© Semiconductor Components Industries, LLC, 2008
December, 2008 Rev. 4
1Publication Order Number:
MC74LVX4066/D
MC74LVX4066
Quad Analog Switch/
Multiplexer/Demultiplexer
HighPerformance SiliconGate CMOS
The MC74LVX4066 utilizes silicongate CMOS technology to
achieve fast propagation delays, low ON resistances, and low
OFFchannel leakage current. This bilateral switch/multiplexer/
demultiplexer controls analog and digital voltages that may vary
across the full powersupply range (from VCC to GND).
The LVX4066 is identical in pinout to the metalgate CMOS
MC14066 and the highspeed CMOS HC4066A. Each device has four
independent switches. The device has been designed so that the ON
resistances (RON) are much more linear over input voltage than RON
of metalgate CMOS analog switches.
The ON/OFF control inputs are compatible with standard CMOS
outputs; with pullup resistors, they are compatible with LSTTL
outputs.
Features
Fast Switching and Propagation Speeds
High ON/OFF Output Voltage Ratio
Low Crosstalk Between Switches
Diode Protection on All Inputs/Outputs
Wide PowerSupply Voltage Range (VCC GND) = 2.0 to 6.0 Volts
Analog Input Voltage Range (VCC GND) = 2.0 to 6.0 Volts
Improved Linearity and Lower ON Resistance over Input Voltage
than the MC14016 or MC14066
Low Noise
Chip Complexity: 44 FETs or 11 Equivalent Gates
PbFree Packages are Available*
*For additional information on our PbFree strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
MARKING
DIAGRAMS
A = Assembly
Location
WL, L = Wafer Lot
Y = Year
WW, W = Work Week
G or G= PbFree Package
TSSOP14
DT SUFFIX
CASE 948G
14
1
SOEIAJ14
M SUFFIX
CASE 965
SOIC14
D SUFFIX
CASE 751A
14
1
1
14
LVX4066
ALYWG
14
1
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
ORDERING INFORMATION
1
14
http://onsemi.com
LVX
4066
ALYWG
G
1
14
LVX4066G
AWLYWW
(Note: Microdot may be in either location)
MC74LVX4066
http://onsemi.com
2
LOGIC DIAGRAM
XAYA
12
A ON/OFF CONTROL 13
XBYB
43
B ON/OFF CONTROL 5
XCYC
89
C ON/OFF CONTROL 6
XDYD
11 10
D ON/OFF CONTROL 12
ANALOG
OUTPUTS/INPUTS
ANALOG INPUTS/OUTPUTS = XA, XB, XC, XD
PIN 14 = VCC
PIN 7 = GND
PIN CONNECTION (Top View)
11
12
13
14
8
9
105
4
3
2
1
7
6
YD
XD
D ON/OFF
CONTROL
A ON/OFF
CONTROL
VCC
XC
YC
XB
YB
YA
XA
GND
C ON/OFF
CONTROL
B ON/OFF
CONTROL
FUNCTION TABLE
On/Off Control
Input
Off
On
L
H
State of
Analog Switch
ORDERING INFORMATION
Device Package Shipping
MC74LVX4066DR2 SOIC14 2500 Tape & Reel
MC74LVX4066DR2G SOIC14
(PbFree)
2500 Tape & Reel
MC74LVX4066DTR2 TSSOP14* 2500 Tape & Reel
MC74LVX4066DTR2G TSSOP14*
(PbFree)
2500 Tape & Reel
MC74LVX4066M SOEIAJ14 50 Units / Rail
MC74LVX4066MG SOEIAJ14
(PbFree)
50 Units / Rail
MC74LVX4066MEL SOEIAJ14 2000 Tape & Reel
MC74LVX4066MELG SOEIAJ14
(PbFree)
