IRL640S, SiHL640S Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) 200 RDS(on) () VGS = 5 V 0.18 Qg (Max.) (nC) 66 Qgs (nC) 9.0 Qgd (nC) 38 Configuration Single D DESCRIPTION SMD-220 K G D S G * Halogen-free According to IEC 61249-2-21 Definition * Surface Mount * Available in Tape and Reel * Dynamic dV/dt Rating * Repetitive Avalanche Rated * Logic-Level Gate Drive * RDS(on) Specified at VGS = 4 V and 5 V * Fast Switching * Compliant to RoHS Directive 2002/95/EC S N-Channel MOSFET Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The SMD-220 is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The SMD-220 is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0 W in a typical surface mount application. ORDERING INFORMATION Package Lead (Pb)-free and Halogen-free Lead (Pb)-free SMD-220 SiHL640S-GE3 IRL640SPbF SiHL640S-E3 SMD-220 SiHL640STRL-GE3a IRL640STRLPbFa SiHL640STL-E3a SMD-220 SiHL640STRR-GE3a IRL640STRRPbFa SiHL640STR-E3a Note a. See device orientation. ABSOLUTE MAXIMUM RATINGS (TC = 25 C, unless otherwise noted) PARAMETER Drain-Source Voltage Gate-Source Voltage Continuous Drain Current SYMBOL VDS VGS VGS at 5.0 V TC = 25 C TC = 100 C ID IDM Pulsed Drain Currenta Linear Derating Factor Linear Derating Factor (PCB Mount)e EAS Single Pulse Avalanche Energyb IAR Repetitive Avalanche Currenta EAR Repetitive Avalanche Energya Maximum Power Dissipation TC = 25 C PD Maximum Power Dissipation (PCB Mount)e TA = 25 C c dV/dt Peak Diode Recovery dV/dt Operating Junction and Storage Temperature Range TJ, Tstg Soldering Temperature for 10 s Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = 50 V, starting TJ = 25 C, L = 3.0 mH, Rg = 25 , IAS = 17 A (see fig. 12). c. ISD 17 A, dI/dt 150 A/s, VDD VDS, TJ 150 C. d. 1.6 mm from case. e. When mounted on 1" square PCB (FR-4 or G-10 Material). LIMIT 200 10 17 11 68 1.0 0.025 580 10 13 125 3.1 5.0 - 55 to + 150 300d UNIT V A W/C mJ A mJ W V/ns C * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91306 S11-1055-Rev. C, 30-May-11 www.vishay.com 1 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRL640S, SiHL640S Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL MIN. TYP. MAX. Maximum Junction-to-Ambient RthJA - - 62 Maximum Junction-to-Ambient (PCB Mount)a RthJA - - 40 Maximum Junction-to-Case (Drain) RthJC - - 1.0 UNIT C/W Note a. When mounted on 1" square PCB (FR-4 or G-10 material). SPECIFICATIONS (TJ = 25 C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0, ID = 250 A 200 - - V VDS/TJ Reference to 25 C, ID = 1 mA - 0.27 - V/C VGS(th) VDS = VGS, ID = 250 A 1.0 - 2.0 V nA Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance IGSS IDSS RDS(on) gfs VGS = 10 V - - 100 VDS = 200 V, VGS = 0 V - - 25 VDS = 160 V, VGS = 0 V, TJ = 125 C - - 250 VGS = 5.0 V ID = 10 Ab - - 0.18 VGS = 4.0 V Ab - - 0.27 16 - - - 1800 - - 400 - - 120 - - - 66 ID = 8.5 VDS = 50 V, ID = 10 Ab A S Dynamic Input Capacitance Ciss Output Capacitance Coss VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 pF Reverse Transfer Capacitance Crss Total Gate Charge Qg Gate-Source Charge Qgs - - 9.0 Gate-Drain Charge Qgd - - 38 Turn-On Delay Time td(on) - 8.0 - tr - 83 - - 44 - - 52 - - 4.5 - - 7.5 - - - 17 - - 68 - - 2.0 - 310 470 ns - 3.2 4.8 C Rise Time Turn-Off Delay Time Fall Time td(off) VGS = 5.0 V ID = 17 A, VDS = 160 V, see fig. 6 and 13b VDD = 100 V, ID = 17 A, Rg = 4.6 , RD = 5.7 , see fig. 10b tf Internal Drain Inductance LD Internal Source Inductance LS Between lead, 6 mm (0.25") from package and center of die contact D nC ns nH G S Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 C, IS = 17 A, VGS = 0 Vb TJ = 25 C, IF = 17 A, dI/dt = 100 A/sb V Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width 300 s; duty cycle 2 %. www.vishay.com 2 Document Number: 