LL
LL
Line CC
CC
Card PP
PP
Protection SS
SS
Switch
for SONET or SDH Network Elements
ACS8515 Rev2.1 LC/P
Description Description
Description Description
Description Features Features
Features Features
Features
Block Diagram Block Diagram
Block Diagram Block Diagram
Block Diagram
The ACS8515 is a highly integrated, single-chip
solution for ‘hit-less’ protection switching of SEC
clocks from Master and Slave SETS clockcards
in a SONET or SDH Network Element. The
ACS8515 has fast activity monitors on the in-
puts and will implement automatic system pro-
tection switching against master clock failure.
A further input is provided for an optional standby
SEC clock. The ACS8515 is fully compliant with
the required specifications and standards.
The ACS8515 can perform frequency translation
from a SEC input clock distributed along a back
plane to a different local line card clock, e.g.
8 kHz distributed on the back plane and
19.44 MHz generated on the line cards.
An SPI(1) compatible serial port is incorporated,
providing access to the configuration and status
registers for device setup.
The ACS8515 can utilise either a low cost XO
oscillator module, or a TCXO with full tempera-
ture calibration - as required by the application.
Rev2.1 adds choice of edge alignment for 8kHz
input, as well as a low jitter n x E1/DS1 output
mode. Other minor changes are made, with all
described in Appendix A.
ADVANCED COMMUNICATIONS FINAL
Revision 2.01/December 2005 Semtech Corp. www.semtech.com
•Suitable for Stratum 3, 4E and 4 SONET
or SDH Equipment Clock (SEC) applications
•Meets AT&T, ITU-T, ETSI and Telcordia
specifications
•Three SEC input clocks, from 2 kHz to
155.52 MHz
•Generates two SEC output clocks, up to
311.04 MHz
•Frequency translation of SEC input clock to a
different local line card clock
•Robust input clock source frequency and
activity monitoring on all inputs
•Supports Free-run, Locked and Holdover
modes of operation
•Automatic ‘hit-less’ source switchover on loss
of input
•External force fast switch between SEC inputs
•Phase build out for output clock phase
continuity during input switchover
•SPI(1) compatible serial microprocessor interface
•Programmable wander and jitter tracking
attenuation 0.1 Hz to 20 Hz
•Single +3.3 V operation. +5 V I/O compatible
•Operating temperature (ambient) -40°C to
+85°C
•Available in 64 pin LQFP package
•Lead (pb)-free version available (ACS8515
Rev2.1T) RoHS and WEEE compliant.
(1) SPI is a trademark of Motorola Corporation
Figure 1. Simple Block DiagramFigure 1. Simple Block Diagram
Figure 1. Simple Block DiagramFigure 1. Simple Block Diagram
Figure 1. Simple Block Diagram
Monitors
Chip Clock
Generator
TCXO or XO
DPLL
Frequency Synthesis
3 x SEC Input
Master/Slave
+ Standby:
N x 8kHz
1.544/2.048MHz
6.48MHz
19.44MHz
38.88MHz
51.84MHz
77.76MHz
155.52MHz
MFrSync
APLL
Frequency
Dividers
Output
Ports
2xSEC
FrSync
MFrSync
Input
Ports
3xSEC
MFrSync
SPI Compatible Serial
Microprocessor Port
Priority
Table
Register
Set
Revision 2.01/December 2005 Semtech Corp. www.semtech.com2
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
T T
T T
Table of Contable of Cont
able of Contable of Cont
able of Contentsents
entsents
ents
List of SectionsList of Sections
List of SectionsList of Sections
List of Sections
Description ................................................................................................................................................................................................ 1
Block Diagram........................................................................................................................................................................................... 1
Features ..................................................................................................................................................................................................... 1
T able of Contents ...................................................................................................................................................................................... 2
Pin Diagram............................................................................................................................................................................................... 4
Pin Descriptions........................................................................................................................................................................................ 5
Functional Description ............................................................................................................................................................................. 7
Local Oscillator Clock ..................................................................................................................................................................................... 7
Crystal Frequency Calibration........................................................................................................................................................ 7
Input Reference Clock Ports......................................................................................................................................................................... 8
Input Wander and Jitter Tolerance ............................................................................................................................................................ 10
Output Clock Ports ........................................................................................................................................................................................ 11
Low Speed Output Clock................................................................................................................................................................11
High Speed Output Clock ..............................................................................................................................................................12
Frame Sync and Multi-Frame Sync Clocks ................................................................................................................................12
Low Jitter Multiple E1/DS1 Outputs ...........................................................................................................................................12
Output Wander and Jitter............................................................................................................................................................................ 13
Phase Variation ............................................................................................................................................................................................. 14
Phase Build Out............................................................................................................................................................................................. 16
Microprocessor Interface ............................................................................................................................................................................. 16
Register Set .....................................................................................................................................................................................16
Configuration Registers .................................................................................................................................................................16
Status Registers ..............................................................................................................................................................................16
Register Access............................................................................................................................................................................... 17
Interrupt Enable and Clear ......................................................................................................................................................................... 17
Register Map .................................................................................................................................................................................................. 18
Register Map Description ........................................................................................................................................................................... 21
Selection of Input Reference Clock Source ............................................................................................................................................. 29
Automatic Control Selection ........................................................................................................................................................29
Ultra Fast Switching .......................................................................................................................................................................30
External Protection Switching .....................................................................................................................................................30
Activity Monitoring ....................................................................................................................................................................................... 30
Modes of Operation ...................................................................................................................................................................................... 32