2000 Tape & Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently PbFree.
MC74LVX4066
http://onsemi.com
3
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Parameter
ÎÎÎÎÎ
ÎÎÎÎÎ
Value
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎ
ÎÎÎÎ
VCC
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Positive DC Supply Voltage (Referenced to GND)
ÎÎÎÎÎ
ÎÎÎÎÎ
– 0.5 to + 7.0
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
VIS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Analog Input Voltage (Referenced to GND)
ÎÎÎÎÎ
ÎÎÎÎÎ
– 0.5 to VCC + 0.5
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
Vin
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Digital Input Voltage (Referenced to GND)
ÎÎÎÎÎ
ÎÎÎÎÎ
– 0.5 to VCC + 0.5
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
Iin
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC Current Into or Out of ON/OFF Control Pins
ÎÎÎÎÎ
ÎÎÎÎÎ
± 20
ÎÎÎ
ÎÎÎ
mA
ÎÎÎÎ
ÎÎÎÎ
Is
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC Current Into or Out of Switch Pins
ÎÎÎÎÎ
ÎÎÎÎÎ
± 20
ÎÎÎ
ÎÎÎ
mA
ÎÎÎÎ
ÎÎÎÎ
PD
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Power Dissipation in Still Air, SOIC Package†
TSSOP Package†
ÎÎÎÎÎ
ÎÎÎÎÎ
500
450
ÎÎÎ
ÎÎÎ
mW
ÎÎÎÎ
ÎÎÎÎ
Tstg
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Storage Temperature
ÎÎÎÎÎ
ÎÎÎÎÎ
– 65 to + 150
ÎÎÎ
ÎÎÎ
_C
ÎÎÎÎ
ÎÎÎÎ
TL
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Lead Temperature, 1 mm from Case for 10 Seconds
ÎÎÎÎÎ
ÎÎÎÎÎ
260
ÎÎÎ
ÎÎÎ
_C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress
ratings only. Functional operation above the Recommended Operating Conditions is not
implied. Extended exposure to stresses above the Recommended Operating Conditions may
affect device reliability.
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Derating SOIC Package: – 7 mW/_C from 65_ to 125_C
TSSOP Package: 6.1 mW/_C from 65_ to 125_C
RECOMMENDED OPERATING CONDITIONS
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Parameter
ÎÎÎ
ÎÎÎ
Min
ÎÎÎ
ÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎ
ÎÎÎÎ
VCC
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Positive DC Supply Voltage (Referenced to GND)
ÎÎÎ
ÎÎÎ
2.0
ÎÎÎ
ÎÎÎ
6.0
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
VIS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Analog Input Voltage (Referenced to GND)
ÎÎÎ
ÎÎÎ
GND
ÎÎÎ
ÎÎÎ
VCC
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
Vin
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Digital Input Voltage (Referenced to GND)
ÎÎÎ
ÎÎÎ
GND
ÎÎÎ
ÎÎÎ
VCC
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
VIO*
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Static or Dynamic Voltage Across Switch
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
1.2
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
TA
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Operating Temperature, All Package Types
ÎÎÎ
ÎÎÎ
– 55
ÎÎÎ
ÎÎÎ
+ 85
ÎÎÎ
ÎÎÎ
_C
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tr, tf
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Input Rise and Fall Time, ON/OFF Control
Inputs (Figure 10) VCC = 3.3 V ± 0.3 V
VCC = 5.0 V ± 0.5 V
ÎÎÎ
ÎÎÎ
ÎÎÎ
0
0
ÎÎÎ
ÎÎÎ
ÎÎÎ
100
20
ÎÎÎ
ÎÎÎ
ÎÎÎ
ns/V
*For voltage drops across the switch greater than 1.2 V (switch on), excessive VCC current may
be drawn; i.e., the current out of the switch may contain both VCC and switch input
components. The reliability of the device will be unaffected unless the Maximum Ratings are
exceeded.
DC ELECTRICAL CHARACTERISTIC Digital Section (Voltages Referenced to GND)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
Parameter
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Test Conditions
VCC
V
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Guaranteed Limit
Unit
ÎÎÎÎÎ
ÎÎÎÎÎ
– 55 to 25_C
ÎÎÎÎ
ÎÎÎÎ
v 85_C
ÎÎÎÎÎ
ÎÎÎÎÎ
v 125_C
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VIH
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
Minimum HighLevel Voltage
ON/OFF Control Inputs (Note 1)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Ron = Per Spec
2.0
3.0
4.5
5.5
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
1.5
2.1
3.15
3.85
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1.5
2.1
3.15
3.85
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
1.5
2.1
3.15
3.85
V
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VIL
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
Maximum LowLevel Voltage
ON/OFF Control Inputs (Note 1)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Ron = Per Spec
2.0
3.0
4.5
5.5
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
0.5
0.9
1.35
1.65
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.5
0.9
1.35
1.65
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
0.5
0.9
1.35
1.65
V
ÎÎÎÎ
ÎÎÎÎ
Iin
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
Maximum Input Leakage Current
ON/OFF Control Inputs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Vin = VCC or GND
5.5V
ÎÎÎÎÎ
ÎÎÎÎÎ
± 0.1
ÎÎÎÎ
ÎÎÎÎ
± 1.0
ÎÎÎÎÎ
ÎÎÎÎÎ
± 1.0
mA
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ICC
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
Maximum Quiescent Supply
Current (per Package)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Vin = VCC or GND VIO = 0 V
5.5
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
4.0
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
40
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
160
mA
1. Specifications are for design target only. Not final specification limits.
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this highimpedance cir-
cuit. For proper operation, Vin and
Vout should be constrained to the
range GND v (Vin or Vout) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
I/O pins must be connected to a
properly terminated line or bus.