91306 S11-1055-Rev. C, 30-May-11 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRL640S, SiHL640S Vishay Siliconix TYPICAL CHARACTERISTICS (25 C, unless otherwise noted) Fig. 1 - Typical Output Characteristics, TC = 25 C Fig. 3 - Typical Transfer Characteristics Fig. 2 - Typical Output Characteristics, TC = 150 C Fig. 4 - Normalized On-Resistance vs. Temperature Document Number: 91306 S11-1055-Rev. C, 30-May-11 www.vishay.com 3 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRL640S, SiHL640S Vishay Siliconix Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 Fig. 7 - Typical Source-Drain Diode Forward Voltage Fig. 8 - Maximum Safe Operating Area Document Number: 91306 S11-1055-Rev. C, 30-May-11 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRL640S, SiHL640S Vishay Siliconix VDS VGS RD D.U.T. Rg + - VDD 5V Pulse width 1 s Duty factor 0.1 % Fig. 10a - Switching Time Test Circuit VDS 90 % 10 % VGS td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature tr td(off) tf Fig. 10b - Switching Time Waveforms Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Document Number: 91306 S11-1055-Rev. C, 30-May-11 www.vishay.com 5 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRL640S, SiHL640S Vishay Siliconix L Vary tp to obtain required IAS VDS VDS tp Rg D.U.T. VDD + - I AS V DD VDS 5V tp 0.01 W IAS Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 k QG 5V 12 V 0.2 F 0.3 F QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91306 S11-1055-Rev. C, 30-May-11 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRL640S, SiHL640S Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations * Low stray inductance * Ground plane * Low leakage inductance current transformer + - - Rg * * * * + dV/dt controlled by Rg Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test + - VDD Driver gate drive P.W. Period D= P.W. Period VGS = 10 Va D.U.T. lSD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Inductor current VDD Body diode forward drop Ripple 5 % ISD Note a. VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91306. Document Number: 91306 S11-1055-Rev. C, 30-May-11 www.vishay.com 7 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information Vishay Siliconix TO-263AB (HIGH VOLTAGE) A (Datum A) 3 A 4 4 L1 B A E c2 H Gauge plane 4 0 to 8 5 D B Detail A Seating plane H 1 2 C 3 C L L3 L4 Detail "A" Rotated 90 CW scale 8:1 L2 B A1 B A 2 x b2 c 2xb E 0.010 M A M B 0.004 M B 2xe Plating 5 b1, b3 Base metal c1 (c) D1 4 5 (b, b2) Lead tip MILLIMETERS DIM. MIN. MAX. View A - A INCHES MIN. 4 E1 Section B - B and C - C Scale: none MILLIMETERS MAX. DIM. MIN. INCHES MAX. MIN. MAX. A 4.06 4.83 0.160 0.190 D1 6.86 - 0.270 - A1 0.00 0.25 0.000 0.010 E 9.65 10.67 0.380 0.420 6.22 - 0.245 - b 0.51 0.99 0.020 0.039 E1 b1 0.51 0.89 0.020 0.035 e b2 1.14 1.78 0.045 0.070 H 14.61 15.88 0.575 0.625 b3 1.14 1.73 0.045 0.068 L 1.78 2.79 0.070 0.110 2.54 BSC 0.100 BSC c 0.38 0.74 0.015 0.029 L1 - 1.65 - 0.066 c1 0.38 0.58 0.015 0.023 L2 - 1.78 - 0.070 c2 1.14 1.65 0.045 0.065 L3 D 8.38 9.65 0.330 0.380 L4 0.25 BSC 4.78 5.28 0.010 BSC 0.188 0.208 ECN: S-82110-Rev. A, 15-Sep-08 DWG: 5970 Notes 1. Dimensioning and tolerancing per ASME Y14.5M-1994. 2. Dimensions are shown in millimeters (inches). 3. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body at datum A. 4. Thermal PAD contour optional within dimension E, L1, D1 and E1. 5. Dimension b1 and c1 apply to base metal only. 6. Datum A and B to be determined at datum plane H. 7. Outline conforms to JEDEC outline to TO-263AB. Document Number: 91364 Revision: 15-Sep-08 www.vishay.com 1 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Material Category Policy Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Revision: 12-Mar-12 1 Document Number: 91000