC N/A Power N/A I SXCVDD AH19 SD_REF_CLK2 AH20 SXCVDD Power N/A AH21 SD_J_RX I SXCVDD AH22 SXCVDD Power N/A AH23 SD_I_RX I SXCVDD AH24 SXCVDD Power N/A AH25 SXPVDD Power N/A AH26 SXPVSS Ground N/A AH27 SD_H_RX I SXCVDD AH28 SD_H_RX I SXCVDD Notes: 1. 2. 3. 4. Signal function during power-on reset is determined by the RCW source type. Selection of RapidIO, SGMII, CPRI, and PCI Express functionality during normal operation is configured by the RCW bit values. Selection of the GPIO function and other functions is done by GPIO register setup. For signals with GPIO functionality, the open-drain and internal 20 K pull-up resistor can be configured by GPIO register programming. For configuration details, see the GPIO chapter in the MSC8157E Reference Manual. NC signals should be disconnected for compatibility with future revisions of the device. Non-user signals are reserved for manufacturing and test purposes only. The assigned signal name is used to indicate whether the signal must be unconnected (Reserved), pulled down (VSS or SXCVSS), or pulled up (VDD). Pin types are: Ground = all VSS connections; Power = all VDD connections; I = Input; O = Output; I/O = Input/Output; NC = not connected; non-user = connect as specified under Signal Name. Connect power inputs to the power supplies via external filters. See the MSC8157 Design Checklist (AN4110) for details. Table 2. Signal List by Primary Signal Name Signal Name1,2 Ball Number Pin Type3 Power Rail Name A18 CLKIN I QVDD A13 CLKOUT O QVDD AA15 CPRIVDD Power N/A AA17 CPRIVDD Power N/A AA19 CPRIVDD Power N/A AB16 CPRIVDD Power N/A AB18 CPRIVDD Power N/A AC15 CPRIVDD Power N/A W17 CPRIVDD Power N/A Y16 CPRIVDD Power N/A Y18 CPRIVDD Power N/A N11 CRPEVDD Power N/A N7 CRPEVDD Power N/A N9 CRPEVDD Power N/A P10 CRPEVDD Power N/A P8 CRPEVDD Power N/A R11 CRPEVDD Power N/A C16 DFT_TEST I QVDD A14 EE0 I QVDD C14 EE1 O QVDD MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 21 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name B26 GE_MDC O NVDD C27 GE_MDIO I/O NVDD A23 GE1_GTX_CLK O NVDD H22 GE1_RD0 I NVDD H24 GE1_RD1 I NVDD G21 GE1_RD2 I NVDD G20 GE1_RD3 I NVDD G22 GE1_RX_CLK I NVDD G24 GE1_RX_CTL I NVDD A24 GE1_TD0 O NVDD A27 GE1_TD1 O NVDD A26 GE1_TD2 O NVDD A28 GE1_TD3 O NVDD A25 GE1_TX_CLK I NVDD A22 GE1_TX_CTL O NVDD C21 GE2_GTX_CLK/CP_LOS4 I/O NVDD F21 GE2_RD0/CP_LOS6 I NVDD F23 GE2_RD1 I NVDD NVDD F19 GE2_RD2/CP_LOS1 I E20 GE2_RD3/CP_LOS2 I NVDD F22 GE2_RX_CLK I NVDD F20 GE2_RX_CTL I NVDD C24 GE2_TD0 O NVDD C23 GE2_TD1 O NVDD C20 GE2_TD2/CP_LOS3 I/O NVDD D22 GE2_TD3/CP_LOS5 I/O NVDD NVDD B20 GE2_TX_CLK I C22 GE2_TX_CTL O NVDD E26 GPIO0/IRQ0/RC0/CP_SYNC1 I/O NVDD E28 GPIO1/IRQ1/RC1/CP_SYNC2 I/O NVDD D28 GPIO10/IRQ10/RC10 I/O NVDD G28 GPIO11/IRQ11/RC11 I/O NVDD H28 GPIO12/IRQ12/RC12 I/O NVDD D20 GPIO13/IRQ13/RC13 I/O NVDD H26 GPIO14/DRQ0/IRQ14/RC14 I/O NVDD C19 GPIO15/DDN0/IRQ15/RC15 I/O NVDD D26 GPIO16/TMR5/RC16 I/O NVDD E27 GPIO17/SPI_SCK/CP_LOS3 I/O NVDD B28 GPIO18/SPI_MOSI/CP_LOS4 I/O NVDD G26 GPIO19/SPI_MISO/CP_LOS5 I/O NVDD K28 GPIO2/IRQ2/RC2/CP_SYNC3 I/O NVDD C26 GPIO20/SPI_SL/CP_LOS6 I/O NVDD C28 GPIO21/TMR6 I/O NVDD F26 GPIO22 I/O NVDD F27 GPIO23/TMR0/BOOT_SPI_SL I/O NVDD J22 GPIO24/TMR1/RCW_SRC2 I/O NVDD MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 22 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name B24 GPIO25/TMR2/RCW_SRC1 I/O NVDD F24 GPIO26/TMR3 I/O NVDD NVDD E24 GPIO27/TMR4/RCW_SRC0 I/O G19 GPIO28/UART_RXD/CP_LOS1 I/O NVDD A20 GPIO29/UART_TXD/CP_LOS2 I/O NVDD J28 GPIO3/DRQ1/IRQ3/RC3 I/O NVDD C25 GPIO30/I2C_SCL I/O NVDD A21 GPIO31/I2C_SDA I/O NVDD K22 GPIO4/DDN1/IRQ4/RC4 I/O NVDD D24 GPIO5/IRQ5/RC5/CP_SYNC4 I/O NVDD NVDD F25 GPIO6/IRQ6/RC6/CP_SYNC5 I/O K26 GPIO7/IRQ7/RC7/CP_SYNC6 I/O NVDD F28 GPIO8/IRQ8/RC8 I/O NVDD J23 GPIO9/IRQ9/RC9 I/O NVDD A4 GVDD Power N/A A7 GVDD Power N/A AA4 GVDD Power N/A AA9 GVDD Power N/A AC11 GVDD Power N/A AC2 GVDD Power N/A AC5 GVDD Power N/A AC8 GVDD Power N/A AE10 GVDD Power N/A AE4 GVDD Power N/A AE7 GVDD Power N/A AG11 GVDD Power N/A AG2 GVDD Power N/A AG5 GVDD Power N/A AG8 GVDD Power N/A C2 GVDD Power N/A C5 GVDD Power N/A E4 GVDD Power N/A E7 GVDD Power N/A G2 GVDD Power N/A G5 GVDD Power N/A J4 GVDD Power N/A L2 GVDD Power N/A L5 GVDD Power N/A N4 GVDD Power N/A R2 GVDD Power N/A R5 GVDD Power N/A R7 GVDD Power N/A T8 GVDD Power N/A U4 GVDD Power N/A U7 GVDD Power N/A V8 GVDD Power N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 23 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name W5 GVDD Power N/A W7 GVDD Power N/A Power N/A I/O QVDD I QVDD Y8 GVDD E16 HRESET D17 HRESET_IN E15 INT_OUT/CP_TX_INT O QVDD AA11 M3VDD Power N/A AA13 M3VDD Power N/A AB12 M3VDD Power N/A AB14 M3VDD Power N/A AC13 M3VDD Power N/A W11 M3VDD Power N/A W13 M3VDD Power N/A W15 M3VDD Power N/A Y12 M3VDD Power N/A Y14 M3VDD Power N/A R3 MA0 O GVDD T4 MA1 O GVDD P2 MA10 O GVDD Y1 MA11 O GVDD Y3 MA12 O GVDD M3 MA13 O GVDD AA3 MA14 O GVDD AA6 MA15 O GVDD V4 MA2 O GVDD T5 MA3 O GVDD P4 MA4 O GVDD W3 MA5 O GVDD V5 MA6 O GVDD Y4 MA7 O GVDD V3 MA8 O GVDD Y2 MA9 O GVDD MAPAR_IN I GVDD T6 MAPAR_OUT O GVDD U1 MAVDD Power N/A R6 MBA0 O GVDD U6 MBA1 O GVDD AB7 MBA2 O GVDD K1 MCAS O GVDD M1 MCK0 O GVDD M2 MCK0 O GVDD T3 MCK1 O GVDD U3 MCK1 O GVDD P1 MCK2 O GVDD R1 MCK2 O GVDD MCKE0 O GVDD AB6 AA7 MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 24 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name V6 MCKE1 O GVDD A16 MCLKIN (optional) I QVDD K2 MCS0 O GVDD K3 MCS1 O GVDD AD7 MDM0 O GVDD AH12 MDM1 O GVDD AH4 MDM2 O GVDD AH7 MDM3 O GVDD L6 MDM4 O GVDD G3 MDM5 O GVDD F7 MDM6 O GVDD C6 MDM7 O GVDD AB2 MDM8 O GVDD AB10 MDQ0 I/O GVDD AB9 MDQ1 I/O GVDD AF12 MDQ10 I/O GVDD AF10 MDQ11 I/O GVDD AG12 MDQ12 I/O GVDD AG9 MDQ13 I/O GVDD AF9 MDQ14 I/O GVDD AH11 MDQ15 I/O GVDD AF4 MDQ16 I/O GVDD AF2 MDQ17 I/O GVDD AE3 MDQ18 I/O GVDD AH2 MDQ19 I/O GVDD AB8 MDQ2 I/O GVDD AH1 MDQ20 I/O GVDD AF3 MDQ21 I/O GVDD AG3 MDQ22 I/O GVDD AH3 MDQ23 I/O GVDD AD6 MDQ24 I/O GVDD AC6 MDQ25 I/O GVDD AG6 MDQ26 I/O GVDD AF6 MDQ27 I/O GVDD AF7 MDQ28 I/O GVDD AE6 MDQ29 I/O GVDD AC9 MDQ3 I/O GVDD AF5 MDQ30 I/O GVDD AH8 MDQ31 I/O GVDD K5 MDQ32 I/O GVDD J5 MDQ33 I/O GVDD K6 MDQ34 I/O GVDD J3 MDQ35 I/O GVDD J6 MDQ36 I/O GVDD J1 MDQ37 I/O GVDD H1 MDQ38 I/O GVDD MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 25 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name K4 MDQ39 I/O GVDD AD10 MDQ4 I/O GVDD F1 MDQ40 I/O GVDD F2 MDQ41 I/O GVDD H6 MDQ42 I/O GVDD F5 MDQ43 I/O GVDD H4 MDQ44 I/O GVDD H5 MDQ45 I/O GVDD G6 MDQ46 I/O GVDD F6 MDQ47 I/O GVDD D2 MDQ48 I/O GVDD D1 MDQ49 I/O GVDD AE9 MDQ5 I/O GVDD D5 MDQ50 I/O GVDD D6 MDQ51 I/O GVDD D7 MDQ52 I/O GVDD E1 MDQ53 I/O GVDD E6 MDQ54 I/O GVDD E3 MDQ55 I/O GVDD B7 MDQ56 I/O GVDD A3 MDQ57 I/O GVDD B6 MDQ58 I/O GVDD B2 MDQ59 I/O GVDD AD11 MDQ6 I/O GVDD B1 MDQ60 I/O GVDD C3 MDQ61 I/O GVDD B5 MDQ62 I/O GVDD A6 MDQ63 I/O GVDD AF8 MDQ7 I/O GVDD AF11 MDQ8 I/O GVDD AE12 MDQ9 I/O GVDD AD8 MDQS0 I/O GVDD AD9 MDQS0 I/O GVDD AH10 MDQS1 I/O GVDD AH9 MDQS1 I/O GVDD AE1 MDQS2 I/O GVDD AF1 MDQS2 I/O GVDD AH5 MDQS3 I/O GVDD AH6 MDQS3 I/O GVDD GVDD H2 MDQS4 I/O H3 MDQS4 I/O GVDD F3 MDQS5 I/O GVDD F4 MDQS5 I/O GVDD D3 MDQS6 I/O GVDD D4 MDQS6 I/O GVDD B3 MDQS7 I/O GVDD MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 26 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name B4 MDQS7 I/O GVDD AA1 MDQS8 I/O GVDD AB1 MDQS8 I/O GVDD AD3 MECC0 I/O GVDD AB4 MECC1 I/O GVDD AB3 MECC2 I/O GVDD AD5 MECC3 I/O GVDD AC3 MECC4 I/O GVDD AD4 MECC5 I/O GVDD AD2 MECC6 I/O GVDD AD1 MECC7 I/O GVDD Y6 MMDIC0 I/O GVDD W6 MMDIC1 I/O GVDD P6 MODT0 O GVDD N6 MODT1 O GVDD N1 MRAS O GVDD V1 MVREF M4 MWE A10 A11 Power N/A O GVDD NC Non-user N/A NC Non-user N/A A12 NC Non-user N/A A8 NC Non-user N/A A9 NC Non-user N/A AA20 NC NC N/A AA22 NC NC N/A AA23 NC NC N/A AA24 NC NC N/A AB19 NC NC N/A AB20 NC Non-user N/A AB21 NC NC N/A AB22 NC NC N/A AB23 NC NC N/A AB24 NC NC N/A AB5 NC Non-user N/A AC17 NC NC N/A AC18 NC NC N/A AC19 NC NC N/A AC20 NC Non-user N/A AC21 NC NC N/A AC22 NC NC N/A AC23 NC NC N/A AC24 NC NC N/A AD17 NC NC N/A AD19 NC NC N/A AD20 NC NC N/A AD21 NC NC N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 27 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AD22 NC NC N/A AD23 NC NC N/A AD24 NC NC N/A AE17 NC NC N/A AE19 NC NC N/A AE24 NC NC N/A AF17 NC NC N/A AF18 NC NC N/A AF19 NC NC N/A AF24 NC NC N/A AG17 NC NC N/A AH17 NC NC N/A B10 NC Non-user N/A B12 NC Non-user N/A B8 NC Non-user N/A C10 NC Non-user N/A C11 NC Non-user N/A C12 NC Non-user N/A C13 NC Non-user N/A C15 NC Non-user N/A C8 NC Non-user N/A C9 NC Non-user N/A D10 NC Non-user N/A D12 NC Non-user N/A D14 NC Non-user N/A D8 NC Non-user N/A E10 NC Non-user N/A E11 NC Non-user N/A E12 NC Non-user N/A E13 NC Non-user N/A E14 NC Non-user N/A E9 NC Non-user N/A F11 NC Non-user N/A F12 NC Non-user N/A F14 NC Non-user N/A G11 NC Non-user N/A G12 NC Non-user N/A G13 NC Non-user N/A G14 NC Non-user N/A H13 NC Non-user N/A L22 NC NC N/A L23 NC NC N/A L3 NC Non-user N/A M21 NC NC N/A M22 NC NC N/A M5 NC Non-user N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 28 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name M6 NC Non-user N/A N21 NC NC N/A N22 NC NC N/A N3 NC Non-user N/A P21 NC NC N/A P23 NC NC N/A P24 NC NC N/A P3 NC Non-user N/A P5 NC Non-user N/A R21 NC NC N/A R22 NC NC N/A R23 NC NC N/A R24 NC NC N/A T21 NC NC N/A T22 NC Non-user N/A T23 NC Non-user N/A T24 NC NC N/A U21 NC NC N/A U22 NC NC N/A U23 NC NC N/A U24 NC NC N/A V21 NC NC N/A V22 NC NC N/A V23 NC NC N/A V24 NC NC N/A V25 NC NC N/A V26 NC NC N/A W21 NC NC N/A W22 NC NC N/A W23 NC NC N/A W26 NC NC N/A Y21 NC NC N/A Y22 NC NC N/A Y23 NC NC N/A Y24 NC NC N/A Y25 NC NC N/A Y26 NC NC N/A Y5 NC Non-user N/A D15 NMI I QVDD F15 NMI_OUT/CP_RX_INT O QVDD D21 NVDD Power N/A D25 NVDD Power N/A E19 NVDD Power N/A E23 NVDD Power N/A G25 NVDD Power N/A H20 NVDD Power N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 29 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name H23 NVDD Power N/A H27 NVDD Power N/A J21 NVDD Power N/A K25 NVDD Power N/A L21 NVDD Power N/A AH14 PLL0_AVDD Power N/A AH15 PLL1_AVDD Power N/A AH16 PLL2_AVDD Power N/A I QVDD N/A C17 PORESET G15 QVDD Power H14 QVDD Power N/A J27 RC21 I NVDD J24 RCW_LSEL0/RC17 I/O NVDD K24 RCW_LSEL1/RC18 I/O NVDD J26 RCW_LSEL2/RC19 I/O NVDD J25 RCW_LSEL3/RC20 I/O NVDD M27 SD_A_RX I SXCVDD M28 SD_A_RX I SXCVDD M23 SD_A_TX O SXPVDD M24 SD_A_TX O SXPVDD P27 SD_B_RX I SXCVDD P28 SD_B_RX I SXCVDD N25 SD_B_TX O SXPVDD N26 SD_B_TX O SXPVDD T27 SD_C_RX I SXCVDD T28 SD_C_RX I SXCVDD R25 SD_C_TX O SXPVDD R26 SD_C_TX O SXPVDD V27 SD_D_RX I SXCVDD V28 SD_D_RX I SXCVDD U25 SD_D_TX O SXPVDD U26 SD_D_TX O SXPVDD AB27 SD_E_RX I SXCVDD AB28 SD_E_RX I SXCVDD AA25 SD_E_TX O SXPVDD AA26 SD_E_TX O SXPVDD AD27 SD_F_RX I SXCVDD AD28 SD_F_RX I SXCVDD AC25 SD_F_TX O SXPVDD AC26 SD_F_TX O SXPVDD AF27 SD_G_RX I SXCVDD AF28 SD_G_RX I SXCVDD AE25 SD_G_TX O SXPVDD AE26 SD_G_TX O SXPVDD AH27 SD_H_RX I SXCVDD AH28 SD_H_RX I SXCVDD MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 30 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AG25 SD_H_TX O SXPVDD AG26 SD_H_TX O SXPVDD AG23 SD_I_RX I SXCVDD AH23 SD_I_RX I SXCVDD AE22 SD_I_TX O SXPVDD AF22 SD_I_TX O SXPVDD P22 SD_IMP_CAL_RX I SXCVDD AA21 SD_IMP_CAL_TX I SXPVDD AG21 SD_J_RX I SXCVDD AH21 SD_J_RX I SXCVDD AE20 SD_J_TX O SXPVDD AF20 SD_J_TX O SXPVDD W25 SD_PLL1_AGND Ground N/A W24 SD_PLL1_AVDD Power N/A AE18 SD_PLL2_AGND Ground N/A AD18 SD_PLL2_AVDD Power N/A Y27 SD_REF_CLK1 I SXCVDD Y28 SD_REF_CLK1 I SXCVDD