Free-run Mode .................................................................................................................................................................................32
Pre-Locked Mode ............................................................................................................................................................................32
Locked Mode....................................................................................................................................................................................32
Lost-Phase Mode.............................................................................................................................................................................33
Holdover Mode ................................................................................................................................................................................33
Pre-Locked(2) Mode ........................................................................................................................................................................33
Power On Reset - PORB ............................................................................................................................................................................... 33
Electrical Specification..........................................................................................................................................................................35
Serial Microprocessor Interface Timing ...............................................................................................................................................44
Package Information ..............................................................................................................................................................................46
Thermal Conditions ....................................................................................................................................................................................... 47
Application Information..........................................................................................................................................................................48
Appendix A Rev2.1 Changes Described ...............................................................................................................................................49
Revision History .............................................................................................................. ........................................................................49
Ordering Information ..............................................................................................................................................................................50
Disclaimers ..................................................................................................................................................................................................... 50
Revision 2.01/December 2005 Semtech Corp. www.semtech.com3
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
List of FiguresList of Figures
List of FiguresList of Figures
List of Figures
Figure 1. Simple Block Diagram .............................................................................................................................................................. 1
Figure 2. ACS8515 Pin Diagram .................................................................................................. ........................................................... 4
Figure 3. Minimum Input Jitter T olerance (OC-3/STM-1)....................................................................................................................11
Figure 4. Minimum Input Jitter T olerance (DS1/E1) ...........................................................................................................................12
Figure 5. Wander and Jitter T ransfer Measured Characteristics ........................................................................................................14
Figure 6. Maximum Time Interval Error of TOUT0 Output Port ...........................................................................................................15
Figure 7 . Time Deviation of TOUT0 Output Port ...................................................................................................................................15
Figure 8. Phase Error Accumulation of TOUT0 Output Port in Holdover Mode.................................................................................15
Figure 9. Inactivity and Irregularity Monitoring....................................................................................................................................30
Figure 10. Automatic Mode Control State Diagram............................................................................................................................34
Figure 11. Recommended Line Termination for PECL Input/Output Ports .......................................................................................38
Figure 12. Recommended Line T ermination for LVDS Input/Output Ports .......................................................................................39
Figure 13. Input/Output Timing .............................................................................................................................................................43
Figure 14. Serial Interface Read Access Timing..................................................................................................................................44
Figure 15. Serial Interface Write Access Timing .................................................................................................................................45
Figure 16. LQFP Package.......................................................................................................................................................................46
Figure 1 7 . T ypical 64 Pin LQFP Footprint....................................................................................... ....................................................... 47
Figure 18. Simplified Application Schematic.......................................................................................................................................48
List of TList of T
List of TList of T
List of Tablesables
ablesables
ables
T able 1. Power Pins.................................................................................................................................................................................... 5
T able 2. No Connections............................................................................................................................................................................ 5
T able 3. Other Pins..................................................................................................................................................................................... 6
T able 4. Input Reference Source Selection and Group Allocation ....................................................................................................... 9
T able 5. Input Reference Source Jitter Tolerance ................................................................................................................................10
T able 6. Amplitude and Frequency values for Jitter T olerance ............................................................................................................11
T able 7 . Amplitude and Frequency values for Jitter T olerance ............................................................................................................12
T able 8. Output Reference Source Selection Table .............................................................................................................................13
T able 9. Multiple E1/DS1 Output in Relation to Normal Outputs .................................................................. ...................................13
T able 10. Register Map ...........................................................................................................................................................................18
T able 11. Register Map Description ......................................................................................................................................................21
T able 12. Absolute Maximum Ratings ...................................................................................................................................................35
T able 13. Operating Conditions ..............................................................................................................................................................35
T able 14. DC Characteristics: TTL Input Pad.........................................................................................................................................35
T able 15. DC Characteristics: TTL Input Pad with Internal Pull-up .....................................................................................................36
T able 16. DC Characteristics: TTL Input Pad with Internal Pull-down ................................................................................................36
T able 1 7 . DC Characteristics: TTL Output Pad ......................................................................................................................................36
T able 18. DC Characteristics: PECL Input/Output Pad .......................................................................................................................37
