This is information on a product in full production.
October 2017 DocID030538 Rev 3 1/226
STM32H743xI
32-bit Arm® Cortex®-M7 400MHz MCUs, up to 2MB Flash,
1MB RAM, 46 com. and analog interfaces
Datasheet - production data
Features
Core
32-bit Arm® Cortex®-M7 core with double-
precision FPU and L1 cache: 16 Kbytes of data
and 16 Kbytes of instruction cache allowing
one cache line to be filled in a single access
from the 256-bit embedded Flash memory;
frequency up to 400 MHz, MPU, 856 DMIPS/
2.14 DMIPS/MHz (Dhrystone 2.1), and DSP
instructions
Memories
Up to 2 Mbytes of Flash memory with read-
while-write support
1 Mbyte of RAM: 192 Kbytes of TCM RAM (inc.
64 Kbytes of ITCM RAM + 128 Kbytes of
DTCM RAM for time critical routines),
864 Kbytes of user SRAM, and 4 Kbytes of
SRAM in Backup domain
Dual mode Quad-SPI memory interface
running up to 133 MHz
Flexible external memory controller with up to
32-bit data bus: SRAM, PSRAM,
SDRAM/LPSDR SDRAM, NOR/NAND Flash
clocked up to 133 MHz in synchronous mode
CRC calculation unit
Security
ROP, PC-ROP, active tamper
General-purpose input/outputs
Up to 168 I/O ports with interrupt capability
Fast I/Os capable of up to 133 MHz
Up to 164 5 V-tolerant I/Os
Reset and power management
3 separate power domains which can be
independently clock gated or switched off to
maximize power efficiency:
D1: high-performance capabilities for high
bandwidth peripherals
D2: communication peripherals and timers
D3: reset/clock control/power management
1.62 to 3.6 V application supply and I/Os
POR, PDR, PVD and BOR
Dedicated USB power embedding a 3.3 V
internal regulator to supply the internal PHYs
Embedded regulator (LDO) with configurable
scalable output to supply the digital circuitry
Voltage scaling in Run and Stop mode (5
configurable ranges)
Backup regulator (~0.9 V)
Voltage reference for analog peripheral/VREF+
Low-power modes: Sleep, Stop, Standby and
VBAT supporting battery charging
Low-power consumption
Total current consumption down to 4
µA
Clock management
Internal oscillators: 64 MHz HSI, 48 MHz
HSI48, 4 MHz CSI, 40 kHz LSI
External oscillators: 4-48 MHz HSE,
32.768 kHz LSE
3× PLLs (1 for the system clock, 2 for kernel
clocks) with fractional mode
FBGA
LQFP208
(28x28 mm)
LQFP176
(24x24 mm)
LQFP144
(20x20 mm)
LQFP100
(14x14 mm)
UFBGA176+25 (10x10 mm)
UFBGA169 (7x7 mm)(1)
FBGA
TFBGA240+25 (14x14 mm)
TFBGA100 (8x8 mm)(1)
1. Package under development.
www.st.com
STM32H743xI
2/226 DocID030538 Rev 3
Interconnect matrix
3 bus matrices (1 AXI and 2 AHB)
Bridges (5× AHB2-APB, 2× AXI2-AHB)
4 DMA controllers to unload the CPU
1× high-speed general-purpose master direct
memory access controller (MDMA) with linked
list support
2× dual-port DMAs with FIFO and request
router capabilities
1× basic DMA with request router capabilities
Up to 35 communication peripherals
4× I2C FM+ interfaces (SMBus/PMBus)
4× USART/4x UARTs (ISO7816 interface, LIN,
IrDA, modem control, up to 12.5 Mbit/s) and
1x LPUART
6× SPIs, including 3 with muxed duplex I2S
audio class accuracy via internal audio PLL or
external clock, 1x I2S in LP domain (up to
133 MHz)
4x SAIs (serial audio interface)
SPDIFRX interface
SWPMI single-wire protocol master I/F
MDIO Slave interface
2× SD/SDIO/MMC interfaces (up to 125 MHz)
2× CAN controllers: 2 with CAN FD, 1 with
time-triggered CAN (TT-CAN)
2× USB OTG interfaces (1FS, 1HS/FS)
Ethernet MAC interface with DMA controller
HDMI-CEC
8- to 14-bit camera interface (up to 80 MHz)
11 analog peripherals
3× ADCs with 16-bit max. resolution (14 bits
4 MSPS, 16 bits 3.6 MSPS)
1× temperature sensor
2× 12-bit D/A converters (1 MHz)
2× ultra-low-power comparators
2× operational amplifiers (8 MHz bandwidth)
1× digital filters for sigma delta modulator
(DFSDM) with 8 channels/4 filters
Graphics
LCD-TFT controller up to XGA resolution
Chrom-ART graphical hardware Accelerator™
(DMA2D) to reduce CPU load
Hardware JPEG Codec
Up to 22 timers and watchdogs
1× high-resolution timer (2.5 ns max
resolution)
2× 32-bit timers with up to 4 IC/OC/PWM or
pulse counter and quadrature (incremental)
encoder input (up to 200 MHz)
2× 16-bit advanced motor control timers (up to
200 MHz)
10× 16-bit general-purpose timers (up to
200 MHz)
5× 16-bit low-power timers (up to 200 MHz)
2× watchdogs (independent and window)
1× SysTick timer
RTC with sub-second accuracy & HW calendar
Debug mode
SWD & JTAG interfaces
4 Kbyte Embedded Trace Buffer
True random number generators (3
oscillators each)
96-bit unique ID
All packages are ECOPACK®2 compliant
Table 1. Device summary
Reference Part number
STM32H743xI STM32H743VI, STM32H743ZI, STM32H743II, STM32H743BI, STM32H743XI,
STM32H743AI
DocID030538 Rev 3 3/226
STM32H743xI Contents
6
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Arm® Cortex®-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Low-power strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7.1 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7.2 System reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.8 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9 Bus-interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.10 DMA controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.11 Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 27
3.13 Extended interrupt and event controller (EXTI) . . . . . . . . . . . . . . . . . . . . 27
3.14 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 27
3.15 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.16 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.17 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.18 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.19 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.20 Digital-to-analog converters (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Contents STM32H743xI
4/226 DocID030538 Rev 3
3.21 Ultra-low-power comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.22 Operational amplifiers (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.23 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 31
3.24 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.25 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.26 JPEG Codec (JPEG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.27 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.28 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.28.1 High-resolution timer (HRTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.28.2 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.28.3 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.28.4 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.28.5 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5) . . . . 37
3.28.6 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.28.7 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.28.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.29 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 38
3.30 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.31 Universal synchronous/asynchronous receiver transmitter (USART) . . . 39
3.32 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 40
3.33 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 41
3.34 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.35 SPDIFRX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.36 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 42
3.37 Management Data Input/Output (MDIO) slaves . . . . . . . . . . . . . . . . . . . . 43
3.38 SD/SDIO/MMC card host interfaces (SDMMC) . . . . . . . . . . . . . . . . . . . . 43
3.39 Controller area network (FDCAN1, FDCAN2) . . . . . . . . . . . . . . . . . . . . . 43
3.40 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 44
3.41 Ethernet MAC interface with dedicated DMA controller (ETH) . . . . . . . . . 44
3.42 High-definition multimedia interface (HDMI)
- consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.43 Debug infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
DocID030538 Rev 3 5/226
STM32H743xI Contents
6
5 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.2 VCAP1/VCAP2/VCAP3 external capacitor . . . . . . . . . . . . . . . . . . . . . . 99
6.3.3 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 99
6.3.4 Embedded reset and power control block characteristics . . . . . . . . . . 100
6.3.5 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.7 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.11 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.13 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 126
6.3.14 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.15 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.16 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.17 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3.18 Quad-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.3.19 Delay block (DLYB) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.3.20 16-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.3.21 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.22 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 166