AG19 SD_REF_CLK2 I SXCVDD AH19 SD_REF_CLK2 I SXCVDD G16 STOP_BS I QVDD AA28 SXCVDD Power N/A AC28 SXCVDD Power N/A AE28 SXCVDD Power N/A AG28 SXCVDD Power N/A AH18 SXCVDD Power N/A AH20 SXCVDD Power N/A AH22 SXCVDD Power N/A AH24 SXCVDD Power N/A L28 SXCVDD Power N/A N28 SXCVDD Power N/A R28 SXCVDD Power N/A U28 SXCVDD Power N/A W28 SXCVDD Power N/A AA27 SXCVSS Ground N/A AC27 SXCVSS Ground N/A AE27 SXCVSS Ground N/A AG18 SXCVSS Ground N/A AG20 SXCVSS Ground N/A AG22 SXCVSS Ground N/A AG24 SXCVSS Ground N/A AG27 SXCVSS Ground N/A L27 SXCVSS Ground N/A N27 SXCVSS Ground N/A R27 SXCVSS Ground N/A U27 SXCVSS Ground N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 31 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name W27 SXCVSS Ground N/A AB25 SXPVDD Power N/A AD25 SXPVDD Power N/A AE21 SXPVDD Power N/A AE23 SXPVDD Power N/A AF25 SXPVDD Power N/A AH25 SXPVDD Power N/A M25 SXPVDD Power N/A N23 SXPVDD Power N/A P25 SXPVDD Power N/A T25 SXPVDD Power N/A AB26 SXPVSS Ground N/A AD26 SXPVSS Ground N/A AF21 SXPVSS Ground N/A AF23 SXPVSS Ground N/A AF26 SXPVSS Ground N/A AH26 SXPVSS Ground N/A M26 SXPVSS Ground N/A N24 SXPVSS Ground N/A P26 SXPVSS Ground N/A T26 SXPVSS Ground N/A E17 TCK I QVDD F17 TDI I QVDD B14 TDO O QVDD B15 TMS I QVDD G17 TRST I QVDD F10 VDD Power N/A F8 VDD Power N/A G7 VDD Power N/A G9 VDD Power N/A H10 VDD Power N/A H16 VDD Power N/A H18 VDD Power N/A H8 VDD Power N/A J11 VDD Power N/A J13 VDD Power N/A J15 VDD Power N/A J17 VDD Power N/A J19 VDD Power N/A J7 VDD Power N/A J9 VDD Power N/A K10 VDD Power N/A K12 VDD Power N/A K14 VDD Power N/A K16 VDD Power N/A K18 VDD Power N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 32 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name K20 VDD Power N/A K8 VDD Power N/A L11 VDD Power N/A L13 VDD Power N/A L15 VDD Power N/A L17 VDD Power N/A L19 VDD Power N/A L7 VDD Power N/A L9 VDD Power N/A M10 VDD Power N/A M12 VDD Power N/A M14 VDD Power N/A M16 VDD Power N/A M18 VDD Power N/A M20 VDD Power N/A M8 VDD Power N/A N13 VDD Power N/A N15 VDD Power N/A N17 VDD Power N/A N19 VDD Power N/A P12 VDD Power N/A P14 VDD Power N/A P16 VDD Power N/A P18 VDD Power N/A P20 VDD Power N/A R13 VDD Power N/A R15 VDD Power N/A R17 VDD Power N/A R19 VDD Power N/A R9 VDD Power N/A T10 VDD Power N/A T12 VDD Power N/A T14 VDD Power N/A T16 VDD Power N/A T18 VDD Power N/A T20 VDD Power N/A U11 VDD Power N/A U13 VDD Power N/A U15 VDD Power N/A U17 VDD Power N/A U19 VDD Power N/A U9 VDD Power N/A V10 VDD Power N/A V12 VDD Power N/A V14 VDD Power N/A V16 VDD Power N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 33 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name V18 VDD Power N/A V20 VDD Power N/A W19 VDD Power N/A W9 VDD Power N/A Y10 VDD Power N/A Y20 VDD Power N/A A15 VSS Ground N/A A17 VSS Ground N/A A19 VSS Ground N/A A2 VSS Ground N/A A5 VSS Ground N/A AA10 VSS Ground N/A AA12 VSS Ground N/A AA14 VSS Ground N/A AA16 VSS Ground N/A AA18 VSS Ground N/A AA2 VSS Ground N/A AA5 VSS Ground N/A AA8 VSS Ground N/A AB11 VSS Ground N/A AB13 VSS Ground N/A AB15 VSS Ground N/A AB17 VSS Ground N/A AC1 VSS Ground N/A AC10 VSS Ground N/A AC12 VSS Ground N/A AC14 VSS Ground N/A AC16 VSS Ground N/A AC4 VSS Ground N/A AC7 VSS Ground N/A AD12 VSS Non-user N/A AD13 VSS Non-user N/A AD14 VSS Non-user N/A AD15 VSS Ground N/A AD16 VSS Ground N/A AE11 VSS Ground N/A AE13 VSS Non-user N/A AE14 VSS Ground N/A AE15 VSS Ground N/A AE16 VSS Ground N/A AE2 VSS Ground N/A AE5 VSS Ground N/A AE8 VSS Ground N/A AF13 VSS Non-user N/A AF14 VSS Ground N/A AF15 VSS Ground N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 34 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name AF16 VSS Ground N/A AG1 VSS Ground N/A AG10 VSS Ground N/A AG13 VSS Ground N/A AG14 VSS Ground N/A AG15 VSS Ground N/A AG16 VSS Ground N/A AG4 VSS Ground N/A AG7 VSS Ground N/A AH13 VSS Ground N/A B11 VSS Ground N/A B13 VSS Ground N/A B16 VSS Ground N/A B17 VSS Ground N/A B18 VSS Ground N/A B19 VSS Ground N/A B21 VSS Ground N/A B22 VSS Non-user N/A B23 VSS Ground N/A B25 VSS Ground N/A B27 VSS Ground N/A B9 VSS Ground N/A C1 VSS Ground N/A C18 VSS Ground N/A C4 VSS Ground N/A C7 VSS Ground N/A D11 VSS Ground N/A D13 VSS Ground N/A D16 VSS Ground N/A D18 VSS Ground N/A D19 VSS Non-user N/A D23 VSS Ground N/A D9 VSS Ground N/A E18 VSS Ground N/A N/A E2 VSS Ground E21 VSS Ground N/A E22 VSS Non-user N/A E25 VSS Ground N/A E5 VSS Ground N/A E8 VSS Ground N/A F13 VSS Ground N/A F16 VSS Ground N/A F18 VSS Ground N/A F9 VSS Ground N/A G1 VSS Ground N/A G10 VSS Ground N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 35 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name G18 VSS Ground N/A G23 VSS Ground N/A G27 VSS Ground N/A G4 VSS Ground N/A G8 VSS Ground N/A H11 VSS Ground N/A H12 VSS Non-user N/A H15 VSS Ground N/A H17 VSS Ground N/A H19 VSS Ground N/A H21 VSS Ground N/A H25 VSS Ground N/A H7 VSS Ground N/A H9 VSS Ground N/A J10 VSS Ground N/A J12 VSS Ground N/A J14 VSS Ground N/A J16 VSS Ground N/A J18 VSS Ground N/A J2 VSS Ground N/A J20 VSS Ground N/A J8 VSS Ground N/A K11 VSS Ground N/A K13 VSS Ground N/A K15 VSS Ground N/A K17 VSS Ground N/A K19 VSS Ground N/A K21 VSS Ground N/A K23 VSS Ground N/A K27 VSS Ground N/A K7 VSS Ground N/A K9 VSS Ground N/A L1 VSS Ground N/A L10 VSS Ground N/A L12 VSS Ground N/A L14 VSS Ground N/A L16 VSS Ground N/A L18 VSS Ground N/A L20 VSS Ground N/A L24 VSS Non-user N/A L25 VSS Non-user N/A L26 VSS Non-user N/A L4 VSS Ground N/A L8 VSS Ground N/A M11 VSS Ground N/A M13 VSS Ground N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 36 Freescale Semiconductor Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name M15 VSS Ground N/A M17 VSS Ground N/A M19 VSS Ground N/A M7 VSS Ground N/A M9 VSS Ground N/A N10 VSS Ground N/A N12 VSS Ground N/A N14 VSS Ground N/A N16 VSS Ground N/A N18 VSS Ground N/A N2 VSS Ground N/A N20 VSS Ground N/A N5 VSS Ground N/A N8 VSS Ground N/A P11 VSS Ground N/A P13 VSS Ground N/A P15 VSS Ground N/A P17 VSS Ground N/A P19 VSS Ground N/A P7 VSS Ground N/A P9 VSS Ground N/A R10 VSS Ground N/A R12 VSS Ground N/A R14 VSS Ground N/A R16 VSS Ground N/A R18 VSS Ground N/A R20 VSS Ground N/A R4 VSS Ground N/A R8 VSS Ground N/A T1 VSS Ground N/A T11 VSS Ground N/A T13 VSS Ground N/A T15 VSS Ground N/A T17 VSS Ground N/A T19 VSS Ground N/A T2 VSS Ground N/A T7 VSS Ground N/A T9 VSS Ground N/A U10 VSS Ground N/A U12 VSS Ground N/A U14 VSS Ground N/A U16 VSS Ground N/A U18 VSS Ground N/A U2 VSS Ground N/A U20 VSS Ground N/A U5 VSS Ground N/A MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 37 Pin Assignment Table 2. Signal List by Primary Signal Name (continued) Signal Name1,2 Ball Number Pin Type3 Power Rail Name U8 VSS Ground N/A V11 VSS Ground N/A V13 VSS Ground N/A V15 VSS Ground N/A V17 VSS Ground N/A V19 VSS Ground N/A V2 VSS Ground N/A V7 VSS Ground N/A V9 VSS Ground N/A W1 VSS Ground N/A W10 VSS Ground N/A W12 VSS Ground N/A W14 VSS Ground N/A W16 VSS Ground N/A W18 VSS Ground N/A W2 VSS Ground N/A W20 VSS Ground N/A W4 VSS Ground N/A W8 VSS Ground N/A Y11 VSS Ground N/A Y13 VSS Ground N/A Y15 VSS Ground N/A Y17 VSS Ground N/A Y19 VSS Ground N/A Y7 VSS Ground N/A Y9 VSS Ground N/A VSS` Ground N/A D27 Notes: 1. 2. 3. 4. Signal function during power-on reset is determined by the RCW source type. Selection of RapidIO, SGMII, CPRI, and PCI Express functionality during normal operation is configured by the RCW bit values. Selection of the GPIO function and other functions is done by GPIO register setup. For signals with GPIO functionality, the open-drain and internal 20 K pull-up resistor can be configured by GPIO register programming. For configuration details, see the GPIO chapter in the MSC8157E Reference Manual. NC signals should be disconnected for compatibility with future revisions of the device. Non-user signals are reserved for manufacturing and test purposes only. The assigned signal name is used to indicate whether the signal must be unconnected (Reserved), pulled down (VSS or SXCVSS), or pulled up (VDD). Pin types are: Ground = all VSS connections; Power = all VDD connections; I = Input; O = Output; I/O = Input/Output; NC = not connected; non-user = connect as specified under Signal Name. Connect power inputs to the power supplies via external filters. See the MSC8157 Design Checklist (AN4110) for details. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 38 Freescale Semiconductor Electrical Characteristics 2 Electrical Characteristics This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. For additional information, see the MSC8157E Reference Manual. 2.1 Maximum Ratings In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device with a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist. Table 3 describes the maximum electrical ratings for the MSC8157E. Table 3. Absolute Maximum Ratings Rating Power Rail Name Symbol Value Unit VDD VDD -0.3 to 1.1 V PLL supply voltage3 PLL0_AVDD PLL1_AVDD PLL2_AVDD MAVDD SD_PLL1_AVDD SD_PLL2_AVDD VDDPLL0 VDDPLL1 VDDPLL2 VDDPLLM VDDPLL VDDPLL -0.3 to 1.1 -0.3 to 1.1 -0.3 to 1.1 -0.3 to 1.1 -0.3 to 1.1 -0.3 to 1.1 V V V V V V CRPE supply voltage CPRI supply voltage CRPEVDD CPRIVDD VDDCRPE VDDCPRI -0.3 to 1.1 -0.3 to 1.1 V V M3VDD VDDM3 -0.3 to 1.1 V GVDD VDDDDR -0.3 to 1.65 V MVREF MVREF -0.3 to 0.51 x VDDDDR V VINDDR -0.3 to VDDDDR + 0.3 V VDDIO -0.3 to 2.625 V VINIO -0.3 to VDDIO + 0.3 V Core supply voltage * Cores 0-5 M3 memory supply voltage DDR memory supply voltage DDR reference voltage Input DDR voltage I/O voltage excluding DDR and RapidIO lines NVDD, QVDD Input I/O voltage SerDes pad voltage SXPVDD VDDSXP -0.3 to 1.65 V SerDes core voltage SXCVDD VDDSXC -0.3 to 1.21 V VDDRIOPLL -0.3 to 1.21 V VINRIO -0.4 to VDDSXC + 0.3 V TJ -40 to 105 C TSTG -55 to +150 C SerDes PLL voltage3 Input SerDes I/O voltage Operating temperature Storage temperature range Notes: 1. 2. 3. Functional operating conditions are given in Table 4. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the listed limits may affect device reliability or cause permanent damage. PLL supply voltage is specified at input of the filter and not at pin of the MSC8157E (see the MSC8157 Design Checklist (AN4110)). MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 39 Electrical Characteristics 2.2 Recommended Operating Conditions Table 4 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed. Table 4. Recommended Operating Conditions Rating Supply Min Nominal Max Unit VDD 0.97 1.0 1.05 V PLL0_AVDD PLL1_AVDD PLL2_AVDD MAVDD SD_PLL1_AVDD SD_PLL2_AVDD 0.97 1.0 1.05 V CRPE supply voltage1 CRPEVDD 0.97 1.0 1.05 V CPRI supply voltage1 CPRIVDD 0.97 1.0 1.05 V M3VDD 0.97 1.0 1.05 V GVDD 1.425 1.5 1.575 V MVREF 0.49 x GVDD (nom) 0.5 x GVDD (nom) 0.51 x GVDD (nom) V RGMII Ethernet and GPIO supply voltage2 NVDD 2.375 2.5 2.625 V Input/output clocks, reset signal, and JTAG supply voltage2 QVDD 2.375 2.5 2.625 V SerDes pad supply voltage SXPVDD 1.425 1.5 1.575 V SerDes core supply voltage1 SXCVDD 0.97 1.0 1.05 V TJ TA TJ 0 -40 -- 105 -- 105 C C C Core supply voltage1 PLL supply voltage 1,3 Switchable M3 memory supply voltage1 DDR memory supply voltage DDR reference voltage Operating temperature range: * Standard * Extended Notes: 1. 2. 3. Designates supplies that use the same 1.0 V nominal voltage level. Designates supplies that use the same 2.5 V nominal voltage level. PLL supply voltage is specified at the input of the filter and not at the MSC8157E pin for the supply. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 40 Freescale Semiconductor Electrical Characteristics 2.3 Thermal Characteristics Table 5 describes thermal characteristics of the MSC8157E for the FC-PBGA packages. Table 5. Thermal Characteristics for the MSC8157E FC-PBGA 29 x 29 mm2 Characteristic Symbol Junction-to-ambient1, 2 Junction-to-ambient, four-layer board 1, 2 Junction-to-board (bottom)3 Junction-to-case Notes: 1. 2. 3. 4. 2.4 4 Unit Natural Convection 200 ft/min (1 m/s) airflow RJA 18 12 C/W 9 C/W RJA 13 RJB 4 C/W RJC 0.4 C/W Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESDC51-6. Thermal test board meets JEDEC specification for the specified package. Junction-to-board thermal resistance determined per JEDEC JESD 51-8. Thermal test board meets JEDEC specification for the specified package. Junction-to-case at the top of the package determined using MIL- STD-883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer CLKIN/MCLKIN Requirements Table 6 summarizes the required characteristics for the CLKIN/MCLKIN signal. Table 6. CLKIN/MCLKIN Requirements Parameter/Condition1 Symbol Min Typ Max Unit Notes CLKIN/MCLKIN duty cycle -- 40 -- 60 % 2 CLKIN/MCLKIN slew rate -- 1 -- 4 V/ns 3 CLKIN/MCLKIN peak period jitter -- -- -- 150 ps -- CLKIN/MCLKIN jitter phase noise at -56 dBc AC input swing limits Input capacitance Notes: 2.5 1. 2. 3. 4. 5. -- -- -- 500 KHz 4 VAC 1.5 -- -- V -- CIN -- -- 15 pf 5 For clock frequencies, see the Clock chapter in the MSC8157E Reference Manual. Measured at the rising edge and/or the falling edge at VDDIO/2. Slew rate as measured from 20% to 80% of voltage swing at clock input. Phase noise is calculated as FFT of TIE jitter. The specified capacitance is not an external requirement. It represents the internal capacitance specification. DC Electrical Characteristics This section describes the DC electrical characteristics for the MSC8157E. 2.5.1 DDR SDRAM Electrical Characteristics This section describes the DC electrical specifications for the DDR SDRAM interface of the MSC8157E. Table 7 provides the recommended operating conditions for the DDR SDRAM controller when interfacing to DDR3 SDRAM. Note: At recommended operating conditions (see Table 4) with GVDD = 1.5 V. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 41 Electrical Characteristics . Table 7. DDR3 SDRAM Interface DC Electrical Characteristics Parameter/Condition Symbol Min Max Unit Notes MVREF 0.49 x VDDDDR 0.51 x VDDDDR V 2,3,4 Input high voltage VIH MVREF + 0.100 VDDDDR V 5 Input low voltage VIL GND MVREF - 0.100 V 5 Output high current (VOUT = 0.7125 V) IOH -- -25.9 mA 6, 7 Output low current (VOUT = 0.7125 V) IOL 25.9 -- mA 6, 7 I/O leakage current IOZ -50 50 A 8 I/O reference voltage Notes: 1. 2. 3. 4. 5. 6. 7. 8. VDDDDR is expected to be within 50 mV of the DRAM VDD at all times. The DRAM and memory controller can use the same or different sources. MVREF is expected to be equal to 0.5 x VDDDDR and to track VDDDDR DC variations as measured at the receiver. Peak-to-peak noise on MVREF may not exceed 1% of the VDDDDR DC value (that is, 15 mV). VTT is not applied directly to the device. It is the supply to which the far end signal termination is made and is expected to be equal to MVREF with a minimum value of MVREF - 0.04 and a maximum value of MVREF + 0.04 V. VTT should track variations in the DC-level of MVREF. The voltage regulator for MVREF meet the specifications stated in Table 9. Input capacitance load for DQ, DQS, and DQS signals are available in the IBIS models. IOH and IOL are measured at VDDDDR = 1.425 V. Refer to the IBIS model for the complete output IV curve characteristics. Output leakage is measured with all outputs are disabled, 0 V VOUT VDDDDR. Table 8 provides the DDR controller interface capacitance for DDR3 memory. Note: At recommended operating conditions (see Table 4) with VDDDDR = 1.5 V. Table 8. DDR3 SDRAM Capacitance Parameter Symbol Min Max Unit I/O capacitance: DQ, DQS, DQS CIO 6 8 pF Delta I/O capacitance: DQ, DQS, DQS CDIO -- 0.5 pF Note: Guaranteed by FAB process and micro-construction. Table 9 lists the current draw characteristics for MVREF. Note: Values when used at recommended operating conditions (see Table 4). Table 9. Current Draw Characteristics for MVREF Parameter / Condition Current draw for MVREF 2.5.2 Symbol Min Max Unit IMVREFn -- 1250 A High-Speed Serial Interface (HSSI) DC Electrical Characteristics The MSC8157E features an HSSI that includes one 10-channel SerDes port (lanes A through J) used for high-speed serial interface applications (PCI Express, Serial RapidIO interfaces, CPRI, and SGMII). This section and its subsections describe the common portion of the SerDes DC, including the DC requirements for the SerDes reference clocks and the SerDes data lane transmitter (Tx) and receiver (Rx) reference circuits. The data lane circuit specifications are specific for each supported interface, and they have individual subsections by protocol. The selection of individual data channel functionality is done via the Reset Configuration Word High Register (RCWHR) SerDes Protocol selection fields (S1P and S2P). Specific AC electrical characteristics are defined in Section 2.6.2, "HSSI AC Timing Specifications." MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 42 Freescale Semiconductor Electrical Characteristics 2.5.2.1 Signal Term Definitions The SerDes interface uses differential signaling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals. Figure 3 shows how the signals are defined. Figure 3 shows the waveform for either a transmitter output (SD_[A-J]_TX and SD_[A-J]_TX) or a receiver input (SD_[A-J]_RX and SD_[A-J]_RX). Each signal swings between X volts and Y volts where X > Y. SD_[A-J]_TX or SD_[A-J]_RX X Volts Vcm = (X + Y)/2 SD_[A-J]_TX or SD_[A-J]_RX Y Volts Differential Swing, VID or VOD = X - Y Differential Peak Voltage, VDIFFp = |X - Y| Differential Peak-Peak Voltage, VDIFFpp = 2 x VDIFFp (not shown) Figure 3. Differential Voltage Definitions for Transmitter/Receiver Using this waveform, the definitions are listed in Table 10. To simplify the illustration, the definitions assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling environment. Table 10. Differential Signal Definitions Term Definition Single-Ended Swing The transmitter output signals and the receiver input signals SD[A-J]_TX, SD_[A-J]_TX, SD_[A-J]_RX and SD_[A-J]_RX each have a peak-to-peak swing of X - Y volts. This is also referred to as each signal wire's single-ended swing. Differential Output Voltage, VOD (or Differential Output Swing): The differential output voltage (or swing) of the transmitter, VOD, is defined as the difference of the two complimentary output voltages: VSD_[A-J]_TX - VSD[A-J]_TX. The VOD value can be either positive or negative. Differential Input Voltage, VID (or Differential Input Swing) The differential input voltage (or swing) of the receiver, VID, is defined as the difference of the two complimentary input voltages: VSD_[A-J]_RX - VSD_[A-J]_RX. The VID value can be either positive or negative. Differential Peak Voltage, VDIFFp The peak value of the differential transmitter output signal or the differential receiver input signal is defined as the differential peak voltage, VDIFFp = |X- Y| volts. Differential Peak-to-Peak, VDIFFp-p Since the differential output signal of the transmitter and the differential input signal of the receiver each range from A - B to -(A - B) volts, the peak-to-peak value of the differential transmitter output signal or the differential receiver input signal is defined as differential peak-to-peak voltage, VDIFFp-p = 2 x VDIFFp = 2 x |(A - B)| volts, which is twice the differential swing in amplitude, or twice of the differential peak. For example, the output differential peak-peak voltage can also be calculated as VTX-DIFFp-p = 2 x |VOD|. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 43 Electrical Characteristics Table 10. Differential Signal Definitions (continued) Term Definition Differential Waveform The differential waveform is constructed by subtracting the inverting signal (SD_[A-J]_TX, for example) from the non-inverting signal (SD_[A-J]_TX, for example) within a differential pair. There is only one signal trace curve in a differential waveform. The voltage represented in the differential waveform is not referenced to ground. Refer to Figure 3 as an example for differential waveform. Common Mode Voltage, Vcm The common mode voltage is equal to half of the sum of the voltages between each conductor of a balanced interchange circuit and ground. In this example, for SerDes output, Vcm_out = (VSD_[A-J]_TX + VSD_[A-J]_TX) / 2 = (A + B) / 2, which is the arithmetic mean of the two complimentary output voltages within a differential pair. In a system, the common mode voltage may often differ from one component's output to the other's input. It may be different between the receiver input and driver output circuits within the same component. It is also referred to as the DC offset on some occasions. To illustrate these definitions using real values, consider the example of a current mode logic (CML) transmitter that has a common mode voltage of 2.25 V and outputs, TD and TD. If these outputs have a swing from 2.0 V to 2.5 V, the peak-to-peak voltage swing of each signal (TD or TD) is 500 mV p-p, which is referred to as the single-ended swing for each signal. Because the differential signaling environment is fully symmetrical in this example, the transmitter output differential swing (VOD) has the same amplitude as each signal single-ended swing. The differential output signal ranges between 500 mV and -500 mV. In other words, VOD is 500 mV in one phase and -500 mV in the other phase. The peak differential voltage (VDIFFp) is 500 mV. The peak-to-peak differential voltage (VDIFFp-p) is 1000 mV p-p. 2.5.2.2 SerDes Reference Clock Receiver Characteristics The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding SerDes lanes. The SerDes reference clock inputs are SD_REF_CLK1/SD_REF_CLK1 or SD_REF_CLK2/SD_REF_CLK2. Figure 4 shows a receiver reference diagram of the SerDes reference clocks. 50 SD_REF_CLK[1-2] Input Amp SD_REF_CLK[1-2] 50 Figure 4. Receiver of SerDes Reference Clocks The characteristics of the clock signals are as follows: * * * The supply voltage requirements for VDDSXC are as specified in Table 4. The SerDes reference clock receiver reference circuit structure is as follows: -- The SD_REF_CLK[1-2] and SD_REF_CLK[1-2] are internally AC-coupled differential inputs as shown in Figure 4. Each differential clock input (SD_REF_CLK[1-2] or SD_REF_CLK[1-2] has on-chip 50- termination to SXCVSS followed by on-chip AC-coupling. -- The external reference clock driver must be able to drive this termination. -- The SerDes reference clock input can be either differential or single-ended. Refer to the differential mode and single-ended mode descriptions below for detailed requirements. The maximum average current requirement also determines the common mode voltage range. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 44 Freescale Semiconductor Electrical Characteristics * -- When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage is not critical as long as it is within the range allowed by the maximum average current of 8 mA because the input is AC-coupled on-chip. -- This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V / 50 = 8 mA) while the minimum common mode input level is 0.1 V above GNDSXC. For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0 mA to 16 mA (0-0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV. -- If the device driving the SD_REF_CLK[1-2] and SD_REF_CLK[1-2] inputs cannot drive 50 to GNDSXC DC or the drive strength of the clock driver chip exceeds the maximum input current limitations, it must be AC-coupled externally. The input amplitude requirement is described in detail in the following sections. 2.5.2.3 SerDes Transmitter and Receiver Reference Circuits Figure 5 shows the reference circuits for SerDes data lane transmitter and receiver. 50 SD_[A-J]_TX SD_[A-J]_RX 50 Transmitter Receiver 50 SD_[A-J]_TX SD_[A-J]_RX 50 Note: The [A-J] indicates the specific SerDes lane. Each lane can be assigned to a specific protocol by the RCW assignments at reset (see Chapter 5, Reset in the reference manual for details). External AC coupling capacitors are required for all protocols for all lanes. Figure 5. SerDes Transmitter and Receiver Reference Circuits 2.5.2.4 Equalization With the use of high-speed serial links, the interconnect media causes degradation of the signal at the receiver and produces effects such as inter-symbol interference (ISI) or data-dependent jitter. This loss can be large enough to degrade the eye opening at the receiver beyond that allowed by the specification. To offset a portion of these effects, equalization can be used. The following is a list of the most commonly used equalization techniques: * * * 2.5.3 Pre-emphasis on the transmitter. A passive high-pass filter network placed at the receiver, often referred to as passive equalization. The use of active circuits in the receiver, often referred to as adaptive equalization. DC-Level Requirements for SerDes Interfaces The following subsections define the DC-level requirements for the SerDes reference clocks, the PCI Express data lines, the Serial RapidIO data lines, the CPRI data lines, and the SGMII data lines. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 45 Electrical Characteristics 2.5.3.1 DC-Level Requirements for SerDes Reference Clocks The DC-level requirement for the SerDes reference clock inputs is different depending on the signaling mode used to connect the clock driver chip and SerDes reference clock inputs, as described below: * Differential Mode -- The input amplitude of the differential clock must be between 400 mV and 1600 mV differential peak-peak (or between 200 mV and 800 mV differential peak). In other words, each signal wire of the differential pair must have a single-ended swing of less than 800 mV and greater than 200 mV. This requirement is the same for both external DC-coupled or AC-coupled connection. -- For an external DC-coupled connection, the maximum average current requirements sets the requirement for average voltage (common mode voltage) as between 100 mV and 400 mV. Figure 6 shows the SerDes reference clock input requirement for DC-coupled connection scheme. SD_REF_CLK[1-2] 200 mV < Input Amplitude or Differential Peak < 800 mV Vmax < 800 mV 100 mV < Vcm < 400 mV Vmin > 0 V SD_REF_CLK[1-2] Figure 6. Differential Reference Clock Input DC Requirements (External DC-Coupled) -- For an external AC-coupled connection, there is no common mode voltage requirement for the clock driver. Because the external AC-coupling capacitor blocks the DC-level, the clock driver and the SerDes reference clock receiver operate in different command mode voltages. The SerDes reference clock receiver in this connection scheme has its common mode voltage set to GNDSXC. Each signal wire of the differential inputs is allowed to swing below and above the command mode voltage GNDSXC. Figure 7 shows the SerDes reference clock input requirement for AC-coupled connection scheme. 200 mV < Input Amplitude or Differential Peak < 800 mV SD_REF_CLK[1-2] Vmax < Vcm + 400 mV Vcm SD_REF_CLK[1-2] Vmin > Vcm - 400 mV Figure 7. Differential Reference Clock Input DC Requirements (External AC-Coupled) * Single-Ended Mode -- The reference clock can also be single-ended. The SD_REF_CLK[1-2] input amplitude (single-ended swing) must be between 400 mV and 800 mV peak-peak (from VMIN to VMAX) with SD_REF_CLK[1-2] either left unconnected or tied to ground. -- The SD_REF_CLK[1-2] input average voltage must be between 200 and 400 mV. Figure 8 shows the SerDes reference clock input requirement for single-ended signaling mode. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 46 Freescale Semiconductor Electrical Characteristics -- To meet the input amplitude requirement, the reference clock inputs may need to be DC- or AC-coupled externally. For the best noise performance, the reference of the clock could be DC- or AC-coupled into the unused phase (SD_REF_CLK[1-2]) through the same source impedance as the clock input (SD_REF_CLK[1-2]) in use. 400 mV < SD_REF_CLK[1-2] Input Amplitude < 800 mV SD_REF_CLK[1-2] 0V SD_REF_CLK[1-2] Figure 8. Single-Ended Reference Clock Input DC Requirements 2.5.3.2 DC-Level Requirements for PCI Express Configurations The DC-level requirements for PCI Express implementations have separate requirements for the Tx and Rx lines. The MSC8157E supports a 2.5 Gbps and a 5 Gbps PCI Express interface defined by the PCI Express Base Specification, Revision 2.0. The transmitter specifications for 2.5 Gbps are defined in Table 11 and the receiver specifications are defined in Table 12. For 5 Gbps, the transmitter specifications are defined in Table 13 and the receiver specifications are defined in Table 14. Note: Specifications are valid at the recommended operating conditions listed in Table 4. Table 11. PCI Express (2.5 Gbps) Differential Transmitter (Tx) Output DC Specifications Parameter Symbol Min Nom Max Units Condition Differential peak-to-peak output voltage swing VTX-DIFFp-p 800 1000 1200 mV VTX-DIFFp-p = 2 x |VTX-D+ - VTX-D-|, Measured at the package pins with a test load of 50 to GND on each pin. De-emphasized differential output voltage (ratio) VTX-DE-RATIO 3.0 3.5 4.0 dB Ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by the VTX-DIFFp-p of the first bit after a transition. Measured at the package pins with a test load of 50 to GND on each pin. DC differential Tx impedance ZTX-DIFF-DC 80 100 120 Tx DC differential mode low Impedance ZTX-DC 40 50 60 Required Tx D+ as well as D- DC Impedance during all states DC single-ended TX impedance Table 12. PCI Express (2.5 Gbps) Differential Receiver (Rx) Input DC Specifications Parameter Symbol Min Nom Max Units Notes Differential input peak-to-peak voltage VRX-DIFFp-p 120 1000 1200 mV 1 DC differential Input Impedance ZRX-DIFF-DC 80 100 120 2 ZRX-DC 40 50 60 3 ZRX-HIGH-IMP-DC 50 -- -- 4 VRX-IDLE-DET-DIFFp-p 65 -- 175 mV 5 DC input impedance Powered down DC input impedance Electrical idle detect threshold MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 47 Electrical Characteristics Table 12. PCI Express (2.5 Gbps) Differential Receiver (Rx) Input DC Specifications (continued) Parameter Notes: 1. 2. 3. 4. 5. Symbol Min Nom Max Units Notes VRX-DIFFp-p = 2 x |VRX-D+ - VRX-D-| Measured at the package pins with a test load of 50 to GND on each pin. Rx DC differential mode impedance. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port. Required Rx D+ as well as D- DC Impedance (50 20% tolerance). Measured at the package pins with a test load of 50 to GND on each pin. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port. Required Rx D+ as well as D- DC Impedance when the receiver terminations do not have power. The Rx DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the Rx ground. VRX-IDLE-DET-DIFFp-p = 2 x |VRX-D+ - VRX-D-|. Measured at the package pins of the receiver Table 13. PCI Express (5 Gbps) Differential Transmitter (Tx) Output DC Specifications Parameter Symbol Min Nom Max Units Differential peak-to-peak output voltage swing VTX-DIFFp-p 800 1000 1200 mV VTX-DIFFp-p = 2 x |VTX-D+ - VTX-D-|, Measured at the package pins with a test load of 50 to GND on each pin. VTX-DIFFp-p_low 400 500 1200 mV VTX-DIFFp-p = 2 x |VTX-D+ - VTX-D-|, Measured at the package pins with a test load of 50 to GND on each pin. De-emphasized differential output voltage (ratio) VTX-DE-RATIO-3.5dB 3.0 3.5 4.0 dB Ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by the VTX-DIFFp-p of the first bit after a transition. Measured at the package pins with a test load of 50 to GND on each pin. De-emphasized differential output voltage (ratio) VTX-DE-RATIO-6.0dB 5.5 6.0 6.5 dB Ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by the VTX-DIFFp-p of the first bit after a transition. Measured at the package pins with a test load of 50 to GND on each pin. ZTX-DIFF-DC 80 100 120 Tx DC differential mode low impedance ZTX-DC 40 50 60 Required Tx D+ as well as D- DC impedance during all states Low power differential peak-to-peak output voltage swing DC differential Tx impedance Transmitter DC impedance Condition Table 14. PCI Express (5 Gbps) Differential Receiver (Rx) Input DC Specifications Parameter Symbol Min Nom Max Units Notes Differential input peak-to-peak voltage VRX-DIFFp-p 120 1000 1200 mV 1 DC differential Input Impedance ZRX-DIFF-DC 80 100 120 2 ZRX-DC 40 50 60 3 ZRX-HIGH-IMP-DC 50 -- -- 4 VRX-IDLE-DET-DIFFp-p 65 -- 175 mV 5 DC input impedance Powered down DC input impedance Electrical idle detect threshold MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 48 Freescale Semiconductor Electrical Characteristics Table 14. PCI Express (5 Gbps) Differential Receiver (Rx) Input DC Specifications (continued) Parameter Notes: Min Nom Max Units Notes VRX-DIFFp-p = 2 x |VRX-D+ - VRX-D-| Measured at the package pins with a test load of 50 to GND on each pin. Rx DC differential mode impedance. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port. Required Rx D+ as well as D- DC Impedance (50 20% tolerance). Measured at the package pins with a test load of 50 to GND on each pin. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port. Required Rx D+ as well as D- DC Impedance when the receiver terminations do not have power. The Rx DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the Rx ground. VRX-IDLE-DET-DIFFp-p = 2 x |VRX-D+ - VRX-D-|. Measured at the package pins of the receiver 1. 2. 3. 4. 5. 2.5.3.3 Note: Symbol DC Level Requirements for Serial RapidIO Configurations Specifications are valid at the recommended operating conditions listed in Table 4. Table 15. Serial RapidIO Transmitter DC Specifications for Transfer Rates 3.125 Gbaud Parameter Symbol Min Nom Max Units VO -0.40 -- 2.30 V Long run differential output voltage VDIFFPP 800 -- 1600 mVp-p L[A-J]TECR0[AMP_RED] = 0b000000 Short run differential output voltage VDIFFPP 500 -- 1000 mVp-p L[A-J]TECR0[AMP_RED] = 0b001000 ZTX-DIFF-DC 80 100 120 Output voltage DC differential TX impedance Note: Condition Voltage relative to COMMON of either signal comprising a differential pair. Table 16. Serial RapidIO Receiver DC Specifications for Transfer Rates 3.125 Gbaud Parameter Symbol Min Nom Max Units VIN 200 -- 1600 mVp-p ZRX-DIFF-DC 80 100 120 Differential input voltage DC differential RX impedance Notes: 1. 