T able 19. DC Characteristics: L VDS Input/Output Pad .......................................................................................................................38
T able 20. DC Characteristics: Output Jitter Generation (T est definition G.813)..............................................................................39
T able 21. DC Characteristics: Output Jitter Generation (T est definition G.8 12)..............................................................................40
T able 22. DC Characteristics: Output Jitter Generation (Test definition ETS-300-462-3) ..............................................................40
T able 23. DC Characteristics: Output Jitter Generation (T est definition GR-253-CORE)................................................................41
T able 24. DC Charact eristics: Output Jitter Generation (T est definition A T&T 624 11) ...................................................................41
T able 25. DC Characteristics: Output Jitter Generation (T est definition G.7 42) ..............................................................................42
T able 26. DC Characteristics: Output Jitter Generation (T est definition TR-NWT-000499) ...........................................................42
T able 27 . DC Characteristics: Output Jitter Generation (T est definition GR-1244-CORE)..............................................................42
T able 28. Serial Interface Read Access Timing....................................................................................................................................45
T able 29. Serial Interface Write Access Timing ...................................................................................................................................45
T able 30. 64 Pin LQFP Package Dimension Data (for use with Figure 16)...................................................................................... 47
T able 31. Revision Hist ory ......................................................................................................................................................................49
Revision 2.01/December 2005 Semtech Corp. www.semtech.com4
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
NC - Not Connected, IC - Internally Connected
Pin Diagram Pin Diagram
Pin Diagram Pin Diagram
Pin Diagram
1 AGND
2IC
3 AGND
4 VA1+
5 INTREQ
6 REFCLK
7 DGND
8 VD+
9 VD+
10 DGND
11 DGND
12 VD+
13 SRCSW
14 VA2+
15 AGND
16 IC
17 FrSync
18 MFrSync
19 O1POS
20 O1NEG
21 GND_DIFF
22 VDD_DIFF
23 SEC1_POS
24 SEC1_NEG
25 SEC2_POS
26 SEC2_NEG
27 VDD5
28 Sync2k
29 SEC1
30 SEC2
31 DGND
32 VDD
64 SONSDHB
63 IC
62 IC
61 IC
60 IC
59 NC
58 DGND
57 VDD
56 O2
55 NC
54 VDD
53 DGND
52 SDO
51 IC
50 IC
49 IC
48 PORB
47 SCLK
46 VDD
45 VDD
44 CSB
43 SDI
42 CLKE
41 IC
40 DGND
39 VDD
38 VDD
37 IC
36 VDD
35 IC
34 SEC3
33 IC
ACS8515
LC/P
Rev 2.1
1
Figure 2. ACS8515 Pin DiagramFigure 2. ACS8515 Pin Diagram
Figure 2. ACS8515 Pin DiagramFigure 2. ACS8515 Pin Diagram
Figure 2. ACS8515 Pin Diagram
Revision 2.01/December 2005 Semtech Corp. www.semtech.com5
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Pin Descriptions Pin Descriptions
Pin Descriptions Pin Descriptions
Pin Descriptions
Table 1. Power PinsTable 1. Power Pins
Table 1. Power PinsTable 1. Power Pins
Table 1. Power Pins
Table 2. No ConnectionsTable 2. No Connections
Table 2. No ConnectionsTable 2. No Connections
Table 2. No Connections
NIPNIP NIP NIPNIPLOBMYSLOBMYS LOBMYS LOBMYSLOBMYSOIOIOIOIOIEPYTEPYT EPYT EPYTEPYTNOITPIRCSED/EMANNOITPIRCSED/EMAN NOITPIRCSED/EMAN NOITPIRCSED/EMANNOITPIRCSED/EMAN
95,55CN-- detcennoCtoNdetcennoCtoN detcennoCtoN detcennoCtoNdetcennoCtoNtaolFotevaeL:
,33,61,2 ,16,06,53 36,26 CI-- detcennoCyllanretnIdetcennoCyllanretnI detcennoCyllanretnI detcennoCyllanretnIdetcennoCyllanretnItaolFotevaeL:
73CI-- :detcennocyllanretnI:detcennocyllanretnI :detcennocyllanretnI :detcennocyllanretnI:detcennocyllanretnIlortnocGATJrofdevreseR.taolFotevaeLnoisivertxennotupniteser
14CI-- :detcennocyllanretnI:detcennocyllanretnI :detcennocyllanretnI :detcennocyllanretnI:detcennocyllanretnIedomtsetGATJrofdevreseR.taolFotevaeL noisivertxennotupnitceles
94CI-- :detcennocyllanretnI:detcennocyllanretnI :detcennocyllanretnI :detcennocyllanretnI:detcennocyllanretnIGATJrofdevreseR.taolFotevaeL noisivertxennotupnikcolcnacsyradnuob
05CI-- :detcennocyllanretnI:detcennocyllanretnI :detcennocyllanretnI :detcennocyllanretnI:detcennocyllanretnItsetlairesGATJrofdevreseR.taolFotevaeL noisivertxennotuptuoatad
15CI-- :detcennocyllanretnI:detcennocyllanretnI :detcennocyllanretnI :detcennocyllanretnI:detcennocyllanretnItsetlairesGATJrofdevreseR.taolFotevaeLnoisivertxennotupniatad
NIPNIP NIP NIPNIPLOBMYSLOBMYS LOBMYS LOBMYSLOBMYSOIOIOIOIOIEPYTEPYT EPYT EPYTEPYTNOITPIRCSED/EMANNOITPIRCSED/EMAN NOITPIRCSED/EMAN NOITPIRCSED/EMANNOITPIRCSED/EMAN
21,9,8+DVP- :egatlovylppuS:egatlovylppuS :egatlovylppuS :egatlovylppuS:egatlovylppuS,noitcesgolananisetagotylppuslatigiD
%01-/+.stloV3.3+
22FFID_DDVP- :egatlovylppuS:egatlovylppuS :egatlovylppuS :egatlovylppuS:egatlovylppuS&91sniptuptuolaitnereffidrofylppuslatigiD %01-/+.stloV3.3+,02
725DDVP-
5DDV5DDV 5DDV 5DDV5DDVtcennoC.sniptupniotecnarelotstloV5+rofylppuslatigiD: rofDDVottcennoC.v5+otgnipmalcrof)%01-/+(stlov5+ot sniptupni,gnipmalconrofgnitaolfevaeL.v3.3+otgnipmalc .v5.5+otputnarelot
,83,63,23 ,64,54,93 75,45 DDVP- :egatlovylppuS:egatlovylppuS :egatlovylppuS :egatlovylppuS:egatlovylppuS%01-/+.stloV3.3+,cigolotylppuslatigiD
4+1AVP- :egatlovylppuS:egatlovylppuS :egatlovylppuS :egatlovylppuS:egatlovylppuS3.3+,LLPAgniypitlumkcolcotylppusgolanA
%01-/+.stloV
41+2AVP- egatlovylppuSegatlovylppuS egatlovylppuS egatlovylppuSegatlovylppuS%01-/+.stloV3.3+,LLPAtuptuootylppusgolanA:
,11,01,7 ,35,04,13 85 DNGDP- dnuorGylppuSdnuorGylppuS dnuorGylppuS dnuorGylppuSdnuorGylppuScigolrofdnuorglatigiD:
12FFID_DNGP- dnuorGylppuSdnuorGylppuS dnuorGylppuS dnuorGylppuSdnuorGylppuS&91sniptuptuolaitnereffidrofdnuorglatigiD:
02
51,3,1DNGAP- dnuorGylppuSdnuorGylppuS dnuorGylppuS dnuorGylppuSdnuorGylppuSdnuorggolanA:
Revision 2.01/December 2005 Semtech Corp. www.semtech.com6
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Table 3. Other PinsTable 3. Other Pins
Table 3. Other PinsTable 3. Other Pins
Table 3. Other Pins
Note: I = input, O = output, P = power, TTLU = TTL input with pull-up resistor, TTLD = TTL input with pull-down resistor
NIPNIP NIP NIPNIPLOBMYSLOBMYS LOBMYS LOBMYSLOBMYSOIOIOIOIOIEPYTEPYT EPYT EPYTEPYTNOITPIRCSED/EMANNOITPIRCSED/EMAN NOITPIRCSED/EMAN NOITPIRCSED/EMANNOITPIRCSED/EMAN
5QERTNIO- :tseuqertpurretnI:tseuqertpurretnI :tseuqertpurretnI :tseuqertpurretnI:tseuqertpurretnIelbanetpurretnIerawtfoS
6KLCFERILTT :kcolcecnerefeR:kcolcecnerefeR :kcolcecnerefeR :kcolcecnerefeR:kcolcecnerefeRlacoLdedaehnoitcesotrefer(zHM8.21
)kcolCrotallicsO
31WSCRSILTT
D
:gnihctiwsecruoS:gnihctiwsecruoS :gnihctiwsecruoS :gnihctiwsecruoS:gnihctiwsecruoS2CESdna1CESnognihctiwsecruostsafecroF
71cnySrFOLTT :ecnerefertuptuO:ecnerefertuptuO :ecnerefertuptuO :ecnerefertuptuO:ecnerefertuptuOoitarecaps/kram05:05,cnySemarFzHk8
tuptuo
81cnySrFMOLTT 2:ecnerefertuptuO2:ecnerefertuptuO 2:ecnerefertuptuO 2:ecnerefertuptuO2:ecnerefertuptuOecaps/kram05:05,cnySemarF-itluMzHk
tuptuooitar
9102 SOP1O GEN1O OSDVL/
LCEP :ecnerefertuptuO:ecnerefertuptuO :ecnerefertuptuO :ecnerefertuptuO:ecnerefertuptuOSDVLzHM88.83tluafed,elbammargorP
3242 SOP_1CES GEN_1CES ISDVL/
LCEP :ecnerefertupnI:ecnerefertupnI :ecnerefertupnI :ecnerefertupnI:ecnerefertupnISDVLzHM44.91tluafed,elbammargorP
5262 SOP_2CES GEN_2CES I/LCEP SDVL :ecnerefertupnI:ecnerefertupnI :ecnerefertupnI :ecnerefertupnI:ecnerefertupnILCEPzHM44.91tluafed,elbammargorP
82k2cnySILTT
D
:zHk2cnySemarF-itluM:zHk2cnySemarF-itluM :zHk2cnySemarF-itluM :zHk2cnySemarF-itluM:zHk2cnySemarF-itluMtupnicnySemarF-itluM
921CESILTT
D
:ecnerefertupnI:ecnerefertupnI :ecnerefertupnI :ecnerefertupnI:ecnerefertupnIzHk8tluafed,elbammargorP
032CESILTT
D
:ecnerefertupnI:ecnerefertupnI :ecnerefertupnI :ecnerefertupnI:ecnerefertupnIzHk8tluafed,elbammargorP
433CESILTT
D
:ecnerefertupnI:ecnerefertupnI :ecnerefertupnI :ecnerefertupnI:ecnerefertupnI,ecruoskcolcecnereferybdnatslanretxE zHM44.91tluafed,elbammargorp
24EKLCILTT
D
:tcelesegdeKLCS:tcelesegdeKLCS :tcelesegdeKLCS :tcelesegdeKLCS:tcelesegdeKLCSstceles1=EKLC,tcelesegdeevitcaKLCS egdegnisirrof0=EKLC,evitcaebotKLCSfoegdegnillaf
34IDSILTT
D
:sserddaecafretnirossecorporciM:sserddaecafretnirossecorporciM :sserddaecafretnirossecorporciM :sserddaecafretnirossecorporciM:sserddaecafretnirossecorporciMtupniatadlaireS
44BSCILTT
U
:)wolevitca(tcelespihC:)wolevitca(tcelespihC :)wolevitca(tcelespihC :)wolevitca(tcelespihC:)wolevitca(tcelespihCehtybwoLdetressasinipsihT ecafretnirossecorporcimehtelbaneotrossecorporcim
74KLCSILTT
D
:elbanEhctaLsserddA:elbanEhctaLsserddA :elbanEhctaLsserddA :elbanEhctaLsserddA:elbanEhctaLsserddAnipsihtnehW.kcolcatadlaireStluafed dehctalerastupnisubsserddaeht,hgihotwolmorfsnoitisnart sretsigerlanretniehtotni
84BROPILTT
U
:tesernorewoP:tesernorewoP :tesernorewoP :tesernorewoP:tesernorewoPlanretnilla,woLdecrofsiBROPfI.teserretsaM seulavtluafedotkcabtesererasetats
Revision 2.01/December 2005 Semtech Corp. www.semtech.com7
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
F F
F F
F
unctional Descriptionunctional Description
unctional Descriptionunctional Description
unctional Description
The ACS8515 is a highly integrated, single-chip
solution for ‘hit-less’ protection switching of SEC
clocks from Master and Slave SETS clock cards
in a SONET or SDH Network Element. The
ACS8515 has fast activity monitors on the
inputs and will implement automatic system
protection switching for Master/Slave SEC clock
failure. The standby SEC clock will be selected
if both the Master and Slave input clocks fail.