MC74LVX4066
http://onsemi.com
4
DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to GND)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
Parameter
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Test Conditions
VCC
V
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Guaranteed Limit
Unit
ÎÎÎÎÎ
ÎÎÎÎÎ
– 55 to 25_C
ÎÎÎÎ
ÎÎÎÎ
v 85_C
ÎÎÎÎÎ
ÎÎÎÎÎ
v 125_C
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Ron
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
Maximum “ON” Resistance
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Vin = VIH
VIS = VCC to GND
|IS| v 10 mA (Figures 1, 2)
2.0†
3.0
4.5
5.5
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
40
25
20
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
45
30
25
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
50
35
30
W
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Vin = VIH
VIS = VCC or GND
(Endpoints)
|IS| v 10 mA (Figures 1, 2)
2.0
3.0
4.5
5.5
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
30
25
20
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
35
30
25
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
40
35
30
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
DRon
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
Maximum Difference in “ON”
Resistance Between Any Two
Channels in the Same Package
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Vin = VIH
VIS = 1/2 (VCC GND)
IS v 2.0 mA
3.0
4.5
5.5
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
15
10
10
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
20
12
12
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
25
15
15
W
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Ioff
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
Maximum OffChannel Leakage
Current, Any One Channel
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Vin = VIL
VIO = VCC or GND
Switch Off (Figure 3)
5.5
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
0.1
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.5
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
1.0
mA
ÎÎÎÎ
ÎÎÎÎ
Ion
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
Maximum OnChannel Leakage
Current, Any One Channel
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Vin = VIH
VIS = VCC or GND (Figure 4)
5.5
ÎÎÎÎÎ
ÎÎÎÎÎ
0.1
ÎÎÎÎ
ÎÎÎÎ
0.5
ÎÎÎÎÎ
ÎÎÎÎÎ
1.0
mA
At supply voltage (VCC) approaching 2 V the analog switchon resistance becomes extremely nonlinear. Therefore, for lowvoltage operation,
it is recommended that these devices only be used to control digital signals (See Figure 1a).
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, ON/OFF Control Inputs: tr = tf = 6 ns)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Parameter
VCC
V
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Guaranteed Limit
Unit
ÎÎÎÎÎ
ÎÎÎÎÎ
– 55 to 25_C
ÎÎÎÎ
ÎÎÎÎ
v 85_C
ÎÎÎÎÎ
ÎÎÎÎÎ
v 125_C
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tPLH,
tPHL
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Maximum Propagation Delay, Analog Input to Analog Output
(Figures 8 and 9)
2.0
3.0
4.5
5.5
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
4.0
3.0
1.0
1.0
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
6.0
5.0
2.0
2.0
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
8.0
6.0
2.0
2.0
ns
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tPLZ,
tPHZ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Maximum Propagation Delay, ON/OFF Control to Analog Output
(Figures 10 and 11)
2.0
3.0
4.5
5.5
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
30
20
15
15
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
35
25
18
18
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
40
30
22
20
ns
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tPZL,
tPZH
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Maximum Propagation Delay, ON/OFF Control to Analog Output
(Figures 10 and 1 1)
2.0
3.0
4.5
5.5
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
20
12
8.0
8.0
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
25
14
10
10
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
30
15
12
12
ns
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Maximum Capacitance ON/OFF Control Input
ÎÎÎÎÎ
ÎÎÎÎÎ
10
ÎÎÎÎ
ÎÎÎÎ
10
ÎÎÎÎÎ
ÎÎÎÎÎ
10
pF
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Control Input = GND
Analog I/O
Feedthrough
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
35
1.0
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
35
1.0
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
35
1.0
CPD Power Dissipation Capacitance (Per Switch) (Figure 13)*
Typical @ 25°C, VCC = 5.0 V
pF
15
* Used to determine the noload dynamic power consumption: PD = CPD VCC2f + ICC VCC.
