
   
      
SCES576 – JUNE 2004
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DControl Inputs VIH/VIL Levels are
Referenced to VCCA Voltage
DFully Configurable Dual-Rail Design Allows
Each Port to Operate Over the Full 1.2-V to
3.6-V Power-Supply Range
DI/Os Are 4.6-V Tolerant
DIoff Supports Partial-Power-Down Mode
Operation
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
VCCA
1DIR
2DIR
1A1
1A2
2A1
2A2
GND
VCCB
1OE
2OE
1B1
1B2
2B1
2B2
GND
D, DB, DGV, OR PW PACKAGE
(TOP VIEW) RGY PACKAGE
(TOP VIEW)
116
89
2
3
4
5
6
7
15
14
13
12
11
10
1OE
2OE
1B1
1B2
2B1
2B2
1DIR
2DIR
1A1
1A2
2A1
2A2
GND V
GND
CCB
VCCA
description/ordering information
This 4-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is
designed to track VCCA. VCCA accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track
VCCB. V CCB accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal low-voltage bidirectional
translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.
The SN74AVC4T245 is designed for asynchronous communication between data buses. The device transmits
data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the
direction-control (DIR) input. The output-enable (OE) input can be used to disable the outputs so the buses are
effectively isolated.
The SN74AVC4T245 is designed so that the control pins (1DIR, 2DIR, 1OE, and 2OE) are supplied by VCCA.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
ORDERING INFORMATION
TAPACKAGEORDERABLE
PART NUMBER TOP-SIDE
MARKING
QFN − RGY Tape and reel SN74AVC4T245RGYR
SOIC − D
Tube SN74AVC4T245D
SOIC − D Tape and reel SN74AVC4T245DR
−40°C to 85°CSSOP − DB Tape and reel SN74AVC4T245DBR
−40 C to 85 C
TSSOP − PW
Tube SN74AVC4T245PW
TSSOP − PW Tape and reel SN74AVC4T245PWR
TVSOP − DGV Tape and reel SN74AVC4T245DGVR
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines
are available at www.ti.com/sc/package.
PRODUCT PREVIEW
Copyright 2004, Texas Instruments Incorporated
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
  !"# $$%& '()$#&  #*% !"#+% 
(%&, '*"&%  (%+%-'!%#. *""$#%&#$ ("#" "( #*%
&'%$$"#& "% (%&, ,"-&. %/"& &#)!%#& %&%+%& #*% ,*# #
$*",%  (&$#)% #*%&% '()$#& 0#*)# #$%.

   
      
SCES576 – JUNE 2004
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
description/ordering information (continued)
The V CC isolation feature ensures that if either VCC input is at GND, then both ports are in the high-impedance
state.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
FUNCTION TABLE
(each 4-bit section)
INPUTS
OPERATION
OE DIR OPERATION
L L B data to A bus
LH A data to B bus
H X Isolation
logic diagram (positive logic)
1DIR
1OE
1A1
1B1
2
4
15
13
1A2
1B2
5
12
2DIR
2OE
2A1
2B1
3
6
14
11
2A2
2B2
7
10
PRODUCT PREVIEW

   
      
SCES576 – JUNE 2004
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, VCCA and VCCB −0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (see Note 1): I/O ports (A port) −0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I/O ports (B port) −0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control inputs −0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage range applied to any output in the high-impedance or power-off state, VO
(see Note 1): (A port) −0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(B port) −0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage range applied to any output in the high or low state, VO
(see Notes 1 and 2): (A port) −0.5 V to VCCA + 0.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(B port) −0.5 V to VCCB + 0.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input clamp current, IIK (VI < 0) −50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output clamp current, IOK (VO < 0) −50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous current through VCCA, VCCB, or GND ±100 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package thermal impedance, θJA(see Note 3): D package 73°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(see Note 3): DB package 82°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(see Note 3): DGV package 120°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(see Note 3): PW package 108°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(see Note 4): RGY package 39°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg −65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
2. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
4. The package thermal impedance is calculated in accordance with JESD 51-5.
PRODUCT PREVIEW

   
      