The selection of the Master/Slave input can
also be forced by a Force Fast Switch pin.
The ACS8515 can perform frequency translation
from a SEC input clock distributed along a back
plane to a different local line card - e.g. 8 kHz
distributed on the back plane and 19.44 MHz
generated on the line cards.
The ACS8515 has three SEC clock inputs
(Master, Slave and Standby) and a single Multi-
Frame Sync input, for synchronising the frame
and multi-frame sync outputs.
The ACS8515 generates two SEC clock outputs
via PECL/LVDS and TTL ports, with spot
frequencies from 1.544/2.048 MHz up to
311.04 MHz. The ACS8515 also provides an
8 kHz Frame Sync and 2 kHz Multi-Frame Sync
output clock.
The ACS8515 has a high tolerance to input
jitter and wander. The jitter/wander transfer is
programmable (0.1 Hz up to 20 Hz cut-off
points).
The ACS8515 includes an SPI compatible serial
microprocessor port, providing access to the
configuration and status registers for device
setup.
Local Oscillator ClockLocal Oscillator Clock
Local Oscillator ClockLocal Oscillator Clock
Local Oscillator Clock
The Master system clock on the ACS8515
requires an external clock oscillator of frequency
12.80 MHz. The exact clock specification is
dependent on the quality of Holdover
performance required in the application.
In most Line Card protection switching
applications where there is a high chance that
at least one SEC reference input will be
available, the long term stability requirement
for Holdover is not appropriate and an
inexpensive crystal local oscillator can be used.
In other applications where there may be a
requirement for longer term Holdover stability
to meet the ITU standards for Stratum 3, a
higher quality oscillator can be used.
Please contact Semtech for information on
crystal oscillator suppliers.
Crystal Frequency CalibrationCrystal Frequency Calibration
Crystal Frequency CalibrationCrystal Frequency Calibration
Crystal Frequency Calibration
The absolute crystal frequency accuracy is less
important than the stability since any frequency
offset can be compensated by adjustment of
register values in the IC. This allows for
calibration and compensation of any crystal
frequency variation away from its nominal value.
NIPNIP NIP NIPNIPLOBMYSLOBMYS LOBMYS LOBMYSLOBMYSOIOIOIOIOIEPYTEPYT EPYT EPYTEPYTNOITPIRCSED/EMANNOITPIRCSED/EMAN NOITPIRCSED/EMAN NOITPIRCSED/EMANNOITPIRCSED/EMAN
25ODSOLTT
D
:sserddaecafretnirossecorporciM:sserddaecafretnirossecorporciM :sserddaecafretnirossecorporciM :sserddaecafretnirossecorporciM:sserddaecafretnirossecorporciMtuptuoatadlaireS
652OOLTT:ecnerefertuptuO:ecnerefertuptuO :ecnerefertuptuO :ecnerefertuptuO:ecnerefertuptuOdexifzHM44.91
46BHDSNOSILTT
D
:BHDSTENOS:BHDSTENOS :BHDSTENOS :BHDSTENOS:BHDSTENOSlaitiniehtstes:tcelesycneuqerfHDSroTENOS HDS/TENOSehtfo)BROParetfaetatsro(etatspu-rewop 5stib,83rddadna2tib,h43rdda,sretsigernoitcelesycneuqerf dna)ctezHM840.2(detceleserasetarHDSwolnehW.6dna ehT.)ctezHM445.1(detceleserasetarTENOShgihtesnehw .erawtfosybpurewopretfadegnahcebnacsetatsretsiger
Table 3 (continued).Table 3 (continued).
Table 3 (continued).Table 3 (continued).
Table 3 (continued).
Revision 2.01/December 2005 Semtech Corp. www.semtech.com8
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
+/- 50 ppm adjustment would be sufficient to
cope with most crystals, in fact the range is an
order of magnitude larger due to the use of
two 8 bit register locations. The setting of the
conf_nominal_frequency register allows for this
adjustment. An increase in the register value
increases the output frequencies by 0.02 ppm
for each LSB step. The default value (in decimal)
is 39321. The minimum being 0 and the
maximum 65535, giving a -700 ppm to +500
ppm adjustment range of the output
frequencies.
For example, if the crystal was oscillating at
12.8 MHz + 5 ppm, then the calibration value
in the register to give a - 5 ppm adjustment in
output frequencies to compensate for the
crystal inaccuracy, would be :
39321 - (5 / 0.02) = 39071 (decimal)
The ACS8515 supports up to three individual input
reference clock sources via TTL/CMOS and PECL/
LVDS technologies. These interface technologies
support +3.3 V and +5 V operation.
Input Reference Clock PortsInput Reference Clock Ports
Input Reference Clock PortsInput Reference Clock Ports
Input Reference Clock Ports
The input reference clock ports are arranged in
groups. Group one comprises a TTL port (SEC1)
and a PECL/LVDS port (SEC1POS and
SEC1NEG). Group two comprises a TTL port
(SEC2) and a PECL/LVDS port (SEC2POS and
SEC2NEG). Group three comprises a TTL port
(SEC3). For group one and group two, only one
of the two input ports types must be active at
any time, the other must not be driven by a
reference input. Unused PECL/LVDS differential
inputs should be fixed with one input high (VDD)
and the other low (GND), or set in LVDS mode
and left floating (in which case one input is
internally pulled high and the other low).
SDH and SONET networks use different default
frequencies; the network type is selectable
using the config_mode register 34 Hex, bit 2.
For SONET, config_mode register 34 Hex, bit 2
= 1, for SDH config_mode register 34 Hex, bit
2 = 0. On power-up or by reset, the default will
be set by the state of the SONSDHB pin (pin
64). Specific frequencies and priorities are set
by configuration.