MC74LVX4066
http://onsemi.com
5
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
Parameter
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Test Conditions
VCC
V
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Limit*
25_C
Unit
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
BW
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
Maximum OnChannel Bandwidth or
Minimum Frequency Response (Figure 5)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
fin = 1 MHz Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VOS
Increase fin Frequency Until dB Meter Reads – 3 dB
RL = 50 W, CL = 10 pF
4.5
5.5
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
150
160
MHz
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
OffChannel Feedthrough Isolation
(Figure 6)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
fin Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VIS
fin = 10 kHz, RL = 600 W, CL = 50 pF
4.5
5.5
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
50
50
dB
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
fin = 1.0 MHz, RL = 50 W, CL = 10 pF
4.5
5.5
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
37
37
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
Feedthrough Noise, Control to Switch
(Figure 7)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Vin v 1 MHz Square Wave (tr = tf = 6 ns)
Adjust RL at Setup so that IS = 0 A
RL = 600 W, CL = 50 pF
4.5
5.5
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
100
200
mVPP
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
RL = 10 kW, CL = 10 pF
4.5
5.5
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
50
100
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
Crosstalk Between Any Two Switches
(Figure 12)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
fin Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VIS
fin = 10 kHz, RL = 600 W, CL = 50 pF
4.5
5.5
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
– 70
– 70
dB
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
fin = 1.0 MHz, RL = 50 W, CL = 10 pF
4.5
5.5
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
– 80
– 80
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
THD
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
Total Harmonic Distortion (Figure 14)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
fin = 1 kHz, RL = 10 kW, CL = 50 pF
THD = THDMeasured THDSource
VIS = 4.0 VPP sine wave
VIS = 5.0 VPP sine wave
4.5
5.5
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.10
0.06
%
*Guaranteed limits not tested. Determined by design and verified by qualification.
MC74LVX4066
http://onsemi.com
6
Figure 1a. Typical On Resistance, VCC = 2.0 V, T = 25°C Figure 1b. Typical On Resistance, VCC = 2.0 V
Figure 1c. Typical On Resistance, VCC = 3.0 V
Figure 2. On Resistance Test SetUp
PLOTTER
MINI COMPUTER
PROGRAMMABLE
POWER
SUPPLY
DC ANALYZER
VCC
+-
ANALOG IN COMMON OUT
GND
DEVICE
UNDER TEST
Figure 1d. Typical On Resistance, VCC = 4.5 V
Figure 1e. Typical On Resistance, VCC = 5.5 V
350
Ron (Ohms)
Vin (Volts)
250
150
50
0
0.5 1
300
200
100
1.5 2 2.50
400
125°C
-55°C
25°C
85°C
35
Ron (Ohms)
Vin (Volts)
25
15
5
0
1
30
20
10
20
125°C
-55°C
25°C
85°C
3
14
Ron (Ohms)
Vin (Volts)
10
6
2
0
12
12
8
4
3450
125°C
-55°C
25°C
85°C
18
16
14
Ron (Ohms)
Vin (Volts)
10
6
2
0
12
12
8
4
3450
125°C
-55°C
25°C
85°C
16
6
Ron (Ohms)
Vin (Volts)
250
150
50
00.5 1
200
100
1.5 2 2.50
Is = 1mA
Is = 9mA
Is = 5mA
Is = 15mA
20
18
4
MC74LVX4066
http://onsemi.com
7
Figure 3. Maximum Off Channel Leakage Current,
Any One Channel, Test SetUp
OFF
7
14
VCC
A
VCC
GND
VCC
SELECTED
CONTROL
INPUT
VIL
Figure 4. Maximum On Channel Leakage Current,
Test SetUp
ON
14
VCC
N/C
A
GND
VCC
7
SELECTED
CONTROL
INPUT
VIH
Figure 5. Maximum OnChannel Bandwidth
Test SetUp
ON
14
VCC
0.1mFCL*
fin dB
METER
*Includes all probe and jig capacitance.
VOS
7
SELECTED
CONTROL
INPUT
VCC
Figure 6. OffChannel Feedthrough Isolation,
Test SetUp
OFF
7
14
VCC
0.1mFCL*
fin dB
METER
*Includes all probe and jig capacitance.
VOS
RL
VIS
SELECTED
CONTROL
INPUT
Figure 7. Feedthrough Noise, ON/OFF Control to
Analog Out, Test SetUp
14
VCC
CL*
*Includes all probe and jig capacitance.