SCES576 – JUNE 2004
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
recommended operating conditions (see Notes 5 through 7)
VCCI VCCO MIN MAX UNIT
VCCA Supply voltage 1.2 3.6 V
VCCB Supply voltage 1.2 3.6 V
High-level input
Data inputs
1.2 V to 1.95 V VCCI ×0.65
V
IH
High-level input
voltage
Data inputs
(see Note 8)
1.95 V to 2.7 V 1.6 V
VIH
voltage
(see Note 8)
2.7 V to 3.6 V 2
V
Low-level input
Data inputs
1.2 V to 1.95 V VCCI ×0.35
V
IL
Low-level input
voltage
Data inputs
(see Note 8)
1.95 V to 2.7 V 0.7 V
VIL
voltage
(see Note 8)
2.7 V to 3.6 V 0.8
V
High-level input
DIR
1.2 V to 1.95 V VCCA ×0.65
V
IH
High-level input
voltage
DIR
(Referenced to V
CCA
)1.95 V to 2.7 V 1.6 V
VIH
voltage
(Referenced to VCCA)
(see Note 9) 2.7 V to 3.6 V 2
V
Low-level input
DIR
1.2 V to 1.95 V VCCA ×0.35
V
IL
Low-level input
voltage
DIR
(Referenced to V
CCA
)1.95 V to 2.7 V 0.7 V
VIL
voltage
(Referenced to VCCA)
(see Note 9) 2.7 V to 3.6 V 0.8
V
VIInput voltage 0 3.6 V
VO
Output voltage
Active state 0 VCCO
V
VOOutput voltage 3-state 0 3.6 V
1.2 V −3
1.4 V to 1.6 V −6
I
OH
High-level output current 1.65 V to 1.95 V −8 mA
IOH
High-level output current
2.3 V to 2.7 V −9
mA
3 V to 3.6 V −12
1.2 V 3
1.4 V to 1.6 V 6
I
OL
Low-level output current 1.65 V to 1.95 V 8mA
IOL
Low-level output current
2.3 V to 2.7 V 9
mA
3 V to 3.6 V 12
t/vInput transition rise or fall rate 5 ns/V
TAOperating free-air temperature −40 85 °C
NOTES: 5. VCCI is the VCC associated with the data input port.
6. VCCO is the VCC associated with the output port.
7. All unused data inputs of the device must be held at VCCI or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
8. For VCCI values not specified in the data sheet, VIH(min) = VCCI x 0.7 V, VIL(max) = VCCI x 0.3 V.
9. For VCCI values not specified in the data sheet, VIH(min) = VCCA x 0.7 V, VIL(max) = VCCA x 0.3 V.
PRODUCT PREVIEW

   
      
SCES576 – JUNE 2004
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted) (see Notes 10 and 11)
TEST CONDITIONS
VCCA
VCCB
TA = 25°C −40°C to 85°C
UNIT
TEST CONDITIONS
VCCA VCCB MIN TYP MAX MIN MAX
UNIT
IOH = −100 µA1.2 V to 3.6 V 1.2 V to 3.6 V VCCO−0.2 V
IOH = −3 mA 1.2 V 1.2 V 0.95
IOH = −6 mA
VI = VIH
1.4 V 1.4 V 1.05
V
VOH IOH = −8 mA VI = VIH 1.65 V 1.65 V 1.2 V
IOH = −9 mA 2.3 V 2.3 V 1.75
IOH = −12 mA 3 V 3 V 2.3
IOL = 100 µA1.2 V to 3.6 V 1.2 V to 3.6 V 0.2
IOL = 3 mA 1.2 V 1.2 V 0.25
IOL = 6 mA
VI = VIL
1.4 V 1.4 V 0.35
V
VOL IOL = 8 mA VI = VIL 1.65 V 1.65 V 0.45 V
IOL = 9 mA 2.3 V 2.3 V 0.55
IOL = 12 mA 3 V 3 V 0.7
IIDIR
input VI = VCCA or GND 1.2 V to 3.6 V 1.2 V to 3.6 V ±0.025 ±0.25 ±1µA
Ioff
A or B
VI or VO = 0 to 3.6 V
0 V 0 to 3.6 V ±0.1 ±1±5
A
Ioff
A or B
port VI or VO = 0 to 3.6 V 0 to 3.6 V 0 V ±0.1 ±1±5µA
IOZA or B
port VO = VCCO or GND,
VI = VCCI or GND OE = VIH 3.6 V 3.6 V ±0.5 ±2.5 ±5µA
1.2 V to 3.6 V 1.2 V to 3.6 V
I
V
I
= V
CCI
or GND I
O
= 0 0 V 3.6 V µA
VI = VCCI or GND
IO = 0
3.6 V 0 V
µA
1.2 V to 3.6 V 1.2 V to 3.6 V
I
V
I
= V
CCI
or GND I
O
= 0 0 V 3.6 V µA
VI = VCCI or GND
IO = 0
3.6 V 0 V
µA
ICCA ICCB VI = VCCI or GND IO = 0 1.2 V to 3.6 V 1.2 V to 3.6 V µA
CiControl
inputs VI = 3.3 V or GND 3.3 V 3.3 V pF
Cio A or B
ports VO = 3.3 V or GND 3.3 V 3.3 V pF
NOTES: 10. VCCO is the VCC associated with the output port.
11. VCCI is the VCC associated with the input port.
PRODUCT PREVIEW

   
      
SCES576 – JUNE 2004
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
switching characteristics over recommended operating free-air temperature range,
VCCA = 1.2 V (see Figure 11)
PARAMETER
FROM
TO
VCCB = 1.2 V VCCB = 1.5 V VCCB = 1.8 V VCCB = 2.5 V VCCB = 3.3 V
UNIT
PARAMETER
FROM
(INPUT)
TO
(OUTPUT) TYP TYP TYP TYP TYP
UNIT
tPLH
A
B
ns
tPHL A B ns
tPLH
B
A
ns
tPHL B A ns
tPZH
OE
A
ns
tPZL OE A ns
tPZH
OE
B
ns
tPZL OE B ns
tPHZ
OE
A
ns
tPLZ OE A ns
tPHZ
OE
B
ns
tPLZ
OE
B
ns
switching characteristics over recommended operating free-air temperature range,
VCCA = 1.5 V ± 0.1 V (see Figure 11)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
VCCB = 1.2 V VCCB = 1.5 V
± 0.1 V VCCB = 1.8 V
± 0.15 V VCCB = 2.5 V
± 0.2 V VCCB = 3.3 V
± 0.3 V
UNIT
PARAMETER
(INPUT)
(OUTPUT)
TYP MIN MAX MIN MAX MIN MAX MIN MAX
UNIT
tPLH
A
B
ns
tPHL A B ns
tPLH
B
A
ns
tPHL B A ns
tPZH
OE
A
ns
tPZL OE A ns
tPZH
OE
B
ns
tPZL OE B ns
tPHZ
OE
A
ns
tPLZ OE A ns
tPHZ
OE
B
ns
tPLZ
OE
B
ns
PRODUCT PREVIEW

   
      
SCES576 – JUNE 2004
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
switching characteristics over recommended operating free-air temperature range,
VCCA = 1.8 V ± 0.15 V (see Figure 11)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
VCCB = 1.2 V VCCB = 1.5 V
± 0.1 V VCCB = 1.8 V
± 0.15 V VCCB = 2.5 V
± 0.2 V VCCB = 3.3 V
± 0.3 V
UNIT
PARAMETER
(INPUT)
(OUTPUT)
TYP MIN MAX MIN MAX MIN MAX MIN MAX
UNIT
tPLH
A
B
ns
tPHL A B ns
tPLH
B
A
ns
tPHL B A ns
tPZH
OE
A
ns
tPZL OE A ns
tPZH
OE
B
ns
tPZL OE B ns
tPHZ
OE
A
ns
tPLZ OE A ns
tPHZ
OE
B
ns
tPLZ
OE
B
ns
switching characteristics over recommended operating free-air temperature range,
VCCA = 2.5 V ± 0.2 V (see Figure 11)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
VCCB = 1.2 V VCCB = 1.5 V
± 0.1 V VCCB = 1.8 V
± 0.15 V VCCB = 2.5 V
± 0.2 V VCCB = 3.3 V
± 0.3 V
UNIT
PARAMETER
(INPUT)
(OUTPUT)
TYP MIN MAX MIN MAX MIN MAX MIN MAX
UNIT
tPLH
A
B
ns
tPHL A B ns
tPLH
B
A
ns
tPHL B A ns
tPZH
OE
A
ns
tPZL OE A ns
tPZH
OE
B
ns
tPZL OE B ns
tPHZ
OE
A
ns
tPLZ OE A ns
tPHZ
OE
B
ns
tPLZ
OE
B
ns
PRODUCT PREVIEW