The TTL ports (compatible also with CMOS
signals) support clock speeds up to 100 MHz,
with the highest spot frequency being 77.76
MHz. Clock speeds above 100 MHz should not
be applied to the TTL ports. The PECL/LVDS
ports support the full range of clock speeds,
up to 155.52 MHz.
The actual spot frequencies supported are:
•2 kHz
•4 kHz
•8 kHz (and N x 8 kHz),
•1.544 MHz (SONET)/2.048 MHz (SDH),
•6.48 MHz,
•19.44 MHz,
•25.92 MHz,
•38.88 MHz,
•51.84 MHz,
•77.76 MHz,
•155.52 MHz.
The frequency selection is programmed via the
cnfg_ref_source_frequency register. The
internal DPLL will normally lock to the selected
input at the frequency of the input, eg.
19.44 MHz will lock the DPLL phase
comparisons at 19.44 MHz. It is, however,
possible to utilise an internal pre-divider to the
DPLL to divide the input frequency before it is
used for phase comparisons in the DPLL. This
pre-divider can be used in one of 2 ways;
1. Any of the supported spot frequencies can be divided to
8 kHz by setting the ‘lock8K’ bit (bit 6) in the appropriate
cnfg_ref_source_frequency register location. For good jitter
tolerance for all frequencies and for operation at
19.44 MHz and above, use lock8K. It is possible to choose
which edge of the 8kHz input to lock to, by setting the
appropriate bit of the cnfg_control1 register.
Revision 2.01/December 2005 Semtech Corp. www.semtech.com9
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
2. Any multiple of any supported frequency can be
supported by using the "DivN" feature (bit 7 of the
cnfg_ref_source_frequency register). Any reference input
can be set to lock at 8 kHz independently of the
frequencies and configurations of the other inputs.
Any reference input with the ‘DivN’ bit set in
the cnfg_ref_source_frequency register will
employ the internal pre-divider prior to the DPLL
locking. The cnfg_freq_divn register contains
the divider ratio N where the reference input
will get divided by (N+1) where 0<N<214-1. The
cnfg_ref_source_frequency register must be set
to the closest supported spot frequency to the
input frequency, but must be lower than the
input frequency. When using the ‘DivN’ feature
the post-divider frequency must be 8 kHz, which
is indicated by setting the ‘lock8k’ bit high (bit
6 in cnfg_ref_source_frequency register). Any
input set to DivN must have the frequency
monitors disabled (if the frequency monitors
are disabled, they are disabled for all inputs
regardless of the input configurations, in this
case only activity monitoring will take place).
Whilst any number of inputs can be set to use
the ‘DivN’ feature, only one N can be
programmed, hence all inputs using the ‘DivN’
feature must require the same division to get
to 8 kHz.
emaNtroPemaNtroP emaNtroP emaNtroPemaNtroP troPtupnItroPtupnI troPtupnI troPtupnItroPtupnI ygolonhceTygolonhceT ygolonhceT ygolonhceTygolonhceT detroppuSseicneuqerFdetroppuSseicneuqerF detroppuSseicneuqerF detroppuSseicneuqerFdetroppuSseicneuqerFpuorGecruoSCESpuorGecruoSCES puorGecruoSCES puorGecruoSCESpuorGecruoSCES tluafeDtluafeD tluafeD tluafeDtluafeD ytiroirPytiroirP ytiroirP ytiroirPytiroirP
)3etoN(
1CESSOMC/LTT zHM001otpU)1etoN(
TENOS(tluafeDHDS/zHk8:) 11)4(
2CESSOMC/LTT zHM001otpU)1etoN(
TENOS(tluafeDHDS/zHk8:) 2)5(3
1CES LCEP/SDVL SDVLtluafed zHM25.551otpU)2etoN(
TENOS(tluafeDHDS/zHM44.91:) 1)6(2
2CES SDVL/LCEP tluafedLCEP zHM25.551otpU)2etoN(
/TENOS(tluafeDHDSzHM44.91:) 2)7(4
3CESSOMC/LTT zHM001otpU)1etoN(
TENOS(tluafeDHDS/zHM44.91:) 3)01(5
1CNYSSOMC/LTTcnySemarFitluMzHk2--
Table 4. Input Reference Source Selection and Group AllocationTable 4. Input Reference Source Selection and Group Allocation
Table 4. Input Reference Source Selection and Group AllocationTable 4. Input Reference Source Selection and Group Allocation
Table 4. Input Reference Source Selection and Group Allocation
Notes for Table 4.Notes for Table 4.
Notes for Table 4.Notes for Table 4.
Notes for Table 4.
Note 1. TTL ports (compatible also with CMOS signals) support clock speeds up to 100 MHz, with the highest spot frequency
being 77.76 MHz. The actual spot frequencies are 2 kHz, 4 kHz, 8 kHz, N x 8 kHz, 1.544/2.048 MHz, 6.48 MHz, 19.44 MHz,
25.92 MHz, 38.88 MHz, 51.84 MHz and 77.76 MHz.
Note 2. PECL and LVDS ports support the spot clock frequencies listed above plus 155.52 MHz. There are different output
clock frequencies available for SONET and SDH applications.
Note 3. The default priority values in brackets are the default numbers reported in the register map, which match up with the
ACS8510.
On power up, or by reset, the default will be set by the SONSDHB pin. Specific frequencies and priorities are set by
configuration. For SONET, config_mode register 34 Hex, bit 2 = 1. For SDH config_mode register 34 Hex, bit 2 = 0.
Revision 2.01/December 2005 Semtech Corp. www.semtech.com10
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
rettiJrettiJ rettiJ rettiJrettiJ ecnareloTecnareloT ecnareloT ecnareloTecnareloT rotinoMycneuqerFrotinoMycneuqerF rotinoMycneuqerF rotinoMycneuqerFrotinoMycneuqerF egnaRecnatpeccAegnaRecnatpeccA egnaRecnatpeccA egnaRecnatpeccAegnaRecnatpeccA
ycneuqerFycneuqerF ycneuqerF ycneuqerFycneuqerF egnaRecnatpeccAegnaRecnatpeccA egnaRecnatpeccA egnaRecnatpeccAegnaRecnatpeccA )ni-lluP()ni-lluP( )ni-lluP( )ni-lluP()ni-lluP(
ycneuqerFycneuqerF ycneuqerF ycneuqerFycneuqerF ecnatpeccAecnatpeccA ecnatpeccA ecnatpeccAecnatpeccA )ni-dloH(egnaR)ni-dloH(egnaR )ni-dloH(egnaR )ni-dloH(egnaR)ni-dloH(egnaR
ycneuqerFycneuqerF ycneuqerF ycneuqerFycneuqerF egnaRecnatpeccAegnaRecnatpeccA egnaRecnatpeccA egnaRecnatpeccAegnaRecnatpeccA )tuo-lluP()tuo-lluP( )tuo-lluP( )tuo-lluP()tuo-lluP(
307.G
mpp6.61-/+
mpp6.4-/+ )1etoNees(
mpp2.9-/+ )2etoNees(
mpp6.4-/+ )1etoNees(
mpp2.9-/+ )2etoNees(
mpp6.4-/+ )1etoNees(
mpp2.9-/+ )2etoNees(
387.G
328.G
EROC-4421-RG
PECL and LVDS ports support the spot clock
frequencies listed above plus 155.52 MHz. The
choice of PECL or LVDS compatibility is
programmed via the cnfg_differential_inputs
register.
Unused PECL/LVDS differential inputs should
be fixed with one input high (VDD) and the other
input low (GND), or set in LVDS mode and left
floating, in which case one input is internally
pulled high and the other low.
Input Wander and Jitter ToleranceInput Wander and Jitter Tolerance
Input Wander and Jitter ToleranceInput Wander and Jitter Tolerance
Input Wander and Jitter Tolerance
The ACS8515 is compliant to the requirements
of all relevant standards, principally ITU
Recommendation G.825, ANSI DS1.101-1994
and ETS 300 462-5 (1997).
All reference clock inputs have a tight frequency
tolerance but a generous jitter tolerance. Pull-
in, hold-in and pull-out ranges are specified for
each input port in Table 5. Minimum jitter
tolerance masks are specified in Figures 3 and
4, and Tables 6 and 7, respectively. The
ACS8515 will tolerate wander and jitter
components greater than those shown in Figure
3 and Figure 4, up to a limit determined by a
combination of the apparent long-term
frequency offset caused by wander and the
eye-closure caused by jitter (the input source
will be rejected if the offset pushes the
frequency outside the hold-in range for long
enough to be detected, whilst the signal will
also be rejected if the eye closes sufficiently to
affect the signal purity). The ‘8klocking’ mode
should be engaged for high jitter tolerance
according to these masks.
All reference clock ports are monitored for
quality, including frequency offset and general
activity. Single short-term interruptions in
selected reference clocks may not cause
rearrangements, whilst longer interruptions, or
multiple, short-term interruptions, will cause
rearrangements, as will frequency offsets which
are sufficiently large or sufficiently long to cause
loss-of-lock in the phase-locked loop. The failed
reference source will be removed from the
priority table and declared as unserviceable,
until its perceived quality has been restored to
an acceptable level.
Notes for Table 5.Notes for Table 5.
Notes for Table 5.Notes for Table 5.
Notes for Table 5.
Note 1. The frequency acceptance and generation range will be +/-4.6 ppm around the required frequency when the
external crystal frequency accuracy is within a tolerance of +/- 4.6 ppm.
Note 2. The default acceptance range and generation range is +/- 9.2 ppm with an exact external crystal frequency
of 12.8 MHz. This range is also programmable from 0 to 80 ppm in 0.08 ppm steps.
Table 5. Input Reference Source Jitter ToleranceTable 5. Input Reference Source Jitter Tolerance
Table 5. Input Reference Source Jitter ToleranceTable 5. Input Reference Source Jitter Tolerance
Table 5. Input Reference Source Jitter Tolerance
Revision 2.01/December 2005 Semtech Corp. www.semtech.com11
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
f0 f1 f2 f3 f4 f5 f6
A3
A2
A1
A0
Jitt er and wander freque ncy (l
f8 f9
A4
f0 f1 f2 f3 f4 f5 f6
A3
A2
A1
A0
Jitt er and wander freque ncy (l
f8 f9
A4
MTSMTS MTS MTSMTS levellevel level levellevel
edutilpmakaepotkaePedutilpmakaepotkaeP edutilpmakaepotkaeP edutilpmakaepotkaePedutilpmakaepotkaeP )lavretnItinu()lavretnItinu( )lavretnItinu( )lavretnItinu()lavretnItinu( )zH(ycneuqerF)zH(ycneuqerF )zH(ycneuqerF )zH(ycneuqerF)zH(ycneuqerF
0A0A0A0A0A1A1A1A1A1A2A2A2A2A2A3A3A3A3A3A4A4A4A4A4A0F0F0F0F0F1F1F1F1F1F2F2F2F2F2F3F3F3F3F3F4F4F4F4F4F5F5F5F5F5F6F6F6F6F6F7F7F7F7F7F8F8F8F8F8F9F9F9F9F9F
1-MTS0082113935.151.0u21u871m6.1m6.51521.03.91005k5.6k56m3.1
The registers sts_curr_inc_offset (address 0C,
0D, 07) report the frequency of the DPLL with
respect to the external TCXO frequency. This is
a 19 bit signed number with one LSB
representing 0.0003 ppm (range of +/- 80
ppm). Reading this regularly can show how the
currently locked source is varying in value e.g.
due to wander on its input.
The ACS8515 performs automatic frequency
monitoring with an acceptable input frequency
offset range of +/- 16.6 ppm. The ACS8515
DPLL has a programmable frequency limit of
+/- 80 ppm. If the range is programmed to be
> 16.6 ppm, the frequency monitors should be
disabled so the input reference source is not
automatically rejected as out of frequency
range.
Output Clock PortsOutput Clock Ports
Output Clock PortsOutput Clock Ports
Output Clock Ports
The ACS8515 supports two SEC output clocks,
on TTL and PECL/LVDS ports, and a pair of
secondary output clocks, ‘Frame-Sync’ and
‘Multi-Frame-Sync’. The two output clocks are
individually controllable. The ‘Frame-Sync’ and
‘Multi-Frame-Sync’ are derived from the main
SEC clock. The frequencies of the output clock
are selectable from a range of pre-defined spot
frequencies, with a variety of output
technologies supported, as defined in Table 8.
Low Speed Output ClockLow Speed Output Clock
Low Speed Output ClockLow Speed Output Clock
Low Speed Output Clock
The O2 SEC clock is supplied on a TTL port with
a fixed frequency of 19.44 MHz.
Table 6. Amplitude and Frequency values for Jitter ToleranceTable 6. Amplitude and Frequency values for Jitter Tolerance
Table 6. Amplitude and Frequency values for Jitter ToleranceTable 6. Amplitude and Frequency values for Jitter Tolerance
Table 6. Amplitude and Frequency values for Jitter Tolerance
Figure 3. Minimum Input Jitter Tolerance (OC-3/STM-1)Figure 3. Minimum Input Jitter Tolerance (OC-3/STM-1)
Figure 3. Minimum Input Jitter Tolerance (OC-3/STM-1)Figure 3. Minimum Input Jitter Tolerance (OC-3/STM-1)
Figure 3. Minimum Input Jitter Tolerance (OC-3/STM-1)
(for inputs supporting G.783 compliant sources)
(for inputs supporting G.783 compliant sources)
Revision 2.01/December 2005 Semtech Corp. www.semtech.com12
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
epyTepyT epyT epyTepyT.cepS.cepS .cepS .cepS.cepS edutilpmAedutilpmA edutilpmA edutilpmAedutilpmA )kp-kpIU()kp-kpIU( )kp-kpIU( )kp-kpIU()kp-kpIU( ycneuqerFycneuqerF ycneuqerF ycneuqerFycneuqerF )zH()zH( )zH( )zH()zH(
1A1A1A1A1A2A2A2A2A2A1F1F1F1F1F2F2F2F2F2F3F3F3F3F3F4F4F4F4F4F
1SD1SD 1SD 1SD1SDEROC-4421-RGEROC-4421-RG EROC-4421-RG EROC-4421-RGEROC-4421-RG51.001005k8k04
1E1E1E1E1E328.GUTI328.GUTI 328.GUTI 328.GUTI328.GUTI5.12.002k4.2k81k001
f1 f2 f3 f4
A2
A1
P eak-t o- peak jitter and wander amplit ude (lo g
scale)
Ji t t er an d wander f requen cy ( l og s
c
f1 f2 f3 f4
A2
A1
P eak-t o- peak jitter and wander amplit ude (lo g
scale)
Ji t t er an d wander f requen cy ( l og s
c
High Speed Output ClockHigh Speed Output Clock
High Speed Output ClockHigh Speed Output Clock
High Speed Output Clock
The O1 SEC clock is supplied on a PECL/LVDS
port with spot frequencies of;
•19.44 MHz,
•38.88 MHz,
•155.52 MHz,
•311.04 MHz,
•Dig 1.
(where Dig 1 is 1.544 MHz (SONET)/2.048 MHz
(SDH), and multiples of 2, 4 and 8 depending
on SONET/SDH mode setting).
The actual frequency is selectable via the
cnfg_differential_outputs register. The O1 port
can also support 311.04 MHz, which is enabled
via the cnfg_T0_output_enable register. The O1
port can be made LVDS or PECL compatible via
the cnfg_differential_outputs register.
Frame Sync and Multi-Frame Sync ClocksFrame Sync and Multi-Frame Sync Clocks
Frame Sync and Multi-Frame Sync ClocksFrame Sync and Multi-Frame Sync Clocks
Frame Sync and Multi-Frame Sync Clocks
Frame Sync (8 kHz) and Multi-Frame Sync (2
kHz) clocks will be provided on outputs FrSync
and MFrSync. The FrSync and MFrSync clocks
have a 50:50 mark/space ratio.
Low Jitter Multiple E1/DS1 OutputsLow Jitter Multiple E1/DS1 Outputs
Low Jitter Multiple E1/DS1 OutputsLow Jitter Multiple E1/DS1 Outputs
Low Jitter Multiple E1/DS1 Outputs
This feature added to Rev2.1 is activated using
the cnfg_control1 register. This sends a fre-
quency of twice the Dig2 rate (see reg addr 39h,
bits 7:6) to the APLL instead of the normal
77.76MHz. For this feature to be used, the Dig2
rate must only be set to 12352kHz/16384kHz
using the cnfg_T0_output_frequencies register.
The normal OC3 rate outputs are then replaced
with E1/DS1 multiple rates. The E1(SONET)/
DS1(SDH) selection is made in the same way as
for Dig2 using the cnfg_T0_output_enable reg-
ister. Table 9 shows the relationship between
primary output frequencies and the correspond-
ing output in E1/DS1 mode, and which output
they are available from.
Figure 4. Minimum Input Jitter Tolerance (DS1/E1)Figure 4. Minimum Input Jitter Tolerance (DS1/E1)
Figure 4. Minimum Input Jitter Tolerance (DS1/E1)Figure 4. Minimum Input Jitter Tolerance (DS1/E1)
Figure 4. Minimum Input Jitter Tolerance (DS1/E1)
Table 7. Amplitude and Frequency values for Jitter ToleranceTable 7. Amplitude and Frequency values for Jitter Tolerance
Table 7. Amplitude and Frequency values for Jitter ToleranceTable 7. Amplitude and Frequency values for Jitter Tolerance
Table 7. Amplitude and Frequency values for Jitter Tolerance
(for inputs supporting G.783 compliant sources)
(for inputs supporting G.783 compliant sources)
Revision 2.01/December 2005 Semtech Corp. www.semtech.com13
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Notes for Table 8.Notes for Table 8.
Notes for Table 8.Notes for Table 8.
Notes for Table 8.
Dig 1 is shown as either 1.544 MHz or 2.048 MHz, where 1.544 MHz is SONET and 2.048 MHz is SDH. Pin SONSDHB controls
the default frequency output. When SONSDHB pin is High SONET is default, and when SONSDHB pin is Low SDH is default.
Output Wander and JitterOutput Wander and Jitter
Output Wander and JitterOutput Wander and Jitter
Output Wander and Jitter
Wander and jitter present on the output clocks
are dependent on:
1. The magnitude of wander and jitter on the selected
input reference clock (in locked mode);
2. The internal wander and jitter transfer characteristic
(in Locked mode);
3. The jitter on the local oscillator clock;
4. The wander on the local oscillator clock (in Holdover
mode).
Wander and jitter are treated in different ways
to reflect their differing impacts on network
design. Jitter is always strongly attenuated,
whilst wander attenuation can be varied to suit
the application and operating state. Wander and
jitter attenuation is performed by using a digital
phase-locked loop (DPLL) with a programmable
bandwidth. This gives a transfer characteristic
of a low pass filter, with a programmable pole.