OFF/ON
VCC
GND
Vin 1 MHz
tr = tf = 3 ns
CONTROL
VCC/2
RL
IS
RLVOS
7
SELECTED
CONTROL
INPUT
VCC/2
VCC
GND
ANALOG IN
ANALOG OUT 50%
tPLH tPHL
50%
Figure 8. Propagation Delays, Analog In to
Analog Out
MC74LVX4066
http://onsemi.com
8
POSITIONWHEN TESTING tPLZ AND tPZL
Figure 9. Propagation Delay Test SetUp
ON
14
VCC
*Includes all probe and jig capacitance.
TEST
POINT
ANALOG OUTANALOG IN
CL*
7
SELECTED
CONTROL
INPUT
VCC
trtf
VCC
GND
HIGH
IMPEDANCE
VOL
VOH
HIGH
IMPEDANCE
CONTROL
ANALOG
OUT
90%
50%
10%
50%
50%
10%
90%
tPZH tPHZ
tPZL tPLZ
Figure 10. Propagation Delay, ON/OFF Control
to Analog Out
ON/OFF
VCC
TEST
POINT
14
VCC
1 kW
POSITIONWHEN TESTING tPHZ AND tPZH
CL*
1
2
1
2
Figure 11. Propagation Delay Test SetUp
1
2
7
SELECTED
CONTROL
INPUT
Figure 12. Crosstalk Between Any Two Switches,
Test SetUp
RL
ON
14
VCC OR GND CL*
*Includes all probe and jig capacitance.
OFF
RL
RL
VIS
RLCL*
VOS
fin
0.1 mF
VCC/2 VCC/2
7
SELECTED
CONTROL
INPUT
VCC/2
Figure 13. Power Dissipation Capacitance
Test SetUp
14
VCC
N/C
OFF/ON
A
N/C
7
SELECTED
CONTROL
INPUT
ON/OFF CONTROL
ON
VCC
0.1 mF
CL*
fin
RL
TO
DISTORTION
METER
*Includes all probe and jig capacitance.
VOS
VIS
7
SELECTED
CONTROL
INPUT
VCC
Figure 14. Total Harmonic Distortion, Test SetUp
*Includes all probe and jig capacitance.
VCC
VCC/2
MC74LVX4066
http://onsemi.com
9
0
-10
-20
-30
-40
-50
1.0 2.0
FREQUENCY (kHz)
dBm
-60
-70
-80
-90
FUNDAMENTAL FREQUENCY
DEVICE
SOURCE
Figure 15. Plot, Harmonic Distortion
3.0
APPLICATION INFORMATION
The ON/OFF Control pins should be at VCC or GND logic
levels, VCC being recognized as logic high and GND being
recognized as a logic low. Unused analog inputs/outputs
may be left floating (not connected). However, it is
advisable to tie unused analog inputs and outputs to VCC or
GND through a low value resistor. This minimizes crosstalk
and feedthrough noise that may be pickedup by the unused
I/O pins.
The maximum analog voltage swings are determined by
the supply voltages VCC and GND. The positive peak analog
voltage should not exceed VCC. Similarly, the negative peak
analog voltage should not go below GND. In the example
below, the difference between VCC and GND is six volts.
Therefore, using the configuration in Figure 16, a maximum
analog signal of six volts peaktopeak can be controlled.
When voltage transients above VCC and/or below GND
are anticipated on the analog channels, external diodes (Dx)
are recommended as shown in Figure 17. These diodes
should be small signal, fast turnon types able to absorb the
maximum anticipated current surges during clipping. An
alternate method would be to replace the Dx diodes with
Mosorbs (Mosorb is an acronym for high current surge
protectors). Mosorbs are fast turnon devices ideally suited
for precise DC protection with no inherent wear out
mechanism.