2. Voltage relative to COMMON of either signal comprising a differential pair. Specifications are for Long and Short Run. Table 17. Serial RapidIO Transmitter DC Specifications for Short Run at 5 Gbaud Parameter Symbol Min Nom Max Units Output differential voltage (into floating load Rload = 100 ) T_Vdiff 400 -- 750 mV T_Rd 80 100 120 Differential resistance Condition Amplitude setting L[A-J]TECR0[AMP_RED] = 0b001101 Table 18. Serial RapidIO Receiver DC Specifications for Short Run at 5 Gbaud Parameter Symbol Min Nom Max Units Input differential voltage R_Vdiff 125 -- 1200 mV Differential resistance R_Rdin 80 120 Table 19. Serial RapidIO Transmitter DC Specifications for Long Run at 5 Gbaud Parameter Symbol Min Nom Max Units Output differential voltage (into floating load Rload = 100 ) T_Vdiff 800 -- 1200 mV Conditions Amplitude setting L[A-J]TECR0[AMP_RED] = 0b000000 (with de-emphasis disabled) MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 49 Electrical Characteristics Table 19. Serial RapidIO Transmitter DC Specifications for Long Run at 5 Gbaud (continued) Parameter Symbol Min Nom Max Units De-emphasized differential output voltage T_VTX-DE-RATIO-3.5dB 3 3.5 4 dB * p(n)_(y)_tx_eq_type[1:0] = 01 * p(n)_(y)_tx_ratio_post1q[3:0] = 1110 Tx De-emphasized level T_VTX-DE-RATIO-6.0dB 5.5 6 6.5 dB * p(n)_(y)_tx_eq_type[1:0] = 01 * p(n)_(y)_tx_ratio_post1q[3:0] = 1100 T_Rd 80 100 120 Differential resistance Conditions Table 20. Serial RapidIO Receiver DC Specifications for Long Run at 5 Gbaud Parameter Symbol Min Nom Max Units Condition Input differential voltage R_Vdiff N/A -- 1200 mV It is assumed that for the R_Vdiff min specification, that the eye can be closed at the receiver after passing the signal through a CEI/SRIO Level II LR compliant channel. Differential resistance R_Rdin 80 -- 120 2.5.3.4 DC-Level Requirements for CPRI Configurations This section provide various DC-level requirements for CPRI Configurations. Note: Specifications are valid at the recommended operating conditions listed in Table 4. Table 21. CPRI Transmitter DC Specifications (LV: 1.2288, 2.4576 and 3.072 Gbps) Parameter Output voltage Differential output voltage Differential resistance Note: Symbol Min Nom Max Units VO -0.40 -- 2.30 V VDIFFPP 800 -- 1600 mVp-p T_Rd 80 100 120 Condition Voltage relative to COMMON of either signal comprising a differential pair. L[A-J]TECR0[AMP_RED] = 0b000000. LV is XAUI-based. Table 22. CPRI Transmitter DC Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps) Parameter Symbol Min Nom Max Units Output differential voltage (into floating load Rload = 100 ) T_Vdiff 800 -- 1200 mV T_Rd 80 100 120 Differential resistance Note: Condition L[A-J]TECR0[AMP_RED] = 0x000000 LV-II is CEI-6G-LR-based. Table 23. CPRI Receiver DC Specifications (LV: 1.2288, 2.4576 and 3.072 Gbps) Parameter Differential input voltage Difference resistance Note: Symbol Min Nom Max Units Condition VIN 200 -- 1600 mVp-p Measured at receiver. R_Rdin 80 -- 120 LV is XAUI-based. Table 24. CPRI Receiver DC Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps) Parameter Input differential voltage Symbol Min Nom Max Units Condition R_Vdiff N/A -- 1200 mV It is assumed that for the R_Vdiff min specification, that the eye can be closed at the receiver after passing the signal through a CEI/CPRI Level II LR compliant channel. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 50 Freescale Semiconductor Electrical Characteristics Table 24. CPRI Receiver DC Specifications (continued)(LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps) Parameter Symbol Min Nom Max Units Differential resistance R_Rdin 80 -- 120 Note: LV-II is CEI-6G-LR-based. 2.5.3.5 Note: Condition DC-Level Requirements for SGMII Configurations Specifications are valid at the recommended operating conditions listed in Table 4. Table 25 describes the SGMII SerDes transmitter AC-coupled DC electrical characteristics. Table 25. SGMII DC Transmitter Electrical Characteristics Parameter Symbol Min Nom Max Unit Conditions Output differential voltage |VOD| 0.64 x Nom 500 1.45 x Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0 V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100- differential load between SD_TXn and SD_TXn. 2. Amplitude setting: [A-J]TECR0[AMD_RED] = 0b000000 Output differential voltage |VOD| 0.64 x Nom 459 1.45 x Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100- differential load between SD_TXn and SD_TXn. 2. Amplitude setting: [A-J]TECR0[AMD_RED] = 0b000010 Output differential voltage |VOD| 0.64 x Nom 417 1.45 x Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100- differential load between SD_TXn and SD_TXn. 2. Amplitude setting: [A-J]TECR0[AMD_RED] = 0b000101 Output differential voltage |VOD| 0.64 x Nom 376 1.45 x Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100- differential load between SD_TXn and SD_TXn. 2. Amplitude setting: [A-J]TECR0[AMD_RED] = 0b001000 Output differential voltage |VOD| 0.64 x Nom 333 1.45 x Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100- differential load between SD_TXn and SD_TXn. 2. Amplitude setting: [A-J]TECR0[AMD_RED] = 0b001100 MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 51 Electrical Characteristics Table 25. SGMII DC Transmitter Electrical Characteristics (continued) Parameter Symbol Min Nom Max Unit Conditions Output differential voltage |VOD| 0.64 x Nom 292 1.45 x Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100- differential load between SD_TXn and SD_TXn. 2. Amplitude setting: [A-J]TECR0[AMD_RED] = 0b001111 Output differential voltage |VOD| 0.64 x Nom 250 1.45 x Nom mV 1. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset variation (VOS =500mV), SerDes transmitter is terminated with 100- differential load between SD_TXn and SD_TXn. 2. Amplitude setting: [A-J]TECR0[AMD_RED] = 0b010011 Output impedance (single-ended) RO 40 50 60 -- Output high voltage VOH -- -- 1.5 x |VOD, max| mV -- Output low voltage VOL |VOD|, min/2 -- -- mV -- Table 26 describes the SGMII SerDes receiver AC-coupled DC electrical characteristics. Table 26. SGMII DC Receiver Electrical Characteristics1,2 Symbol Min Nom Max Unit Input differential voltage3 Parameter VRX_DIFFp-p 100 -- 1200 mV 175 -- 1200 mV L[A-J]GCR1[RECTL_SIGD] = 0b100 Loss of signal threshold4 VLOS 30 -- 100 mV L[A-J]GCR1[RECTL_SIGD] = 0b001 65 -- 175 mV L[A-J]GCR1[RECTL_SIGD] = 0b100 Receiver differential input impedance ZRX_DIFF 80 -- 120 Notes: 1. 2. 3. Condition L[A-J]GCR1[RECTL_SIGD] = 0b001 -- Input must be externally AC-coupled. VRX_DIFFp-p is also referred to as peak-to-peak input differential voltage. The concept of this parameter is equivalent to the Electrical Idle Detect Threshold parameter in the PCI Express interface. Refer to the PCI Express Differential Receiver (RX) Input Specifications section of the PCI Express Specification document. for details. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 52 Freescale Semiconductor Electrical Characteristics 2.5.4 RGMII and Other Interface DC Electrical Characteristics Table 27 describes the DC electrical characteristics for the following interfaces: * * * * * * * * * * * RGMII Ethernet SPI GPIO UART TIMER EE I2C Interrupts (IRQn, NMI_OUT/CP_RX_INT, INT_OUT/CP_TX_INT) Clock and resets (CLKIN/MCLKIN, PORESET, HRESET, HRESET_IN) DMA External Request JTAG signals Table 27. 2.5 V I/O DC Electrical Characteristics Characteristic Symbol Min Max Unit Notes Input high voltage VIH 1.7 -- V 1 Input low voltage VIL -- 0.7 V 1 Input high current (VIN = VDDIO) IIN -- 30 A 2 Input low current (VIN = GND) IINL -30 -- A 2 Output high voltage (VDDIO = min, IOH = -1.0 mA) VOH 2.0 VDDIO + 0.3 V 1 Output low voltage (VDDIO = min, IOL= 1.0 mA) VOL GND - 0.3 0.40 V 1 Notes: 1. 2. The min VIL and max VIH values are based on the respective min and max VIN values listed in Table 4. The symbol VIN represents the input voltage of the supply. It is referenced in Table 4. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 53 Electrical Characteristics 2.6 AC Timing Characteristics This section describes the AC timing characteristics for the MSC8157E. 2.6.1 DDR SDRAM AC Timing Specifications This section describes the AC electrical characteristics for the DDR SDRAM interface. 2.6.1.1 DDR SDRAM Input AC Timing Specifications Table 28 provides the input AC timing specifications for the DDR SDRAM when VDDDDR (typ) = 1.5 V. Table 28. DDR3 SDRAM Input AC Timing Specifications for 1.5 V Interface Parameter Symbol Min AC input low voltage * > 1200 MHz data rate * 1200 MHz data rate VILAC -- AC input high voltage * > 1200 MHz data rate * 1200 MHz data rate VIHAC Note: Max Unit V MVREF - 0.150 MVREF - 0.175 -- V MVREF + 0.150 MVREF + 0.175 At recommended operating conditions with VDDDDR of 1.5 5%. Table 29 provides the input AC timing specifications for the DDR SDRAM interface. Table 29. DDR SDRAM Input AC Timing Specifications Parameter Symbol Controller Skew for MDQS--MDQ/MECC * 1333 MHz data rate * 1200 MHz data rate * 1066 MHz data rate * 800 MHz data rate * 667 MHz data rate tCISKEW Tolerated Skew for MDQS--MDQ/MECC * 1333 MHz data rate * 1200 MHz data rate * 1066 MHz data rate * 800 MHz data rate * 667 MHz data rate tDISKEW Notes: 1. 2. 3. 4. Min Max Unit -125 -142 -170 -200 -240 125 142 170 200 240 ps ps ps ps ps -250 -275 -300 -425 -510 250 275 300 425 510 ps ps ps ps ps Notes 1, 2, 4 2, 3 tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. Subtract this value from the total timing budget. At recommended operating conditions with VDDDDR (1.5 V) 5% The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW.This can be determined by the following equation: tDISKEW = (T / 4 - abs(tCISKEW)) where T is the clock period and abs(tCISKEW) is the absolute value of tCISKEW. The tCISKEW test coverage is derived from the tDISKEW parameters. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 54 Freescale Semiconductor Electrical Characteristics Figure 9 shows the DDR3 SDRAM interface input timing diagram. MCK[n] MCK[n] tMCK MDQS[n] tDISKEW MDQ[n] D0 D1 tDISKEW tDISKEW Figure 9. DDR3 SDRAM Interface Input Timing Diagram 2.6.1.2 DDR SDRAM Output AC Timing Specifications Table 30 provides the output AC timing specifications for the DDR SDRAM interface. Table 30. DDR SDRAM Output AC Timing Specifications Parameter MCK[n] cycle time Symbol 1 Min Max Unit tMCK 1.5 3 ns ADDR/CMD output setup with respect to MCK * 1333 MHz data rate * 1200 MHz data rate * 1066 MHz data rate * 800 MHz data rate * 667 MHz data rate tDDKHAS ADDR/CMD output hold with respect to MCK * 1333 MHz data rate * 1200 MHz data rate * 1066 MHz data rate * 800 MHz data rate * 667 MHz data rate tDDKHAX MCSn output setup with respect to MCK * 1333 MHz data rate * 1200 MHz data rate * 1066 MHz data rate * 800 MHz data rate * 667 MHz data rate tDDKHCS MCSn output hold with respect to MCK * 1333 MHz data rate * 1200 MHz data rate * 1066 MHz data rate * 800 MHz data rate * 667 MHz data rate tDDKHCX MCK to MDQS Skew * > 1066 MHz data rate * 800 MHz data rate * 667 MHz data rate tDDKHMH Notes 2 3 0.606 0.675 0.744 0.917 1.10 -- -- -- -- -- ns ns ns ns ns 0.606 0.675 0.744 0.917 1.10 -- -- -- -- -- ns ns ns ns ns 0.606 0.675 0.744 0.917 1.10 -- -- -- -- -- ns ns ns ns ns 0.606 0.675 0.744 0.917 1.10 -- -- -- -- -- ns ns ns ns ns -0.245 -0.375 -0.6 0.245 0.375 0.6 ns ns ns 3 3 3 4 MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 55 Electrical Characteristics Table 30. DDR SDRAM Output AC Timing Specifications (continued) Symbol 1 Parameter Min Max Unit 250 275 300 375 450 -- -- -- -- -- ps ps ps ps ps 250 275 300 375 450 -- -- -- -- -- ps ps ps ps ps Notes 5, 6 MDQ/MECC/MDM output setup with respect to MDQS * 1333 MHz data rate * 1200 MHz data rate * 1066 MHz data rate * 800 MHz data rate * 667 MHz data rate tDDKHDS, tDDKLDS MDQ/MECC/MDM output hold with respect to MDQS * 1333 MHz data rate * 1200 MHz data rate * 1066 MHz data rate * 800 MHz data rate * 667 MHz data rate tDDKHDX, tDDKLDX MDQS preamble tDDKHMP 0.9 x tMCK -- ns -- MDQS postamble tDDKHME 0.4 x tMCK 0.6 x tMCK ns -- Notes: 1. 