6.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.3.24 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Contents STM32H743xI
6/226 DocID030538 Rev 3
6.3.25 Voltage booster for analog switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3.26 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.3.27 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.3.28 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics . . . 173
6.3.29 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 176
6.3.30 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 177
6.3.31 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.3.32 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.3.33 JTAG/SWD interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.1 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.2 TFBGA100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array
package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.3 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.4 UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.5 LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.6 LQFP208 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.7 UFBGA176+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.8 TFBGA240+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7.9 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.9.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
DocID030538 Rev 3 7/226
STM32H743xI List of tables
9
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32H743xI features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 3. System vs domain low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 4. DFSDM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 5. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 6. USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 7. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 8. STM32H743xI pin/ball definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 9. Port A alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 10. Port B alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 11. Port C alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 12. Port D alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 13. Port E alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 14. Port F alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 15. Port G alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 16. Port H alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 17. Port I alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 18. Port J alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 19. Port K alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 20. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 21. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 22. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 23. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 24. VCAP1/VCAP2/VCAP3 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 25. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 99
Table 26. Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 27. Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 28. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 29. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM, regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 30. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, cache ON, regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 31. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, cache OFF, regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 32. Typical consumption in Run mode and corresponding performance
versus code position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 33. Typical current consumption batch acquisition mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 34. Typical and maximum current consumption in Sleep mode, regulator ON. . . . . . . . . . . . 105
Table 35. Typical and maximum current consumption in Stop mode, regulator ON. . . . . . . . . . . . . 106
Table 36. Typical and maximum current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . 106
Table 37. Typical and maximum current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . 107
Table 38. Peripheral current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 39. Peripheral current consumption in Stop, Standby and VBAT mode . . . . . . . . . . . . . . . . . 114
Table 40. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 41. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 42. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 43. 4-48 MHz HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 44. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
List of tables STM32H743xI
8/226 DocID030538 Rev 3
Table 45. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 46. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 47. CSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 48. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 49. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 50. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 51. Flash memory programming (single bank configuration nDBANK=1) . . . . . . . . . . . . . . . 124
Table 52. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 53. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 54. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 55. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 56. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 57. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 58. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 59. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 60. Output timing characteristics (HSLV OFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 61. Output timing characteristics (HSLV ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 62. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 63. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 137
Table 64. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings . . . . . . . . . . 137
Table 65. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 138
Table 66. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings. . . . . . . . . . 139
Table 67. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 68. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 140
Table 69. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 70. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 142
Table 71. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 72. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 73. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 74. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 75. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 76. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 77. SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 78. LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 79. SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 80. LPSDR SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 81. Quad-SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 82. Quad SPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 83. Dynamics characteristics: Delay Block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 84. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 85. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 86. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 87. DAC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 88. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 89. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 90. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 91. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 92. VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 93. Voltage booster for analog switch characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 94. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 95. OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 96. DFSDM measured timing 1.62-3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
DocID030538 Rev 3 9/226
STM32H743xI List of tables
9
Table 97. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 98. LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 99. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Table 100. Minimum i2c_ker_ck frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Table 101. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Table 102. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Table 103. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 104. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 105. MDIO Slave timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Table 106. Dynamic characteristics: SD / MMC characteristics, VDD=2.7V to 3.6V . . . . . . . . . . . . . 188
Table 107. Dynamic characteristics: eMMC characteristics, VDD=1.71V to 1.9V . . . . . . . . . . . . . . . 189
Table 108. USB OTG_FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Table 109. Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Table 110. Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 111. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 193
Table 112. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 194
Table 113. Dynamics characteristics: JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Table 114. Dynamics characteristics: SWD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Table 115. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Table 116. TFBGA100, 8 x 8 × 0.8 mm thin fine-pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Table 117. TFBGA100 recommended PCB design rules (0.8 mm pitch BGA). . . . . . . . . . . . . . . . . . 203
Table 118. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Table 119. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Table 120. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Table 121. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Table 122. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . 217
Table 123. UFBGA 176+25 recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . 218
Table 124. TFBGA240+25 - 265 pin, 14x14 mm, 0.8 mm pitch, fine pitch ball grid array
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Table 125. TFBGA240+25, 265 pin recommended PCB design rules (0.8 mm pitch) . . . . . . . . . . . . 222
Table 126. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Table 127. STM32H743xI ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Table 128. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
List of figures STM32H743xI
10/226 DocID030538 Rev 3
List of figures
Figure 1. STM32H743xI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 2. STM32H743xI bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 3. LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 4. TFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 5. LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 6. UFBGA169 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 7. LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 8. UFBGA176+25 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 9. LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 10. TFBGA240+25 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 11. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 13. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 15. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 16. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 17. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 18. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 19. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 20. VIL/VIH for all I/Os except BOOT0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 21. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 136
Figure 23. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 138
Figure 24. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 25. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 141
Figure 26. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Figure 27. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Figure 28. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 147
Figure 29. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Figure 30. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 31. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 32. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 150
Figure 33. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 151
Figure 34. SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 35. SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 36. Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 37. Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 38. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Figure 39. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 40. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 162
Figure 41. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 162
Figure 42. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 43. Channel transceiver timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Figure 44. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 45. LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 46. LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 47. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Figure 48. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
DocID030538 Rev 3 11/226
STM32H743xI List of figures
11
Figure 49. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Figure 50. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 51. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 52. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Figure 53. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Figure 54. MDIO Slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 55. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 56. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 57. DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 58. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Figure 59. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 60. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 61. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Figure 62. JTAG timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure 63. SWD timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure 64. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 197
Figure 65. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 66. LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Figure 67. TFBGA100, 8 × 8 × 0.8 mm thin fine-pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Figure 68. TFBGA100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Figure 69. TFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Figure 70. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . 204
Figure 71. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Figure 72. LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Figure 73. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid
array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Figure 74. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline . . . . . . . . . . . . . . 209
Figure 75. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Figure 76. LQFP176 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Figure 77. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline . . . . . . . . . . . . . . 213
Figure 78. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Figure 79. LQFP208 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Figure 80. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Figure 81. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Figure 82. UFBGA176+25 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Figure 83. TFBGA240+25 - 265 pin, 14x14 mm, 0.8 mm pitch, fine pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Figure 84. TFBGA240+25 - 265 pin pin, 14x14 mm 0.8 mm pitch
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Figure 85. TFBGA240+25 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Introduction STM32H743xI
12/226 DocID030538 Rev 3
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32H743xI microcontrollers.
This document should be read in conjunction with the STM32H743xI reference manual
(RM0433). The reference manual is available from the STMicroelectronics website
www.st.com.
For information on the Arm® Cortex®-M7 core, please refer to the Cortex®-M7 Technical
Reference Manual, available from the www.arm.com website.
DocID030538 Rev 3 13/226
STM32H743xI Description
46
2 Description
STM32H743xI devices are based on the high-performance Arm® Cortex®-M7 32-bit RISC
core operating at up to 400 MHz. The Cortex® -M7 core features a floating point unit (FPU)
which supports Arm® double-precision (IEEE 754 compliant) and single-precision data-
processing instructions and data types. STM32H743xI devices support a full set of DSP
instructions and a memory protection unit (MPU) to enhance application security.
STM32H743xI devices incorporate high-speed embedded memories with a dual-bank Flash
memory up to 2 Mbytes, 1 Mbyte of RAM (including 192 Kbytes of TCM RAM, 864 Kbytes of
user SRAM and 4 Kbytes of backup SRAM), as well as an extensive range of enhanced
I/Os and peripherals connected to APB buses, AHB buses, 2x32-bit multi-AHB bus matrix
and a multi layer AXI interconnect supporting internal and external memory access.
All the devices offer three ADCs, two DACs, two ultra-low power comparators, a low-power
RTC, a high-resolution timer, 12 general-purpose 16-bit timers, two PWM timers for motor
control, five low-power timers and a true random number generator (RNG). The devices
support four digital filters for external sigma-delta modulators (DFSDM). They also feature
standard and advanced communication interfaces.
Standard peripherals
–Four I
2Cs
Four USARTs, four UARTs and one LPUART
Six SPIs, three I2Ss in half-duplex mode. To achieve audio class accuracy, the I2S
peripherals can be clocked by a dedicated internal audio PLL or by an external
clock to allow synchronization.
Four SAI serial audio interfaces
One SPDIFRX interface
One SWPMI (Single Wire Protocol Master Interface)
Management Data Input/Output (MDIO) slaves
Two SDMMC interfaces
A USB OTG full-speed and a USB OTG high-speed interface with full-speed
capability (with the ULPI)
One FDCAN plus one TT-CAN interface
An Ethernet interface
Chrom-ART Accelerator
HDMI-CEC
Advanced peripherals including
A flexible memory control (FMC) interface
A Quad-SPI Flash memory interface
A camera interface for CMOS sensors
An LCD-TFT display controller
A JPEG hardware compressor/decompressor
Refer to Table 2: STM32H743xI features and peripheral counts for the list of peripherals
available on each part number.
Description STM32H743xI
14/226 DocID030538 Rev 3
STM32H743xI devices operate in the –40 to +85 °C temperature range from a 1.62 to 3.6 V
power supply. The supply voltage can drop down to 1.62 V by using an external power
supervisor (see Section 3.5.2: Power supply supervisor) and connecting the PDR_ON pin to
VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power
voltage detector enabled.
Dedicated supply inputs for USB (OTG_FS and OTG_HS) are available on all packages
except LQFP100 to allow a greater power supply choice.
A comprehensive set of power-saving modes allows the design of low-power applications.
STM32H743xI devices are offered in 8 packages ranging from 100 pins to 240 pins/balls.
The set of included peripherals changes with the device chosen.
These features make STM32H743xI microcontrollers suitable for a wide range of
applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Mobile applications, Internet of Things
Wearable devices: smart watches.
Figure 1 shows the general block diagram of the device family.
Table 2. STM32H743xI features and peripheral counts
Peripherals STM32H
743VI
STM32H
743ZI
STM32H
743AI
STM32H
743II
STM32H
743BI
STM32H
743XI
Flash memory in Kbytes 2048
SRAM in
Kbytes
SRAM mapped onto
AXI bus 512
SRAM1 (D2 domain) 128
SRAM2 (D2 domain) 128
SRAM3 (D2 domain) 32
SRAM4 (D3 domain) 64
TCM RAM in
Kbytes
ITCM RAM
(instruction) 64
DTCM RAM (data) 128
Backup SRAM (Kbytes) 4
FMC Yes
Quad-SPI Yes
Ethernet Yes
DocID030538 Rev 3 15/226
STM32H743xI Description
46
Timers
High-resolution 1
General-purpose 10
Advanced-control
(PWM) 2
Basic 2
Low-power 5
Random number generator Yes
Communicati
on interfaces
SPI / I2S6/3
(1)
I2C4
USART/UART/
LPUART
4/4
/1
SAI 4
SPDIFRX 4 inputs
SWPMI Yes
MDIO Yes
SDMMC 2
FDCAN/TT-CAN 1/1
USB OTG_FS Yes
USB OTG_HS Yes
Ethernet and camera interface Yes
LCD-TFT Yes
JPEG Codec Yes
Chrom-ART Accelerator™ (DMA2D) Yes
GPIOs 82 114 131 140 168
8 to 16-bit ADCs
Number of channels
3
20
12-bit DAC
Number of channels
Yes
2
Comparators 2
Operational amplifiers 2
DFSDM Yes
Maximum CPU frequency 400 MHz
Operating voltage 1.71 to
3.6 V(2) 1.62 to 3.6 V(3)
Table 2. STM32H743xI features and peripheral counts (continued)
Peripherals STM32H
743VI
STM32H
743ZI
STM32H
743AI
STM32H
743II
STM32H
743BI
STM32H
743XI
Description STM32H743xI
16/226 DocID030538 Rev 3
Operating temperatures
Ambient temperatures: –40 up to +85 °C(4)
Junction temperature: –40 to + 125 °C
Package LQFP100
TFBGA100(5) LQFP144 UFBGA
169(5)
LQFP176
UFBGA
176+25
LQFP208 TFBGA
240+25
1. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio
mode.
2. Since the LQFP100 package does not feature the PDR_ON pin (tied internally to VDD), the minimum VDD value for this
package is 1.71 V.
3. VDD/VDDA can drop down to 1.62 V by using an external power supervisor (see Section 3.5.2: Power supply supervisor)
and connecting PDR_ON pin to VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power
voltage detector enabled.