ANALOG O/I
ON
14
VCC = 6.0 V
ANALOG I/O
+ 6.0 V
0 V
+ 6.0 V
0 V
OTHER CONTROL
INPUTS
(VCC OR GND)
ON
16
VCC
Dx
Dx
VCC
Dx
Figure 16. 6.0 V Application Figure 17. Transient Suppressor Application
7
SELECTED
CONTROL
INPUT
Dx
OTHER CONTROL
INPUTS
(VCC OR GND)
7
SELECTED
CONTROL
INPUT
VCC
MC74LVX4066
http://onsemi.com
10
+5 V
14
LVX4066
CONTROL
INPUTS
7
5
6
14
15
LSTTL/
NMOS
ANALOG
SIGNALS
R* R* R* R*
ANALOG
SIGNALS
R* = 2 TO 10 kW
VDD = 5 V VCC = 2.0 TO 7.0 V
ANALOG
SIGNALS
ANALOG
SIGNALS
116 14
CONTROL
INPUTS
78
MC14504
13
3
5
7
9
11
14
2
4
6
10
5
6
14
15
CHANNEL 4
CHANNEL 3
CHANNEL 2
CHANNEL 1
1 OF 4
SWITCHES
COMMON I/O
1234
CONTROL INPUTS
INPUT
OUTPUT
0.01 mF
LF356 OR
EQUIVALENT
a. Using Pull-Up Resistors b. Using LVXT4066
Figure 18. LSTTL/NMOS to CMOS Interface
Figure 19. TTL/NMOStoCMOS Level Converter
Analog Signal PeaktoPeak Greater than 5 V
Figure 20. 4Input Multiplexer Figure 21. Sample/Hold Amplifier
+
-
1 OF 4
SWITCHES
+5 V
14
CONTROL
INPUTS
7
5
6
14
15
LSTTL/
NMOS/
ABT/
ALS
ANALOG
SIGNALS
ANALOG
SIGNALS
1 OF 4
SWITCHES
1 OF 4
SWITCHES
1 OF 4
SWITCHES
LVXT4066
LVX4066
MC74LVX4066
http://onsemi.com
11
PACKAGE DIMENSIONS
SOIC14
D SUFFIX
CASE 751A03
ISSUE J NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.127
(0.005) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
A
B
G
P7 PL
14 8
7
1
M
0.25 (0.010) B M
S
B
M
0.25 (0.010) A S
T
T
F
RX 45
SEATING
PLANE D14 PL K
C
J
M
_DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A8.55 8.75 0.337 0.344
B3.80 4.00 0.150 0.157
C1.35 1.75 0.054 0.068
D0.35 0.49 0.014 0.019
F0.40 1.25 0.016 0.049
G1.27 BSC 0.050 BSC
J0.19 0.25 0.008 0.009
K0.10 0.25 0.004 0.009
M0 7 0 7
P5.80 6.20 0.228 0.244
R0.25 0.50 0.010 0.019
__ __
7.04
14X
0.58
14X
1.52
1.27
DIMENSIONS: MILLIMETERS
1
PITCH
SOLDERING FOOTPRINT
7X
MC74LVX4066
http://onsemi.com
12
PACKAGE DIMENSIONS
TSSOP14
DT SUFFIX
CASE 948G01
ISSUE B
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A4.90 5.10 0.193 0.200
B4.30 4.50 0.169 0.177
C−−− 1.20 −−− 0.047
D0.05 0.15 0.002 0.006
F0.50 0.75 0.020 0.030
G0.65 BSC 0.026 BSC
H0.50 0.60 0.020 0.024
J0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L6.40 BSC 0.252 BSC
M0 8 0 8
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE W.
____
S
U0.15 (0.006) T
2X L/2
S
U
M
0.10 (0.004) V S
T
LU
SEATING
PLANE
0.10 (0.004)
T
ÇÇÇ
ÇÇÇ
SECTION NN
DETAIL E
JJ1
K
K1
ÉÉÉ
ÉÉÉ
DETAIL E
F
M
W
0.25 (0.010)
8
14
7
1
PIN 1
IDENT.
H
G
A
D
C
B
S
U0.15 (0.006) T
V
14X REFK
N
N
7.06
14X
0.36 14X
1.26
0.65
DIMENSIONS: MILLIMETERS
1
PITCH
SOLDERING FOOTPRINT
MC74LVX4066
http://onsemi.com
13
PACKAGE DIMENSIONS
SOEIAJ14
M SUFFIX
CASE 96501
ISSUE B
HE
A1
DIM MIN MAX MIN MAX
INCHES
--- 2.05 --- 0.081
MILLIMETERS
0.05 0.20 0.002 0.008
0.35 0.50 0.014 0.020
0.10 0.20 0.004 0.008
9.90 10.50 0.390 0.413
5.10 5.45 0.201 0.215
1.27 BSC 0.050 BSC
7.40 8.20 0.291 0.323
0.50 0.85 0.020 0.033
1.10 1.50 0.043 0.059
0
0.70 0.90 0.028 0.035
--- 1.42 --- 0.056
A1
HE
Q1
LE
_10 _0
_10 _
LE
Q1
_
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE
MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH
OR PROTRUSIONS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
0.13 (0.005) M0.10 (0.004)
D
Z
E
1
14 8
7
eA
b
VIEW P
c
L
DETAIL P
M
A
b
c
D
E
e
L
M
Z
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
MC74LVX4066/D
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81357733850
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative