File No. 72 RF Power Transistors RGGI Solid State Division 2N3733 10-W, 400-Mc Silicon N-P-N Overlay Transistor For Large-Signal, High-Power VHF/UHF Applications Features: High power output, unneutralized Class C amplifier: at 400 Mc 10 W min. at 260 Mc 14.5 W typ. = High voitage ratings: JEDEC TO-60 nas07 RCA-2N3733 is an epitaxial silicon n-p-n planar transistor intended for class A, B, and C amplifier, frequency- multiplier, or oscillator operation. The 2N3733 was de- veloped for vhf/uhf applications. The transistor employs the overlay concept in emitter- electrode design -- an emitter electrode consisting of many microscopic areas connected by a diffused-grid structure and an overlay of metal applied on the silicon wafer by means of MAXIMUM RATINGS, Absolute-Meximum Values: *COLLECTOR-TO-BASE VOLTAGE COLLECTOR-TO-EMITTER VOLTAGE: With base-emitter junction reverse-biased (Vgp =-1.5V)... *With base open *EMITTER-TO-BASE VOLTAGE *COLLECTOR CURRENT: Continuous Peak *TRANSISTOR DISSIPATION: At case temperatures up to 25C At case temperatures above 25C *CONTINUOUS BASE CURRENT ........-.- 000-02 e Vego = 65 V max. Vcev = 65 V max. VcEO = 40 V max. 100 per cent tested to assure freedom from second breakdown for operation in Class A applications = Low thermal resistance a photo-etching technique. This arrangement provides the very high emitter-periphery-to-emitter-area ratio required for high efficiency at high frequencies. ee VcBo 65 Vv Lee VcEV 65 Vv Leena VcEO 40 Vv Liles VEBO 4 v Li eeeee Ic 1 A an 3 A cee eeee IB 1 A PT Lice 23 Ww Derate linearly to 0 watts at 200C *TEMPERATURE RANGE: 6 Storage and operating (junction)... 0... ee ee -65 to 200 c *LEAD TEMPERATURE (During soldering): At distances = 1/32 in. (0.8 mm) from insulating wafer for 10s max... 230 C *In accordance with JEDEC registration data 64 8-72 File No. 72 2N3733 ELECTRICAL CHARACTERISTICS, At Case Temperature (Tc) = 25C unless otherwise specified TEST CONDITIONS VOLTAGE CURRENT CHARACTERISTIC SYMBOL Vde mA de LIMITS UNITS Ves Vee Vee le | Ig le MIN.|MAX. * Collector Cutoff Current: With base open IcEO 30 G - 10.25 i -emitter junc- tion reverse biased m IcEV 6 15 ~ 5 mA At Tc = 200C 30.) -15 - [10 With emitter open lcBo 65 - 0.5 *TEmitter Cutoff Current lego -4 - |025 | mA Collector-to-Base Breakdown Voltage V(BR)CBO 0 05 65 - Vv Collector-to-Emitter Breakdown Voltage: With base-emitter junc- ViBRICEV 15 Oto 2000| 65**| - Vv tion reverse-biased Emitter-to-Base Breakdown Voltage Collector-to-Emitter Sustaining Voltage: Vceo(sus) 0 200 40 - With base open With external base-to- emitter resistance VceR (sus) 200 40 - (Rge) = 100 2 DC Forward Current he 5 1 5 ~ Transfer Ratio FE 5 0.26 10 |150 Collector-to-Emitter Saturation Voitage Base-Emitter Voltage VBE S 1000 - 15 Magnitude of Common- Emitter, Small-Signal, 28 250 25*)- Short-Circuit Forward I hgel Current Transfer Ratio 28 250 4.0 (typ.) (f = 100 Mc} Collector-to-Base Capacitance (f =0.1 to 1 Mc} Available Amplifier Signal Input Power P; _ 4 Ww Py = 10 W, ZG = 50 2, f= 400 Mc Collector Circuit Efficiency Py = 10 W, ZG = 50 &, nC 45 f = 400 Mc Base-Spreading Resistance Measured at 200 Mc "ob 28 250 6.5 (typ.) 2 V(BR)EBO 0.25 Qo 4 - Vv * Vee (sat) 200 1000 - 1 Vv Cob 28 250 - {25 pF Collector-to-Case Capacitance | C, - 6 pF Thermal Resistance (Junction-to-Case) Fesc - 5 c/w Pulsed through an inductor (25 mH); duty factor = 50% ** Measured at a current where the breakdown voltage is a minimum tn accordance with JEDEC registration data 65 2N3733 RF POWER OUTPUT (Pgyz) WATTS File No, 72 COLLECTOR-TO-EMITTER VOLTS (Vog)=28 COLLECTOR SUPPLY VOLTS (Voc) = 28 . CASE TEMPERATURE (T) = 25 C 700) % =z 7 600 ~ 500 Qo 2 Qo 3 Yo & 400 NI x E 2 z 2 300) a A, L 4 a Qo > 200 250 300 350 400 450500 600 700 800 50 100 150 200 260 300 FREQUENCY Mc COLLECTOR MILLIAMPERES (IQ) 92CS -13134 92CS-l2830RI Fig. 2-Gain-bandwidth product vs. collector Fig. 1Power output vs. frequency. COLLECTOR SUPPLY VOLTS (Voce CASE TEMPERATURE (Tc)= 25 C REAL PART OF INPUT IMPEDANCE Re(hie}OHMS current. COLLECTOR SUPPLY VOLTS (Veg) = 28 CASE TEMPERATURE (Tc) = 25 C w Qo z ? a Ww a = wo E PE 2? wl oD 2 a= a > az az < eo t = Fig. 5-Output capacitance vs. frequency. 66