4. The product junction temperature must be kept within the –40 to +125 °C temperature range.
5. This package is under development. Please contact STMicroelectronics for details.
Table 2. STM32H743xI features and peripheral counts (continued)
Peripherals STM32H
743VI
STM32H
743ZI
STM32H
743AI
STM32H
743II
STM32H
743BI
STM32H
743XI
DocID030538 Rev 3 17/226
STM32H743xI Description
46
Figure 1. STM32H743xI block diagram
MSv41922V8
TT-FDCAN1
FDCAN2
I2C1/SMBUS
I2C2/SMBUS
I2C3/SMBUS
AXI/AHB12 (200MHz)
4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF
APB1 30MHz
TX, RX
SCL, SDA, SMBAL as AF
APB1 100 MHz (max)
MDMA
PK[7:0]
4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR,
BKIN as AF
RX, TX, SCK, CTS, RTS as AF
SCL, SDA, SMBAL as AF
SCL, SDA, SMBAL as AF
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF
TX, RX
RX, TX as AF
RX, TX as AF
RX, TX, SCK
CTS, RTS as AF
RX, TX, SCK, CTS,
RTS as AF
1 channel as AF
smcard
irDA
1 channel as AF
2 channels as AF
4 channels
4 channels, ETR as AF
4 channels, ETR as AF
4 channels, ETR as AF
RX, TX as AF
FIFO
LCD-TFT
FIFO
CHROM-ART
(DMA2D)
SD, SCK, FS, MCLK, D/CK[4:1] as
AF
FIFO
LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,
LCD_VSYNC, LCD_DE, LCD_CLK
CLK, CS,D[7:0]
64-bit AXI BUS-MATRIX
HDMI_CEC as AF
SPDIFRX[3:0] as AF
MDC, MDIO
AXIM
AXIM
Arm CPU
Cortex-M7
400 MHz
AHBP
AHBS
TRACECK
TRACED[3:0]
JTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
JTAG/SW
ETM
I-Cache
16KB
D-Cache
16KB
I-TCM
64KB
D-TCM
64KB
16 Streams
FIFO
SDMMC1
SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir
CMD, CMDdir, CK, Ckin,
CKio as AF
FIFO
DMA1
FIFOs
8 Stream
DMA2
FIFOs
ETHER
MAC
FIFO
SDMMC2
FIFO
OTG_HS
FIFO
OTG_FS
FIFO
SRAM1
128 KB
8 Stream
FMC_signals
DMA/ DMA/ DMA/
PHY PHY
MII / RMII
MDIO
as AF
DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,
ID, VBUS
AHB1 (200MHz)
ADC1
DAC_OUT1, DAC_OUT2 as AF
16b
AXI/AHB34 (200MHz)
JPEG
WWDG
AHB2 (200MHz)
AHB2 (200MHz)
PA..J[15:0]
HSYNC, VSYNC, PIXCLK, D[13:0]
SAI3
MOSI, MISO, SCK, NSS as AF
MOSI, MISO, SCK, NSS as AF
smcard
irDA 32-bit AHB BUS-MATRIX
AHB4 (200MHz)
BDMA
DMA
Mux2
Up to 20 analog inputs
common to ADC1 & 2
HSEM
AHB4 (200MHz)
AHB3
AHB4
AHB4
AHB4
AHB4
AHB4
VDDA, VSSA
NRESET
WKUP[4:0]
@VDD
RCC
Reset &
control
OSC32_IN
OSC32_OUT
VBAT = 1.8 to 3.6 V
AWU
VDD12 BBgen + POWER MNGT
LS LS
OSC_IN
OSC_OUT
RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN
VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP1/2/3
@VDD
@VDD33
@VSW
PWRCTRL
AHB4 (200MHz)
SUPPLY SUPERVISION
Int
POR
reset
@VDD
WDG_LS_D1
LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF
OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF
HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],
HRTIM1_FLT[5:1]_in, SYSFLT
DFSDM_CKOUT,
DFSDM_DATAIN[0:7],
DFSDM_CKIN[0:7]
2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF
1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF
1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF
SDMMC_
D[7:0],
CMD, CK as AF
Up to 17 analog inputs
common to ADC1 and 2
SD, SCK, FS, MCLK,
D[3;1], CK[2:1] as AF
SCL, SDA, SMBAL as AF
COMPx_INP, COMPx_INM,
COMPx_OUT as AF
LPTIM5_OUT as AF
D-TCM
64KB
AHB/APB
Quad-SPI
1 MB FLASH
1 MB FLASH
512 KB AXI
SRAM
FMC
Delay block
DCMI AHB/APB
HRTIM1
DFSDM
SD, SCK, FS, MCLK, CK[2:1] as AF
FIFO
SAI2
SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF
FIFO
SAI1
SPI5
TIM17
TIM16
TIM15
SPI4
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF SPI1/I2S1
USART6
RX, TX, SCK, CTS, RTS as AF irDA USART1
TIM1/PWM 16b
TIM8/PWM 16b
APB2 100 MHz (max)
ADC3
GPIO PORTA.. J
GPIO PORTK
SAI4
COMP1&2
LPTIM5
LPTIM4_OUT as AF LPTIM4
LPTIM3_OUT as AF LPTIM3
I2C4
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF SPI6/I2S6
RX, TX, CK, CTS, RTS as AF LPUART1
LPTIM2
Tamper monitor
VREF
SYSCFG
EXTI WKUP
CRC
DAP
RNG
DMA
Mux1
To APB1-2
peripherals
SRAM2
128 KB
SRAM3
32 KB
ADC2
AHB/APB
TIM6 16b
TIM7 16b
SWPMI
TIM2
32b
TIM3
16b
TIM4
16b
TIM5
32b
TIM12
16b
TIM13
16b
TIM14
16b
USART2
smcard
irDA
USART3
UART4
UART5
UART7
RX, TX as AF
UART8
SPI2/I2S2
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF
SPI3/I2S3
Digital filter
MDIOs
FIFO
10 KB SRAM
RAM
I/F
USBCR
SPIFRX
HDMI-CEC
DAC
LPTIM1
OPAMP1&2
AHB/APB
XTAL 32 kHz
RTC
Backup registers
XTAL OSC
4- 48 MHz
HS RC
LS RC
PLL1+PLL2+PLL3
POR/PDR/BOR
PVD
smcard
Voltage
regulator
3.3 to 1.2V
LSI
HSI
CSI
HSI48
LPTIM2_IN1, LPTIM2_IN2 and
LPTIM2_OUT
AHB1 (200MHz)
DP, DM, ID,
VBUS
64 KB SRAM 4 KB BKP
RAM
AHB4
32-bit AHB BUS-MATRIX
APB4 100 MHz (max)
APB4 100 MHz (max)
APB4 100 MHz (max)
IWDG
Temperature
sensor
Functional overview STM32H743xI
18/226 DocID030538 Rev 3
3 Functional overview
3.1 Arm® Cortex®-M7 with FPU
The Arm® Cortex®-M7 with double-precision FPU processor is the latest generation of Arm
processors for embedded systems. It was developed to provide a low-cost platform that
meets the needs of MCU implementation, with a reduced pin count and optimized power
consumption, while delivering outstanding computational performance and low interrupt
latency.
The Cortex®-M7 processor is a highly efficient high-performance featuring:
Six-stage dual-issue pipeline
Dynamic branch prediction
Harvard architecture with L1 caches (16 Kbytes of I-cache and 16 Kbytes of D-cache)
64-bit AXI interface
64-bit ITCM interface
2x32-bit DTCM interfaces
The following memory interfaces are supported:
Separate Instruction and Data buses (Harvard Architecture) to optimize CPU latency
Tightly Coupled Memory (TCM) interface designed for fast and deterministic SRAM
accesses
AXI Bus interface to optimize Burst transfers
Dedicated low-latency AHB-Lite peripheral bus (AHBP) to connect to peripherals.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
It also supports single and double precision FPU (floating point unit) speeds up software
development by using metalanguage development tools, while avoiding saturation.
Figure 1 shows the general block diagram of the STM32H743xI family.
Note: Cortex®-M7 with FPU core is binary compatible with the Cortex®-M4 core.
3.2 Memory protection unit (MPU)
The memory protection unit (MPU) manages the CPU access rights and the attributes of the
system resources. It has to be programmed and enabled before use. Its main purposes are
to prevent an untrusted user program to accidentally corrupt data used by the OS and/or by
a privileged task, but also to protect data processes or read-protect memory regions.
The MPU defines access rules for privileged accesses and user program accesses. It
allows defining up to 16 protected regions that can in turn be divided into up to 8
independent subregions, where region address, size, and attributes can be configured. The
protection area ranges from 32 bytes to 4 Gbytes of addressable memory.
When an unauthorized access is performed, a memory management exception is
generated.
DocID030538 Rev 3 19/226
STM32H743xI Functional overview
46
3.3 Memories
3.3.1 Embedded Flash memory
The STM32H743xI devices embed up to 2 Mbytes of Flash memory that can be used for
storing programs and data.
The Flash memory is organized as 266-bit Flash words memory that can be used for storing
both code and data constants. Each word consists of:
One Flash word (8 words, 32 bytes or 256 bits)
10 ECC bits.
The Flash memory is divided into two independent banks. Each bank is organized as
follows:
A 1 Mbyte user Flash memory block containing eight user sectors of
128 Kbytes(4 K Flash words)
128 Kbytes of System Flash memory from which the device can boot
2 Kbytes (64 Flash words) of user option bytes for user configuration
3.3.2 Embedded SRAM
All devices feature:
512 Kbytes of AXI-SRAM mapped onto AXI bus on D1 domain.
SRAM1 mapped on D2 domain: 128 Kbytes
SRAM2 mapped on D2 domain: 128 Kbytes
SRAM3 mapped on D2 domain: 32 Kbytes
SRAM4 mapped on D3 domain: 64 Kbytes
4 Kbytes of backup SRAM
The content of this area is protected against possible unwanted write accesses,
and is retained in Standby or VBAT mode.
RAM mapped to TCM interface (ITCM and DTCM):
Both ITCM and DTCM RAMs are 0 wait state memories that are accessible from the
CPU or the MDMA (even in Sleep mode) through a specific AHB slave of the
CPU(AHBP).
64 Kbytes of ITCM-RAM (instruction RAM)
This RAM is connected to ITCM 64-bit interface designed for execution of critical
real-times routines by the CPU.
128 Kbytes of DTCM-RAM (2x 64 Kbyte DTCM-RAMs on 2x32-bit DTCM ports)
The DTCM-RAM could be used for critical real-time data, such as interrupt service
routines or stack/heap memory. Both DTCM-RAMs can be used in parallel (for
load/store operations) thanks to the Cortex®-M7 dual issue capability.
Error code correction (ECC)
Over the product lifetime, and/or due to external events such as radiations, invalid bits in
memories may occur. They can be detected and corrected by ECC. This is an expected
behavior that has to be managed at final-application software level in order to ensure data
integrity through ECC algorithms implementation.
Functional overview STM32H743xI
20/226 DocID030538 Rev 3
SRAM data are protected by ECC:
7 ECC bits are added per 32-bit word.
8 ECC bits are added per 64-bit word for AXI-SRAM and ITCM-RAM.
The ECC mechanism is based on the SECDED algorithm. It supports single- and double-
error correction.
3.4 Boot modes
At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option
bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF
which includes:
All Flash address space
All RAM address space: ITCM, DTCM RAMs and SRAMs
The System memory bootloader
The boot loader is located in non-user System memory. It is used to reprogram the Flash
memory through a serial interface (USART, I2C, SPI, USB-DFU). Refer to STM32
microcontroller System memory boot mode application note (AN2606) for details.
3.5 Power supply management
3.5.1 Power supply scheme
VDD = 1.62 to 3.6 V: external power supply for I/Os, provided externally through VDD
pins.
VDDLDO = 1.62 to 3.6 V: supply voltage for the internal regulator supplying VCORE
VDDA = 1.62 to 3.6 V: external analog power supplies for ADC, DAC, COMP and
OPAMP.
VDD33USB and VDD50USB:
VDD50USB can be supplied through the USB cable to generate the VDD33USB via the
USB internal regulator. This allows supporting a VDD supply different from 3.3 V.
The USB regulator can be bypassed to supply directly VDD33USB if VDD = 3.3 V.
VBAT = 1.2 to 3.6 V: power supply for the VSW domain when VDD is not present.
VCAP1/VCAP2/VCAP3: VCORE supplies, which values depend on voltage scaling (0.7 V,
0.9 V, 1.0 V, 1.1 V or 1.2 V). They are configured through VOS bits in PWR_D3CR
register. The VCORE domain is split into the following power domains that can be
independently switch off.
D1 domain containing some peripherals and the Cortex®-M7 core.
D2 domain containing a large part of the peripherals.
D3 domain containing some peripherals and the system control.
DocID030538 Rev 3 21/226
STM32H743xI Functional overview
46
3.5.2 Power supply supervisor
The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry:
Power-on reset (POR)
The POR supervisor monitors VDD power supply and compares it to a fixed threshold.
The devices remain in reset mode when VDD is below this threshold,
Power-down reset (PDR)
The PDR supervisor monitors VDD power supply. A reset is generated when VDD drops
below a fixed threshold.
The PDR supervisor can be enabled/disabled through PDR_ON pin.
Brownout reset (BOR)
The BOR supervisor monitors VDD power supply. Three BOR thresholds (from 2.1 to
2.7 V) can be configured through option bytes. A reset is generated when VDD drops
below this threshold.
3.5.3 Voltage regulator
The same voltage regulator supplies the 3 power domains (D1, D2 and D3). D1 and D2 can
be independently switched off.
Voltage regulator output can be adjusted according to application needs through 5 power
supply levels:
Run mode (VOS1 to VOS3)
Scale 1: high performance
Scale 2: medium performance and consumption
Scale 3: optimized performance and low-power consumption
Stop mode (SVOS3 to SVOS5)
Scale 3: peripheral with wakeup from stop mode capabilities (UART, SPI, I2C,
LPTIM) are operational
Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled
The peripheral functionality is disabled but wakeup from Stop mode is possible
through GPIO or asynchronous interrupt.
3.6 Low-power strategy
There are several ways to reduce power consumption on STM32H743xI:
Decrease dynamic power consumption by slowing down the system clocks even in
Run mode and individually clock gating the peripherals that are not used.
Save power consumption when the CPU is idle, by selecting among the available low-
power mode according to the user application needs. This allows achieving the best
compromise between short startup time, low-power consumption, as well as available
wakeup sources.
Functional overview STM32H743xI
22/226 DocID030538 Rev 3
The devices feature several low-power modes:
CSleep (CPU clock stopped)
CStop (CPU sub-system clock stopped)
DStop (Domain bus matrix clock stopped)
Stop (System clock stopped)
DStandby (Domain powered down)
Standby (System powered down)
CSleep and CStop low-power modes are entered by the MCU when executing the WFI
(Wait for Interrupt) or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit of
the Cortex®-Mx core is set after returning from an interrupt service routine.
A domain can enter low-power mode (DStop or DStandby) when the processor, its
subsystem and the peripherals allocated in the domain enter low-power mode.
If part of the domain is not in low-power mode, the domain remains in the current mode.
Finally the system can enter Stop or Standby when all EXTI wakeup sources are cleared
and the power domains are in DStop or DStandby mode.
3.7 Reset and clock controller (RCC)
The clock and reset controller is located in D3 domain. The RCC manages the generation of
all the clocks, as well as the clock gating and the control of the system and peripheral
resets. It provides a high flexibility in the choice of clock sources and allows to apply clock
ratios to improve the power consumption. In addition, on some communication peripherals
that are capable to work with two different clock domains (either a bus interface clock or a
kernel peripheral clock), the system frequency can be changed without modifying the
baudrate.
Table 3. System vs domain low-power mode
System power mode D1 domain power
mode
D2 domain power
mode
D3 domain power
mode
Run DRun/DStop/DStandby DRun/DStop/DStandby DRun
Stop DStop/DStandby DStop/DStandby DStop
Standby DStandby DStandby DStandby
DocID030538 Rev 3 23/226
STM32H743xI Functional overview
46
3.7.1 Clock management
The devices embed four internal oscillators, two oscillators with external crystal or
resonator, two internal oscillators with fast startup time and three PLLs.
The RCC receives the following clock source inputs:
Internal oscillators:
64 MHz HSI clock (1% accuracy)
48 MHz RC oscillator
4 MHz CSI clock
32 kHz LSI clock
External oscillators:
4-48 MHz HSE clock
32.768 kHz LSE clock
The RCC provides three PLLs: one for system clock, two for kernel clocks.
The system starts on the HSI clock. The user application can then select the clock
configuration.
3.7.2 System reset sources
Power-on reset initializes all registers while system reset reinitializes the system except for
the debug, part of the RCC and power controller status registers, as well as the backup
power domain.
A system reset is generated in the following cases:
Power-on reset (pwr_por_rst)
Brownout reset
Low level on NRST pin (external reset)
Window watchdog
Independent watchdog
Software reset
Low-power mode security reset
Exit from Standby
3.8 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
After reset, all GPIOs are in Analog mode to reduce power consumption.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Functional overview STM32H743xI
24/226 DocID030538 Rev 3
3.9 Bus-interconnect matrix
The devices feature an AXI bus matrix, two AHB bus matrices and bus bridges that allow
interconnecting bus masters with bus slaves (see Figure 2).
STM32H743xI Functional overview
DocID030538 Rev 3 25/226
Figure 2. STM32H743xI bus matrix
MSv46613V1
AXIM
DMA2 Ethernet
MAC SDMMC2DMA1 USBHS1 USBHS2
APB1
SDMMC1 MDMA DMA2D LTDC
BDMA
APB4
Cortex-M7
I$
16KB
D$
16KB
AHBP
DMA1_MEM
DMA1_PERIPH
DMA2_MEM
DMA2_PERIPH
APB3
32-bit AHB bus matrix
D2 domain
64-bit AXI bus matrix
D1 domain
32-bit AHB bus matrix
D3 domain
DTCM
128 Kbyte
ITCM
64 Kbyte
Flash A
1 Mbyte
Flash B
1 Mbyte
AXI SRAM
512 Kbyte
QSPI
FMC
SRAM1 128
Kbyte
SRAM2 128
Kbyte
SRAM3
32 Kbyte
AHB1
AHB2
AHB4
SRAM4
64 Kbyte
Backup
SRAM
4 Kbyte
AHBS
CPU
D2-to-D1 AHB
D2-to-D3 AHB
D1-to-D2 AHB
D1-to-D3 AHB
32-bit bus
64-bit bus
Bus multiplexer
Legend
Master interface
Slave interface
AHB3
AXI
AHB
APB
APB2
TCM
Functional overview STM32H743xI
26/226 DocID030538 Rev 3
3.10 DMA controllers
The devices feature four DMA instances to unload CPU activity:
A master direct memory access (MDMA)
The MDMA is a high-speed DMA controller, which is in charge of all types of memory
transfers (peripheral to memory, memory to memory, memory to peripheral), without
any CPU action. It features a master AXI interface and a dedicated AHB interface to
access Cortex®-M7 TCM memories.
The MDMA is located in D1 domain. It is able to interface with the other DMA
controllers located in D2 domain to extend the standard DMA capabilities, or can
manage peripheral DMA requests directly.
Each of the 16 channels can perform single block transfers, repeated block transfers
and linked list transfers.
Two dual-port DMAs (DMA1, DMA2) located in D2 domain, with FIFO and request
router capabilities.
One basic DMA (BDMA) located in D3 domain, with request router capabilities.
The DMA request router could be considered as an extension of the DMA controller. It
routes the DMA peripheral requests to the DMA controller itself. This allowing managing the
DMA requests with a high flexibility, maximizing the number of DMA requests that run
concurrently, as well as generating DMA requests from peripheral output trigger or DMA
event.
3.11 Chrom-ART Accelerator™ (DMA2D)
The Chrom-Art Accelerator™ (DMA2D) is a graphical accelerator which offers advanced bit
blitting, row data copy and pixel format conversion. It supports the following functions:
Rectangle filling with a fixed color
Rectangle copy
Rectangle copy with pixel format conversion
Rectangle composition with blending and pixel format conversion
Various image format coding are supported, from indirect 4bpp color mode up to 32bpp
direct color. It embeds dedicated memory to store color lookup tables. The DMA2D also
supports block based YCbCr to handle JPEG decoder output.
An interrupt can be generated when an operation is complete or at a programmed
watermark.
All the operations are fully automatized and are running independently from the CPU or the
DMAs.
DocID030538 Rev 3 27/226
STM32H743xI Functional overview
46
3.12 Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller which is able to manage 16
priority levels, and handle up to 150 maskable interrupt channels plus the 16 interrupt lines
of the Cortex®-M7 with FPU core.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor context automatically saved on interrupt entry, and restored on interrupt exit
with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
3.13 Extended interrupt and event controller (EXTI)
The EXTI controller performs interrupt and event management. In addition, it can wake up
the processor, power domains and/or D3 domain from Stop mode.
The EXTI handles up to 89 independent event/interrupt lines split as 28 configurable events
and 61 direct events .
Configurable events have dedicated pending flags, active edge selection, and software
trigger capable.
Direct events provide interrupts or events from peripherals having a status flag.
3.14 Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
programmable polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
Functional overview STM32H743xI
28/226 DocID030538 Rev 3
3.15 Flexible memory controller (FMC)
The FMC controller main features are the following:
Interface with static-memory mapped devices including:
Static random access memory (SRAM)
NOR Flash memory/OneNAND Flash memory
PSRAM (4 memory banks)
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
8-,16-,32-bit data bus width
Independent Chip Select control for each memory bank
Independent configuration for each memory bank
Write FIFO
Read FIFO for SDRAM controller
The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is the
FMC kernel clock divided by 2.
3.16 Quad-SPI memory interface (QUADSPI)
All devices embed a Quad-SPI memory interface, which is a specialized communication
interface targeting Single, Dual or Quad-SPI Flash memories. It supports both single and
double datarate operations.
It can operate in any of the following modes:
Direct mode through registers
External Flash status register polling mode
Memory mapped mode.
Up to 256 Mbytes of external Flash memory can be mapped, and 8-, 16- and 32-bit data
accesses are supported as well as code execution.
The opcode and the frame format are fully programmable.
3.17 Analog-to-digital converters (ADCs)
The STM32H743xI devices embed three analog-to-digital converters, which resolution can
be configured to 16, 14, 12, 10 or 8 bits. Each ADC shares up to 20 external channels,
performing conversions in the single-shot or scan mode. In scan mode, automatic
conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
The ADC can be served by the DMA controller, thus allowing to automatically transfer ADC
converted values to a destination location without any software action.