2. 3. 4. 5. 6. Note: 5 The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time. All MCK/MCK referenced measurements are made from the crossing of the two signals. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. This will typically be set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these two parameters have been set to the same adjustment value. See the MSC8157E Reference Manual for a description and understanding of the timing modifications enabled by use of these bits. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the MSC8157E. At recommended operating conditions with VDDDDR (1.5 V) 5%. For the ADDR/CMD setup and hold specifications in Table 30, it is assumed that the clock control register is set to adjust the memory clocks by 1/2 applied cycle. Figure 10 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (tDDKHMH). MCK[n] MCK[n] tMCK tDDKHMHmax) = 0.6 ns or 0.375 ns MDQS tDDKHMH(min) = -0.6 ns or -0.375 ns MDQS Figure 10. MCK to MDQS Timing MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 56 Freescale Semiconductor Electrical Characteristics Figure 11 shows the DDR SDRAM output timing diagram. MCK[n] MCK[n] tMCK tDDKHAS, tDDKHCS tDDKHAX, tDDKHCX ADDR/CMD Write A0 NOOP tDDKHMP tDDKHMH MDQS[n] tDDKHME tDDKHDS tDDKLDS MDQ[x] D0 D1 tDDKLDX tDDKHDX Figure 11. DDR SDRAM Output Timing Figure 12 provides the AC test load for the DDR3 controller bus. Output Z0 = 50 RL = 50 VDDDDR/2 Figure 12. DDR3 Controller Bus AC Test Load 2.6.1.3 DDR3 SDRAM Differential Timing Specifications This section describes the DC and AC differential timing specifications for the DDR3 SDRAM controller interface. Figure 13 shows the differential timing specification. GVDD VTR GVDD/2 VOX or VIX VCP GND Figure 13. DDR3 SDRAM Differential Timing Specifications Note: VTR specifies the true input signal (such as MCK or MDQS) and VCP is the complementary input signal (such as MCK or MDQS). Table 31 provides the DDR3 differential specifications for the differential signals MDQS/MDQS and MCK/MCK. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 57 Electrical Characteristics Table 31. DDR3 SDRAM Differential Electrical Characteristics Parameter Symbol Min Max Unit Input AC differential cross-point voltage VIXAC 0.5 x VDDDDR - 0.150 0.5 x VDDDDR + 0.150 V Output AC differential cross-point voltage VOXAC 0.5 x VDDDDR - 0.115 0.5 x VDDDDR + 0.115 V Note: I/O drivers are calibrated before making measurements. 2.6.2 HSSI AC Timing Specifications The following subsections define the AC timing requirements for the SerDes reference clocks, the PCI Express data lines, the Serial RapidIO data lines, and the SGMII data lines. 2.6.2.1 AC Requirements for SerDes Reference Clock Table 32 lists AC requirements for the SerDes reference clocks. Note: Specifications are valid at the recommended operating conditions listed in Table 4. Table 32. SD_REF_CLK[1-2] and SD_REF_CLK[1-2] Input Clock Requirements Parameter Symbol Min Nom Max Units Notes SD_REF_CLK[1-2]/SD_REF_CLK[1-2] frequency range tCLK_REF -- 100/125 CPRI: 122.88 -- MHz 1 SD_REF_CLK[1-2]/SD_REF_CLK[1-2] clock frequency tolerance * Serial RapidIO, CPRI, SGMII * PCI Express interface tCLK_TOL -- -100 -300 -- -- 100 300 ppm ppm tCLK_DUTY 40 50 60 % 4 SD_REF_CLK[1-2]/SD_REF_CLK[1-2]max deterministic peak-peak jitter at 10-6 BER tCLK_DJ -- -- 42 ps -- SD_REF_CLK[1-2]/SD_REF_CLK[1-2] total reference clock jitter at 10-6 BER (peak-to-peak jitter at ref_clk input) tCLK_TJ -- -- 86 ps 2 SD_REF_CLK/SD_REF_CLK rising/falling edge rate tCLKRR/tCLKFR 1 -- 4 V/ns 3 Differential input high voltage VIH 200 -- -- mV 4 Differential input low voltage VIL -- -- -200 mV 4 Rise-Fall -- -- 20 % 5, 6 SD_REF_CLK[1-2]/SD_REF_CLK[1-2] reference clock duty cycle Rising edge rate (SD_REF_CLKn to falling edge rate) Notes: 1. 2. 3. 4. 5. 6. 7. Only 100, 122.88, and 125 MHz have been tested. CPRI uses 122.88 MHz. The other interfaces use 100 or 125 MHz. Other values will not work correctly with the rest of the system. Limits are from PCI Express CEM Rev 2.0. Measured from -200 mV to +200 mV on the differential waveform (derived from SD_REF_CLKn minus SD_REF_CLKn). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 14. Measurement taken from differential waveform. Measurement taken from single-ended waveform. Matching applies to rising edge for SD_REF_CLKn and falling edge rate for SD_REF_CLKn. It is measured using a 200 mV window centered on the median cross point where SD_REF_CLKn rising meets SD_REF_CLKn falling. The median cross point is used to calculate the voltage thresholds that the oscilloscope uses for the edge rate calculations. The rising edge rate of SD_RF_CLKn should be compared to the falling edge rate of SD_REF_CLKn; the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 15. REF_CLK jitter must be less than 0.05 UI when measured against a Golden PLL reference. The Golden PLL must have a maximum baud rate bandwidth greater than 1667, with a maximum 20 dB/dec rolloff down to a baud rate of 16.67 with no peaking around the corner frequency. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 58 Freescale Semiconductor Electrical Characteristics Rise Edge Rate Fall Edge Rate VIH = +200 mV 0.0 V VIL = -200 mV SD_REF_CLKn - SD_REF_CLKn Figure 14. Differential Measurement Points for Rise and Fall Time Figure 15. Single-Ended Measurement Points for Rise and Fall Time Matching 2.6.2.2 Spread Spectrum Clock SD_REF_CLK[1-2] and SD_REF_CLK[1-2] were designed to work with a spread spectrum clock (+0 to 0.5% spreading at 30-33 KHz rate is allowed), assuming both ends have the same reference clock and the industry protocol supports it. For better results, use a source without significant unintended modulation. 2.6.2.3 PCI Express AC Physical Layer Specifications The AC requirements for PCI Express implementations have separate requirements for the Tx and Rx lines. The MSC8157E supports a 2.5 Gbps or a 5.0 Gbps PCI Express interface defined by the PCI Express Base Specification, Revision 2.0. The 2.5 Gbps transmitter specifications are defined in Table 33 and the receiver specifications are defined in Table 34. The 5.0 Gbps transmitter specifications are defined in Table 35 and the receiver specifications are defined in Table 36. The parameters are specified at the component pins. the AC timing specifications do not include REF_CLK jitter. Note: Specifications are valid at the recommended operating conditions listed in Table 4. Table 33. PCI Express 2.0 (2.5 Gbps) Differential Transmitter (Tx) Output AC Specifications Parameter Symbol Min Nom Max Units Comments Unit interval UI 399.88 400.00 400.12 ps Each UI is 400 ps 300 ppm. UI does not account for spread spectrum clock dictated variations. See note 1. Tx eye width TTX-EYE 0.75 -- -- UI The maximum transmitter jitter can be derived as TTX-MAX-JITTER = 1 - TTX-EYE = 0.25 UI. This does not include spread spectrum or REF_CLK jitter. It includes device random jitter at 10-12. See notes 2 and 3. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 59 Electrical Characteristics Table 33. PCI Express 2.0 (2.5 Gbps) Differential Transmitter (Tx) Output AC Specifications (continued) Parameter Symbol Min Nom Max Units Comments Time between the jitter median and maximum deviation from the median. TTX-EYE-MEDIAN- -- -- 0.125 UI Jitter is defined as the measurement variation of the crossing points (VTX-DIFFp-p = 0 V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI. See notes 2 and 3. 75 -- 200 nF All transmitters must be AC coupled. The AC coupling is required either within the media or within the transmitting component itself. See note 4. AC coupling capacitor Notes: 1. 2. 3. 4. to-MAX-JITTER CTX No test load is necessarily associated with this value. Specified at the measurement point into a timing and voltage test load as shown in Figure 16 and measured over any 250 consecutive Tx UIs. A TTX-EYE = 0.75 UI provides for a total sum of deterministic and random jitter budget of TTX-NAX-JITTER = 0.25 UI for the transmitter collected over any 250 consecutive Tx UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the total Tx jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. The DSP device SerDes transmitter does not have a built-in CTX. An external AC coupling capacitor is required. Table 34. PCI Express 2.0 (2.5 Gbps) Differential Receiver (Rx) Input AC Specifications Parameter Symbol Min Nom Max Units UI 399.88 400.00 400.12 ps Each UI is 400 ps 300 ppm. UI does not account for spread spectrum clock dictated variations. See note 1. Minimum receiver eye width TRX-EYE 0.4 -- -- UI The maximum interconnect media and Transmitter jitter that can be tolerated by the Receiver can be derived as TRX-MAX-JITTER = 1 - TRX-EYE= 0.6 UI. See notes 2 and 3. Maximum time between the jitter median and maximum deviation from the median. TRX-EYE-MEDIAN-t -- -- 0.3 UI Jitter is defined as the measurement variation of the crossing points (VRX-DIFFp-p = 0 V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI. See notes 2, 3, and 4. Unit Interval Notes: 1. 2. 3. 4. o-MAX-JITTER Comments No test load is necessarily associated with this value. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 16 should be used as the Rx device when taking measurements. If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must be used as a reference for the eye diagram. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the Transmitter and interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must be used as the reference for the eye diagram. It is recommended that the recovered Tx UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated data. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 60 Freescale Semiconductor Electrical Characteristics Table 35. PCI Express 2.0 (5.0 Gbps) Differential Transmitter (Tx) Output AC Specifications Parameter Symbol Min Nom Max Units UI 199.94 200.00 200.06 ps Each UI is 400 ps 300 ppm. UI does not account for spread spectrum clock dictated variations. See note 1. Minimum Tx eye width TTX-EYE 0.75 -- -- UI The maximum Transmitter jitter can be derived as: TTX-MAX-JITTER = 1 - TTX-EYE = 0.25 UI. See notes 2 and 3. Tx RMS deterministic jitter > 1.5 MHz TTX-HF-DJ-DD -- -- 0.15 ps -- Tx RMS deterministic jitter < 1.5 MHz TTX-LF-RMS -- 3.0 -- ps Reference input clock RMS jitter (< 1.5 MHz) at pin < 1 ps AC coupling capacitor CTX 75 -- 200 nF All transmitters must be AC coupled. The AC coupling is required either within the media or within the transmitting component itself. See note 4. Unit Interval Notes: 1. 2. 3. 