   
      
SCES576 – JUNE 2004
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
switching characteristics over recommended operating free-air temperature range,
VCCA = 3.3 V ± 0.3 V (see Figure 11)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
VCCB = 1.2 V VCCB = 1.5 V
± 0.1 V VCCB = 1.8 V
± 0.15 V VCCB = 2.5 V
± 0.2 V VCCB = 3.3 V
± 0.3 V
UNIT
PARAMETER
(INPUT)
(OUTPUT)
TYP MIN MAX MIN MAX MIN MAX MIN MAX
UNIT
tPLH
A
B
ns
tPHL A B ns
tPLH
B
A
ns
tPHL B A ns
tPZH
OE
A
ns
tPZL OE A ns
tPZH
OE
B
ns
tPZL OE B ns
tPHZ
OE
A
ns
tPLZ OE A ns
tPHZ
OE
B
ns
tPLZ
OE
B
ns
operating characteristics, TA = 25°C
PARAMETER TEST
CONDITIONS
VCCA =
VCCB = 1.2 V VCCA =
VCCB = 1.5 V VCCA =
VCCB = 1.8 V VCCA =
VCCB = 2.5 V VCCA =
VCCB = 3.3 V
UNIT
PARAMETER
CONDITIONS
TYP TYP TYP TYP TYP
UNIT
A to B
Outputs
Enabled
CpdA
A to B
Outputs
Disabled CL = 0,
f = 10 MHz,
pF
C
pdA
B to A
Outputs
Enabled
f = 10 MHz,
tr = tf =1 ns
pF
B to A
Outputs
Disabled
A to B
Outputs
Enabled
CpdB
A to B
Outputs
Disabled CL = 0,
f = 10 MHz,
pF
C
pdB
B to A
Outputs
Enabled
L
f = 10 MHz,
tr = tf =1 ns
pF
B to A
Outputs
Disabled
Power-dissipation capacitance per transceiver
PRODUCT PREVIEW

   
      
SCES576 – JUNE 2004
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
power-up considerations
A proper power-up sequence always should be followed to avoid excessive supply current, bus contention,
oscillations, or other anomalies. To guard against such power-up problems, take the following precautions:
1. Connect ground before any supply voltage is applied.
2. Power up VCCA.
3. VCCB can be ramped up along with or after VCCA.
typical total static power consumption (ICCA + ICCB)
VCCB
VCCA
UNIT
V
CCB 0 V 1.2 V 1.5 V 1.8 V 2.5 V 3.3 V
UNIT
0 V
1.2 V
1.5 V
µA
1.8 V µ
A
2.5 V
3.3 V
TABLE 1
PRODUCT PREVIEW

   
      
SCES576 – JUNE 2004
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE,
TA = 25°C, VCCA = 1.2 V
0
1
2
3
4
5
6
01020304050
Figure 1
t
PLH
− ns
CL − pF
6
0
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
VCCB = 1.5 V
VCCB = 1.2 V
Figure 2
tPHL − ns
CL − pF
0
1
2
3
4
5
6
0102030405060
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
VCCB = 1.5 V
VCCB = 1.2 V
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE,
TA = 25°C, VCCA = 1.5 V
0
1
2
3
4
5
6
01020304050
Figure 3
t
PLH
− ns
CL − pF
6
0
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
VCCB = 1.5 V
VCCB = 1.2 V
Figure 4
tPHL − ns
CL − pF
0
1
2
3
4
5
6
0102030405060
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
VCCB = 1.5 V
VCCB = 1.2 V
PRODUCT PREVIEW

   
      
SCES576 – JUNE 2004
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE,
TA = 25°C, VCCA = 1.8 V
0
1
2
3
4
5
6
01020304050
Figure 5
t
PLH
− ns
CL − pF
6
0
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
VCCB = 1.5 V
VCCB = 1.2 V
0
1
2
3
4
5
6
0 102030405060
Figure 6
tPHL − ns
CL − pF
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
VCCB = 1.5 V
VCCB = 1.2 V
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE,
TA = 25°C, VCCA = 2.5 V
0
1
2
3
4
5
6
01020304050
Figure 7
t
PLH
− ns
CL − pF
6
0
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
VCCB = 1.5 V
VCCB = 1.2 V
Figure 8
tPHL − ns
CL − pF
0
1
2
3
4
5
6
0 102030405060
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
VCCB = 1.5 V
VCCB = 1.2 V
PRODUCT PREVIEW

   
      
SCES576 – JUNE 2004
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE,
TA = 25°C, VCCA = 3.3 V
0
1
2
3
4
5
6
01020304050
Figure 9
t
PLH
− ns
CL − pF
6
0
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
VCCB = 1.5 V
VCCB = 1.2 V
Figure 10
tPHL − ns
CL − pF
0
1
2
3
4
5
6
0 102030405060
VCCB = 1.8 V
VCCB = 2.5 V
VCCB = 3.3 V
VCCB = 1.5 V
VCCB = 1.2 V
PRODUCT PREVIEW

   
      
SCES576 – JUNE 2004
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
VOH
VOL
From Output
Under Test
CL
(see Note A)
LOAD CIRCUIT
S1
2
×
V
CCO
Open
GND
RL
RL
tPLH tPHL
Output
Control
(low-level
enabling)
Output
Waveform 1
S1 at 2 × VCCO
(see Note B)
Output
Waveform 2
S1 at GND
(see Note B)
tPZL
tPZH
tPLZ
tPHZ
VCCA/2VCCA/2
VCCI/2 VCCI/2 VCCI
0 V
VCCO/2 VCCO/2
VOH
VOL
0 V
VCCO/2 VOL + VTP
VCCO/2 VOH − VTP
0 V
VCC
I
0 V
VCCI/2 VCCI/2
tw
Input
VCC
A
VCC
O
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
Output
Input
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCCO
GND
TEST S1
NOTES: A. CL includes probe and jig capacitance.
B. W aveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR10 MHz, ZO = 50 , dv/dt 1 V/ns,
dv/dt 1 V/ns.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. VCCI is the VCC associated with the input port.
I. V
CCO
is the V
CC
associated with the output port.
1.2 V
1.5 V ± 0.1 V
1.8 V ± 0.15 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
2 k
2 k
2 k
2 k
2 k
VCCO RL0.1 V
0.1 V
0.15 V
0.15 V
0.3 V
VTP
CL
15 pF
15 pF
15 pF
15 pF
15 pF
Figure 11. Load Circuit and Voltage Waveforms
PRODUCT PREVIEW
MECHANICAL DATA
MPDS006C – FEBRUAR Y 1996 – REVISED AUGUST 2000
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DGV (R-PDSO-G**) PLASTIC SMALL-OUTLINE
24 PINS SHOWN
14
3,70
3,50 4,90
5,10
20
DIM
PINS **
4073251/E 08/00
1,20 MAX
Seating Plane
0,05
0,15
0,25
0,50
0,75
0,23
0,13
112
24 13
4,30
4,50
0,16 NOM
Gage Plane
A
7,90
7,70
382416
4,90
5,103,70
3,50
A MAX
A MIN
6,60
6,20
11,20
11,40
56
9,60
9,80
48
0,08
M
0,07
0,40
0°8°
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE
4040065 /E 12/01
28 PINS SHOWN
Gage Plane
8,20
7,40
0,55
0,95
0,25
38
12,90
12,30
28
10,50
24
8,50
Seating Plane
9,907,90
30
10,50
9,90
0,38
5,60
5,00
15
0,22
14
A
28
1
2016
6,50
6,50
14
0,05 MIN
5,905,90
DIM
A MAX
A MIN
PINS **
2,00 MAX
6,90
7,50
0,65 M
0,15
0°ā8°
0,10
0,09
0,25
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,65 M
0,10
0,10
0,25
0,50
0,75
0,15 NOM
Gage Plane
28
9,80
9,60
24
7,90
7,70
2016
6,60
6,40
4040064/F 01/97
0,30
6,60
6,20
80,19
4,30
4,50
7
0,15
14
A
1
1,20 MAX
14
5,10
4,90
8
3,10
2,90
A MAX
A MIN
DIM PINS **
0,05
4,90
5,10
Seating Plane
0°–8°
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’ s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of T I products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless
Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright 2004, Texas Instruments Incorporated