4. Comments No test load is necessarily associated with this value. Specified at the measurement point into a timing and voltage test load as shown in Figure 16 and measured over any 250 consecutive Tx UIs. A TTX-EYE = 0.75 UI provides for a total sum of deterministic and random jitter budget of TTX-MAX-JITTER = 0.25 UI for the Transmitter collected over any 250 consecutive Tx UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the total Tx jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. The DSP device SerDes transmitter does not have a built-in CTX. An external AC coupling capacitor is required. Table 36. PCI Express 2.0 (5.0 Gbps) Differential Receiver (Rx) Input AC Specifications Parameter Symbol Min Nom Max Units Conditions UI 199.40 200.00 200.06 ps Each UI is 400 ps 300 ppm. UI does not account for spread spectrum clock dictated variations. See Note 1. Max Rx inherent timing error TRX-TJ-CC -- -- 0.4 UI The maximum inherent total timing error for common REF_CLK Rx architecture Maximum time between the jitter median and maximum deviation from the median TRX-TJ-DC -- -- 0.34 UI Max Rx inherent total timing error Max Rx inherent deterministic timing error TRX-DJ-DD-CC -- -- 0.30 UI The maximum inherent deterministic timing error for common REF_CLK Rx architecture Max Rx inherent deterministic timing error TRX-DJ-DD-DC -- -- 0.24 UI The maximum inherent deterministic timing error for common REF_CLK Rx architecture Unit Interval Note: No test load is necessarily accosted with this value. The AC timing and voltage parameters must be verified at the measurement point. The package pins of the device must be connected to the test/measurement load within 0.2 inches of that load, as shown in Figure 16. Note: The allowance of the measurement point to be within 0.2 inches of the package pins is meant to acknowledge that package/board routing may benefit from D+ and D- not being exactly matched in length at the package pin boundary. If the vendor does not explicitly state where the measurement point is located, the measurement point is assumed to be the D+ and D- package pins. D+ Package Pin C = CTX TX Silicon + Package D- Package Pin C = CTX R = 50 R = 50 Figure 16. Test Measurement Load MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 61 Electrical Characteristics 2.6.2.4 Note: Serial RapidIO AC Timing Specifications Specifications are valid at the recommended operating conditions listed in Table 4. Table 37 defines the transmitter AC specifications for the Serial RapidIO interface at frequencies up to 3.125 Gbaud. The AC timing specifications do not include REF_CLK jitter. Table 37. Serial RapidIO Transmitter AC Timing Specifications Up to 3.125 Gbaud Characteristic Symbol Min Nom Max Unit Deterministic Jitter JD -- -- 0.17 UI p-p Total Jitter JT -- -- 0.35 UI p-p Unit Interval: 1.25 GBaud UI 800 - 100ppm 800 800 + 100ppm ps Unit Interval: 2.5 GBaud UI 400 - 100ppm 400 400 + 100ppm ps Unit Interval: 3.125 GBaud UI 320 - 100ppm 320 320 + 100ppm ps Table 38 defines the Receiver AC specifications for the Serial RapidIO interface at frequencies up to 3.125 Gbaud. The AC timing specifications do not include REF_CLK jitter. Table 38. Serial RapidIO Receiver AC Timing Specifications Up to 3.125 Gbaud Characteristic Symbol Min Nom Max Unit Notes Deterministic Jitter Tolerance JD -- -- 0.37 UI p-p 1 Combined Deterministic and Random Jitter Tolerance JDR -- -- 0.55 UI p-p 1 JT -- -- 0.65 UI p-p 1, 2 BER -- -- 10-12 -- -- Unit Interval: 1.25 GBaud UI 800 - 100ppm 800 800 + 100ppm ps -- Unit Interval: 2.5 GBaud UI 400 - 100ppm 400 400 + 100ppm ps -- Unit Interval: 3.125 GBaud UI 320 - 100ppm 320 320 + 100ppm ps -- Total Jitter Tolerance Bit Error Rate Notes: 1. 2. Measured at receiver. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 17. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects. Table 39 defines the short run transmitter AC specifications for the Serial RapidIO interface at 5 Gbaud. The AC timing specifications do not include REF_CLK jitter. Table 39. Serial RapidIO Short Run Transmitter AC Timing Specifications at 5.0 Gbaud Characteristic Uncorrelated High Probability Jitter Symbol Min Nom Max Unit T_UHPJ -- -- 0.15 UI p-p Total Jitter T_TJ -- -- 0.30 UI p-p Baud Rate UI 5.000 - 100ppm 5.000 5.000 + 100ppm Gbaud Table 40 defines the short run Receiver AC specifications for the Serial RapidIO interface at 5 Gbaud. The AC timing specifications do not include REF_CLK jitter. Table 40. Serial RapidIO Short Run Receiver AC Timing Specifications at 5 Gbaud Characteristic Symbol Min Nom Max Unit R_Baud 5.000 - 100ppm 5.000 5.000 + 100ppm Gbaud Uncorrelated Bounded High Probability Jitter R_UBHPJ -- -- 0.15 UIp-p Correlated Bounded High Probability Jitter R_CBHPJ -- -- 0.3 UIp-p R_BHPJ -- -- 0.45 UIp-p Rx Baud Rate Bounded High Probability Jitter Sinusoidal Jitter maximum Sinusoidal Jitter, High Frequency R_SJ-max -- -- 5 UIp-p R_SJ-hf -- -- 0.05 UIp-p MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 62 Freescale Semiconductor Electrical Characteristics Table 40. Serial RapidIO Short Run Receiver AC Timing Specifications at 5 Gbaud (continued) Characteristic Total jitter (without sinusoidal jitter) Note: Symbol Min Nom Max Unit R_Tj -- -- 0.6 UIp-p The AC specifications do not include REF_CLK jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region in Figure 18. The ISI jitter (R_CBHPJ) and amplitude have to be correlated, for example, by a PCB trace. Table 41 defines the Transmitter AC specifications for long run Serial RapidIO interfaces using a transfer rate of 5 Gbps. The AC timing specifications do not include REF_CLK jitter. Table 41. Serial RapidIO Transmitter Long Run AC Timing for Transfer Rate of 5 Gbps Characteristic Symbol Min Nom Max Tx Baud Rate T_Baud 5.000 - 100 ppm 5.000 5.000 + 100 ppm Gbps 100 ppm Uncorrelated high probability jitter T_UHPJ 0.15 UI p-p With de-emphasis disabled. 0.30 UI p-p With de-emphasis disabled. Total Jitter T_TJ -- -- Unit Conditions Table 42 defines the Receiver AC specifications for long run Serial RapidIO interfaces using a transfer rate of 5 Gbps. The AC timing specifications do not include REF_CLK jitter. Table 42. Serial RapidIO Receiver Long Run AC Timing for Transfer Rate of 5 Gbps Characteristic Symbol Min Nom Max Unit R_Baud 5.000 - 100 ppm 5.000 5.000 + 100 ppm Gbps R_GJ 0.275 UI p-p Informative jitter budget @Rx input Uncorrelated bounded high probability jitter (DJ) R_UBHPJ 0.15 UI p-p Informative jitter budget @Rx input Correlated bounded high probability jitter (ISI) R_CBHPJ 0.525 UI p-p Informative jitter budget @Rx input R_BHPJ 0.675 UI p-p Informative jitter budget @Rx input R_SJ-max 5 UI p-p Informative jitter budget @Rx input R_SJ-hf 0.05 UI p-p Informative jitter budget @Rx input R_TJ 0.95 UI p-p Informative jitter budget @Rx input Rx Baud Rate Gaussian Bounded high probability jitter (DJ + ISI) Sinusoidal jitter, maximum Sinusoidal jitter, high frequency Total Jitter (does not include sinusoidal jitter). Note: Condition The AC specifications do not include REF_CLK jitter. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region of Figure 18. The ISl jitter (R_CBHPJ) and amplitude have to be correlated, for example, by a PC trace. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 63 Electrical Characteristics 8.5 UI p-p Pass Sinusoidal Jitter Amplitude 20dB/dec 0.10 UI p-p baud/14200 Frequency baud/1667 20 MHz Figure 17. Single Frequency Sinusoidal Jitter Limits for Data Rates for 3.125 Gbps and Below 5 UI p-p Sinusoidal Jitter Amplitude 0.05 UI p-p 22.1 kHz Frequency 2.999 MHz 20 MHz Figure 18. Single Frequency Sinusoidal Jitter Limits for Data Rate 5.0 Gbps 2.6.2.5 Note: CPRI AC Timing Specifications Specifications are valid at the recommended operating conditions listed in Table 4. Table 43 defines the transmitter AC specifications for the CPRI LV lanes. The AC timing specifications do not include REF_CLK jitter. Table 43. CPRI Transmitter AC Timing Specifications (LV-I: 1.2288, 2.4576, and 3.072 Gbps) Symbol Min Nom Max Unit Deterministic Jitter Characteristic JD -- -- 0.17 UI p-p Total Jitter JT -- -- 0.35 UI p-p Unit Interval: 1.2288 GBaud UI 1/1228.8 - 100ppm 1/1228.8 1/1228.8 + 100ppm s MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 64 Freescale Semiconductor Electrical Characteristics Table 43. CPRI Transmitter AC Timing Specifications (LV-I: 1.2288, 2.4576, and 3.072 Gbps) (continued) Symbol Min Nom Max Unit Interval: 2.4576 GBaud Characteristic UI 1/2457.6 - 100ppm 1/2457.6 1/2457.6 + 100ppm Unit s Unit Interval: 3.072 GBaud UI 1/3072.0 - 100ppm 1/3072.0 1/3072.0 + 100ppm s Table 44 defines the transmitter AC specifications for the CPRI LV-II lanes. The AC timing specifications do not include REF_CLK jitter. Table 44. CPRI Transmitter AC Timing Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps) Characteristic Symbol Min Nom Max Unit T_UHPJ -- -- 0.15 UI p-p T_TJ -- -- 0.30 UI p-p Unit Interval: 1.2288 GBaud UI 1/1228.8 - 100ppm 1/1228.8 1/1228.8 + 100ppm s Unit Interval: 2.4576 GBaud UI 1/2457.6 - 100ppm 1/2457.6 1/2457.6 + 100ppm s Unit Interval: 3.072 GBaud UI 1/3072.0 - 100ppm 1/3072.0 1/3072.0 + 100ppm s Uncorrelated High Probability Jitter Total Jitter Unit Interval: 4.9152 GBaud UI 1/4915.2 - 100ppm 1/4915.2.8 1/4915.2 + 100ppm s Unit Interval: 6.144 GBaud UI 1/6144.0 - 100ppm 1/6144.0 1/6144.0 + 100ppm s Table 45 defines the Receiver AC specifications for CPRI LV. The AC timing specifications do not include REF_CLK jitter. Table 45. CPRI Receiver AC Timing Specifications (LV-I: 1.2288, 2.4576, and 3.072 Gbps) Characteristic Deterministic jitter tolerance Combined deterministic and random jitter tolerance Symbol Min Nom Max Unit JD -- -- 0.37 UI p-p JDR -- -- 0.55 UI p-p Total Jitter tolerance JT -- -- 0.65 UI p-p Unit Interval: 1.2288 GBaud UI 1/1228.8 - 100ppm 1/1228.8 1/1228.8 + 100ppm ps Unit Interval: 2.4576 GBaud UI 1/2457.6 - 100ppm 1/2457.6 1/2457.6 + 100ppm ps Unit Interval: 3.072 GBaud UI 1/3072.0 - 100ppm 1/3072.0 1/3072.0 + 100ppm ps BER -- -- 10-12 -- Bit error ratio Table 46 defines the Receiver AC specifications for CPRI LV-II. The AC timing specifications do not include REF_CLK jitter. Table 46. CPRI Receiver AC Timing Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps) Characteristic Symbol Min Nom Max Unit R_GJ -- -- 0.275 UI p-p Uncorrelated bounded high probability jitter R_UBHPJ -- -- 0.150 UI p-p Correlated bounded high probability jitter R_CBHPJ -- -- 0.525 UI p-p Gaussian Bounded high probability jitter R_BHPJ -- -- 0.675 UI p-p R_SJ-max -- -- 5.000 UI p-p R_SJ-hf -- -- 0.050 UI p-p R_TJ -- -- 0.950 UI p-p Unit Interval: 1.2288 GBaud UI 1/1228.8 - 100ppm 1/1228.8 1/1228.8 + 100ppm s Unit Interval: 2.4576 GBaud UI 1/2457.6 - 100ppm 1/2457.6 1/2457.6 + 100ppm s Unit Interval: 3.072 GBaud UI 1/3072.0 - 100ppm 1/3072.0 1/3072.0 + 100ppm s Sinusoidal jitter, maximum Sinusoidal jitter, high frequency Total Jitter (does not include sinusoidal jitter). Unit Interval: 4.9152 GBaud UI 1/4915.2 - 100ppm 1/4915.2.8 1/4915.2 + 100ppm s Unit Interval: 6.144 GBaud UI 1/6144.0 - 100ppm 1/6144.0 1/6144.0 + 100ppm s Note: The AC specifications do not include REF_CLK jitter. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region of Figure 18. The ISl jitter (R_CBHPJ) and amplitude have to be correlated, for example, by a PC trace. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 65 Electrical Characteristics Note: The intended application is a point-to-point interface up to two connectors. The maximum allowed total loss (channel + interconnects + other loss) is 20.4 dB @ 6.144 Gbps. 2.6.2.6 Note: SGMII AC Timing Specifications Specifications are valid at the recommended operating conditions listed in Table 4. Transmitter and receiver AC characteristics are measured at the transmitter outputs (SD_[A-J]_TX and SD_[A-J]_TX) or at the receiver inputs (SD_[A-J]_RX and SD_[A-J]_RX) as depicted in Figure 19, respectively. D+ Package Pin C = CTX TX Silicon + Package D- Package Pin C = CTX R = 50 R = 50 Figure 19. SGMII AC Test/Measurement Load Table 47 provides the SGMII transmit AC timing specifications. The AC timing specifications do not include REF_CLK jitter. Table 47. SGMII Transmit AC Timing Specifications Parameter Symbol Min Nom Max Unit interval UI 800 - 100ppm 800 Deterministic jitter JD -- -- Total jitter JT -- CTX 75 AC coupling capacitor Note: Unit Condition 800 + 100ppm pS 100ppm 0.17 UI p-p -- -- 0.35 UI p-p -- 200 nF -- All transmitters must be AC-coupled The AC specifications do not include REF_CLK jitter. Table 48 provides the SGMII receiver AC timing specifications. The AC timing specifications do not include REF_CLK jitter. Table 48. SGMII Receive AC Timing Specifications Parameter Symbol Min Nom Max Unit interval UI 800 - 100ppm 800 800 + 100ppm pS Deterministic jitter tolerance JD -- -- 0.37 UI p-p Measured at receiver. JDR -- -- 0.55 UI p-p Measured at receiver JT -- -- 0.65 UI p-p Measured at receiver BER -- -- 10-12 -- Combined deterministic and random jitter tolerance Total jitter tolerance Bit error ratio Note: Unit Condition 100ppm -- The AC specifications do not include REF_CLK jitter. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region shown in Figure 20 or Figure 21. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 66 Freescale Semiconductor Electrical Characteristics 8.5 UIp-p Sinusoidal Jitter Amplitude 20 dB/dec 0.10 UIp-p baud/14200 Frequency baud/1667 20 MHz Figure 20. Single Frequency Sinusoidal Jitter Limits for Baud Rate <3.125 Gbps 8.5 UIp-p Sinusoidal Jitter Amplitude 0.10 UIp-p 22.1 kHz Frequency 1.875 MHz 20 MHz Figure 21. Single Frequency Sinusoidal Jitter Limits for Baud Rate 3.125 Gbps 2.6.3 Timers and Timers_32b AC Timing Specifications Table 49 lists the timer input AC timing specifications. Table 49. Timers Input AC Timing Specifications Characteristics Timers inputs--minimum pulse width Notes: Note: 1. 2. Symbol Minimum Unit Notes TTIWID 8 ns 1, 2 The maximum allowed frequency of timer outputs is 125 MHz. Configure the timer modules appropriately. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by any external synchronous logic. Timer inputs are required to be valid for at least tTIWID ns to ensure proper operation. For recommended operating conditions, see Table 4. MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 67 Electrical Characteristics Figure 22 shows the AC test load for the timers. Z0 = 50 Output RL = 50 VDDIO/2 Figure 22. Timer AC Test Load 2.6.4 Ethernet Timing This section describes the AC electrical characteristics for the Ethernet interface. There are three general configuration registers used to configure the timing: GCR4, UCC1_DELAY_HR, and UCC3_DELAY_HR. These registers configure the programmable delay units (PDU) that should be programmed differently for each Interface to meet timing requirements. For additional information, see the MSC8157E Reference Manual. 2.6.4.1 Management Interface Timing Table 50. Ethernet Controller Management Interface Timing Characteristics Symbol Min Max Unit fMDC -- 2.5 MHz GE_MDC frequency tMDC 400 -- ns GE_MDC clock pulse width high tMDC_H 160 -- ns GE_MDC clock pulse width low tMDC_L 160 -- ns GE_MDC to GE_MDIO delay tMDKHDX 10 70 ns GE_MDIO to GE_MDC rising edge setup time tMDDVKH 20 -- ns GE_MDC rising edge to GE_MDIO hold time tMDDXKH 0 -- ns GE_MDC period tMDC tMDC_H tMDC_L GE_MDC GE_MDIO (Input) tMDDVKH tMDDXKH GE_MDIO (Output) tMDKHDX Figure 23. MII Management Interface Timing MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 68 Freescale Semiconductor Electrical Characteristics 2.6.4.2 RGMII AC Timing Specifications Table 51 presents the RGMII AC timing specifications for applications requiring an on-board delayed clock. Table 51. RGMII at 1 Gbps with On-Board Delay2 AC Timing Specifications1 Parameter/Condition Symbol Min Data to clock output skew (at transmitter) tSKEWT -0.5 -- 0.5 ns Data to clock input skew (at receiver)3 tSKEWR 1 -- 2.6 ns 3 Notes: 1. 2. 3. Typ Max Unit At recommended operating conditions with VDDIO of 2.5 V 5%. Program GCR4 as 0x00000000, UCC1_DELAY_HR as 0x00000000, and UCC3_DELAY_HR as 0x00000000. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns is added to the associated clock signal. Figure 24 shows the RGMII AC timing and multiplexing diagrams. GTX_CLK (At Transmitter) tSKEWT TXD[3:0] txd[3:0] txd[7:4] rxd[3:0] rxd[8:5] TX_CTL RXD[3:0] RX_CTL tSKEWR RX_CLK (At Receiver) Figure 24. RGMII AC Timing and Multiplexing MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 69 Electrical Characteristics 2.6.5 SPI Timing Table 52 lists the SPI input and output AC timing specifications. Table 52. SPI AC Timing Specifications Symbol 1 Parameter Min Max Unit Note SPI outputs valid--Master mode (internal clock) delay tNIKHOV -- 6 ns 2 SPI outputs hold--Master mode (internal clock) delay tNIKHOX 0.5 -- ns 2 -- 12 ns 2 SPI outputs valid--Slave mode (external clock) delay tNEKHOV 2 -- ns 2 SPI outputs hold--Slave mode (external clock) delay tNEKHOX 12 -- ns -- SPI inputs--Master mode (internal clock) input setup time tNIIVKH SPI inputs--Master mode (internal clock) input hold time tNIIXKH 0 -- ns -- 4 -- ns -- SPI inputs--Slave mode (external clock) input setup time tNEIVKH 2 -- ns -- SPI inputs--Slave mode (external clock) input hold time tNEIXKH Notes: 1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOX symbolizes the internal timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X). 2. Output specifications are measured from the 50% level of the rising edge of SPICLK to the 50% level of the signal. Timings are measured at the pin. Figure 25 provides the AC test load for the SPI. Z0 = 50 Output RL = 50 VDDIO/2 Figure 25. SPI AC Test Load Figure 26 and Figure 27 represent the AC timings from Table 52. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge. Figure 26 shows the SPI timings in slave mode (external clock). SPICLK (input) Input Signals: SPIMOSI (See note) tNEIVKH tNEIXKH tNEKHOX tNEKHOV Output Signals: SPIMISO (See note) Note: measured with SPMODE[CI] = 0, SPMODE[CP] = 0 Figure 26. SPI AC Timing in Slave Mode (External Clock) Figure 27 shows the SPI timings in master mode (internal clock). MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 70 Freescale Semiconductor Electrical Characteristics SPICLK (output) tNIIVKH Input Signals: SPIMISO (See note) tNIIXKH tNIKHOX tNIKHOV Output Signals: SPIMOSI (See note) Note: measured with SPMODE[CI] = 0, SPMODE[CP] = 0 Figure 27. SPI AC Timing in Master Mode (Internal Clock) 2.6.6 Asynchronous Signal Timing Table 53 lists the asynchronous signal timing specifications. Table 53. Signal Timing Characteristics Input Output Note: Symbol Type Min tIN Asynchronous One CLKIN/MCLKIN cycle tOUT Asynchronous Application dependent Input value relevant for EE0, IRQ[15-0], and NMI only. The following interfaces use the specified asynchronous signals: * Note: * * * * * GPIO. Signals GPIO[31-0], when used as GPIO signals, that is, when the alternate multiplexed special functions are not selected. When used as a general purpose input (GPI), the input signal should be driven until it is acknowledged by the MSC8157E device, that is, when the expected input value is read from the GPIO data register. EE port. Signals EE0, EE1. Boot function. Signal STOP_BS. I2C interface. Signals I2C_SCL and I2C_SDA. Interrupt inputs. Signals IRQ[15-0] and NMI. Interrupt outputs. Signals INT_OUT/CP_TX_INT and NMI_OUT/CP_RX_INT (minimum pulse width is 32 ns). MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 71 2.6.7 JTAG Signals Table 54. JTAG Timing All frequencies Characteristics Symbol Unit Min Max TCK cycle time tTCKX 36.0 -- ns TCK clock high phase measured at VM = VDDIO/2 tTCKH 15.0 -- ns Boundary scan input data setup time tBSVKH 0.0 -- ns Boundary scan input data hold time tBSXKH 15.0 -- ns TCK fall to output data valid tTCKHOV -- 20.0 ns TCK fall to output high impedance tTCKHOZ -- 24.0 ns TMS, TDI data setup time tTDIVKH 5.0 -- ns TMS, TDI data hold time tTDIXKH 5.0 -- ns TCK fall to TDO data valid tTDOHOV -- 10.0 ns TCK fall to TDO high impedance tTDOHOZ -- 12.0 ns tTRST 100.0 -- ns TRST assert time Note: All timings apply to OnCE module data transfers as well as any other transfers via the JTAG port. Figure 28 shows the Test Clock Input Timing Diagram tTCKX tTCKH VM TCK (Input) VM tTCKR tTCKR Figure 28. Test Clock Input Timing Figure 29 shows the boundary scan (JTAG) timing diagram. TCK (Input) tBSVKH Data Inputs tBSXKH Input Data Valid tTCKHOV Data Outputs Output Data Valid tTCKHOZ Data Outputs Figure 29. Boundary Scan (JTAG) Timing MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 72 Freescale Semiconductor Figure 30 shows the test access port timing diagram TCK (Input) tTDIVKH TDI TMS (Input) tTDIXKH Input Data Valid tTDOHOV TDO (Output) Output Data Valid tTDOHOZ TDO (Output) Figure 30. Test Access Port Timing Figure 31 shows the TRST timing diagram. TRST (Input) tTRST Figure 31. TRST Timing 3 Hardware Design Considerations For detailed information about how to design this device into an application, see the MSC8157 Design Checklist (AN4110). 4 Ordering Information Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order. Qual status PC = Prototype Part Encryption Operating Temp 8157 E= Encryption S = 0 C to 105C T = -40 to 105C MSC = Production Package Type Core Frequency (MHz) 1000 = 1Ghz VT = FC-PBGA C5 lead-free AG = FC-PBGA C4/C5 lead-free Die revision A = Rev 1.1 MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 73 Package Information 5 Package Information NOTES: 1. 2. 3. 4. 5. 6. 7. ALL DIMENSIONS IN MILLIMETERS. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994. MAXIMUM SOLDER BALL DIAMETER MEASURE PARALLEL TO DATUM A. DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE. ALL DIMENSIONS ARE SYMMETRIC ACROSS THE PACKAGE CENTER LINES, UNLESS DIMENSIONED OTHERWISE. 29.2MM MAXIMUM PACKAGE ASSEMBLY (LID + LAMINATE) X AND Y. Figure 32. MSC8157E Mechanical Information, 783-ball FC-PBGA Package MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 74 Freescale Semiconductor Product Documentation 6 Product Documentation Following is a general list of supporting documentation: * MSC8157E Technical Data Sheet (MSC8157E). Details the signals, AC/DC characteristics, clock signal characteristics, package and pinout, and electrical design considerations of the MSC8157E device. MSC8157E Reference Manual (MSC8157ERM). Includes functional descriptions of the extended cores and all the internal subsystems including configuration and programming information. Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC8157E device. QUICC Engine Block Reference Manual with Protocol Interworking (QEIWRM). Provides detailed information regarding the QUICC Engine technology including functional description, registers, and programming information. SC3850 DSP Core Reference Manual. Covers the SC3850 core architecture, control registers, clock registers, program control, and instruction set. MSC8156SC3850 DSP Core Subsystem Reference Manual. Covers core subsystem architecture, functionality, and registers. * * * * * 7 Revision History This table provides a revision history for this data sheet. Table 55. Document Revision History Revision Date 2 1 0 12/2013 10/2013 11/2011 Description Updated Section 4, "Ordering Information." Updated Section 4, "Ordering Information." Initial public release MSC8157E Six-Core Digital Signal Processor with Security Data Sheet, Rev. 2 Freescale Semiconductor 75 How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale, the Freescale logo, and StarCore are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. QUICC Engine, is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. (c) 2011-2013 Freescale Semiconductor, Inc Document Number: MSC8157E Rev. 2 12/2013