It is sometimes necessary to change the filter
dynamics to suit particular circumstances - one
example being when locking to a new source,
the filter can be opened up to reduce locking
time and can then be gradually tightened again
to remove wander. Since wander represents a
relatively long-term deviation from the nominal
operating frequency, it affects the rate of supply
of data to the network element. Strong wander
attenuation limits the rate of consumption of
data to within a smaller range, so a larger buffer
store is required to prevent data loss. But, since
Table 8. Output Reference Source Selection TableTable 8. Output Reference Source Selection Table
Table 8. Output Reference Source Selection TableTable 8. Output Reference Source Selection Table
Table 8. Output Reference Source Selection Table
troPtroP troP troPtroP emaNemaN emaN emaNemaN troPtuptuOtroPtuptuO troPtuptuO troPtuptuOtroPtuptuO ygolonhceTygolonhceT ygolonhceT ygolonhceTygolonhceT detroppuSseicneuqerFdetroppuSseicneuqerF detroppuSseicneuqerF detroppuSseicneuqerFdetroppuSseicneuqerF
1O LCEP/SDVL tluafedSDVL 1giD,zHM40.113,zHM25.551,)tluafed(zHM88.83,zHM44.91 8dna4,2foselpitlumdnazHM840.2/zHM445.1si1giD
2OSOMC/LTTdexifzHM44.91
cnySrFSOMC/LTToitarecaps/kram05:05.zHk8,cnySrF
cnySrFMSOMC/LTToitarecaps/kram05:05.zHk2,cnySrFM
Table 9. Multiple E1/DS1 Ouputs in relation to Standard OutputsTable 9. Multiple E1/DS1 Ouputs in relation to Standard Outputs
Table 9. Multiple E1/DS1 Ouputs in relation to Standard OutputsTable 9. Multiple E1/DS1 Ouputs in relation to Standard Outputs
Table 9. Multiple E1/DS1 Ouputs in relation to Standard Outputs
edoMedoM edoM edoMedoMotqerFotqerF otqerF otqerFotqerF LLPALLPA LLPA LLPALLPA LLPALLPA LLPA LLPALLPA reilpitluMreilpitluM reilpitluM reilpitluMreilpitluM LLPALLPA LLPA LLPALLPA qerFqerF qerF qerFqerF tlif_klctlif_klc tlif_klc tlif_klctlif_klc_klc_klc _klc _klc_klc 2/tlif2/tlif 2/tlif 2/tlif2/tlif _klc_klc _klc _klc_klc 4/tlif4/tlif 4/tlif 4/tlif4/tlif _klc_klc _klc _klc_klc 6/tlif6/tlif 6/tlif 6/tlif6/tlif _klc_klc _klc _klc_klc 8/tlif8/tlif 8/tlif 8/tlif8/tlif _klc_klc _klc _klc_klc 21/tlif21/tlif 21/tlif 21/tlif21/tlif _klc_klc _klc _klc_klc 61/tlif61/tlif 61/tlif 61/tlif61/tlif _klc_klc _klc _klc_klc 84/tlif84/tlif 84/tlif 84/tlif84/tlif LLPDLLPD LLPD LLPDLLPD qerFqerF qerF qerFqerF
tluafeD67.774 40.11340.11325.55167.7748.1588.8329.5244.9184.667.77
eulavn616161616188
8
8844
4
44
1Exn867.234 270.131270.131635.56867.23867.23 867.23 867.23867.2333548.12483.61483.61 483.61 483.61483.6176229.01291.8291.8 291.8 291.8291.8766037.267.77
1Txn407.424618.89618.89804.94407.42407.42 407.42 407.42407.4233964.61253.21253.21 253.21 253.21253.21766432.8671.6671.6 671.6 671.6671.6766850.267.77
tuptuOybelbaliavAseicneuqerF
1O 1O 1O
2O
Revision 2.01/December 2005 Semtech Corp. www.semtech.com14
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
any buffer store potentially increases latency,
wander may often only need to be removed at
specific points within a network where buffer
stores are acceptable, such as at digital cross
connects. Otherwise, wander is sometimes not
required to be attenuated and can be passed
through transparently. The ACS8515 has
programmable wander transfer characteristics
in a range from 0.1 Hz to 20 Hz. The wander
and jitter transfer characteristic is shown in
Figure 5.
Wander on the local oscillator clock will not
have significant effect on the output clock whilst
in locked mode, so long as the DPLL bandwidth
is set high enough so that the DPLL can
compensate quickly enough for any frequency
changes in the crystal. In Free-run or Holdover
mode wander on the crystal is more significant.
Variation in crystal temperature or supply
voltage both cause drifts in operating frequency,
as does ageing. These effects must be limited
by careful selection of a suitable component
for the local oscillator, as specified in the section
‘Local Oscillator Clock’.
Phase VariationPhase Variation
Phase VariationPhase Variation
Phase Variation
There will be a phase shift across the ACS8515
between the selected input reference source
and the output clock. This phase shift may vary
over time but will be constrained to lie within
specified limits. The phase shift is characterized
using two parameters, MTIE (Maximum Time
Interval Error), and TDEV (Time Deviation), which,
although being specified in all relevent
specifications, differ in acceptable limits in each
one. Typical measurements for the ACS8515
are shown in Figures 6 and 7, for locked mode
operation. Figure 8 shows a typical
measurement of Phase Error accumulation in
Holdover mode operation.
The required performance for phase variation
during Holdover is specified in several ways
depending upon the particular circumstances
pertaining:
1. ETSI 300 462-5, Section 9.1, requires that the short-
term phase error during switchover (i.e., Locked to Holdover
to Locked) be limited to an accumulation rate no greater
than 0.05 ppm during a 15 second interval.
5
0
-3
-5
-10
-15
-20
-25
-30
Gain (dB)
0.01 0.1 110 100 1000
Frequenc y (Hz)
0.1 Hz
0.3 Hz
0.5 Hz
1.0 Hz
2.0 Hz
4.0 Hz
8.0 Hz
17 Hz
Figure 5. Wander and Jitter Transfer Measured CharacteristicsFigure 5. Wander and Jitter Transfer Measured Characteristics
Figure 5. Wander and Jitter Transfer Measured CharacteristicsFigure 5. Wander and Jitter Transfer Measured Characteristics
Figure 5. Wander and Jitter Transfer Measured Characteristics
Revision 2.01/December 2005 Semtech Corp. www.semtech.com15
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
10
1
0.1
0.01
Time
(ns)
0.01 0.1 110 100 1000 10000
Ob s e rv a tio n interv a l (s)
G .813 optio n 1 con stan t tem perature w ander lim it
TD EV m easurem e nt on 155 M H z output, 19.44 M Hz i/p (8kHz locking),
Vectron 6664 xtal
100
10
1
0.1
0.01
0.01 0.1 110 100 1000 10000
Observation interval
(
s
)
Time
(ns)
G.813 option 1, constant tem perature wander lim it
M TIE measurement on 155 M Hz output, 19.44 MHz i/p (8kH z locking),
Vectron 6664 xtal
10000000
1000000
100000
10000
1000
100 1000 10000 100000
Ob ti i t l( )
Phase Error (ns)
Permitted Phase Error Limit
Typical m easurem ent, 25°C constant tem perature
Figure 6. Maximum Time Interval Error of TFigure 6. Maximum Time Interval Error of T
Figure 6. Maximum Time Interval Error of TFigure 6. Maximum Time Interval Error of T
Figure 6. Maximum Time Interval Error of TOUT0OUT0
OUT0OUT0
OUT0 Output Port Output Port
Output Port Output Port
Output Port
Figure 7. Time Deviation of TFigure 7. Time Deviation of T
Figure 7. Time Deviation of TFigure 7. Time Deviation of T
Figure 7. Time Deviation of TOUT0OUT0
OUT0OUT0
OUT0 Output Port Output Port
Output Port Output Port
Output Port
Figure 8. Phase Error Accumulation of TFigure 8. Phase Error Accumulation of T
Figure 8. Phase Error Accumulation of TFigure 8. Phase Error Accumulation of T
Figure 8. Phase Error Accumulation of TOUT0OUT0
OUT0OUT0
OUT0 Output Port in Holdover Mode Output Port in Holdover Mode
Output Port in Holdover Mode Output Port in Holdover Mode
Output Port in Holdover Mode
Revision 2.01/December 2005 Semtech Corp. www.semtech.com16
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
2. ETSI 300 462-5, Section 9.2, requires that the long-
term phase error in the Holdover mode should not exceed
{(a1+a2)S+0.5bS2+c}
where
a1 = 50 ns/s (allowance for initial frequency offset)
a2 = 2000 ns/s (allowance for temperature variation)
b = 1.16x10-4 ns/s2 (allowance for ageing)
c = 120 ns (allowance for entry into Holdover mode).
3. ANSI Tin1.101-1994, Section 8.2.2, requires that the
phase variation be limited so that no more than 255 slips
(of 125 µs each) occur during the first day of Holdover.
This requires a frequency accuracy better than:
((24x60x60)+(255x125µs))/(24x60x60) = 0.37 ppm
Temperature variation is not restricted, except to within
the normal bounds of 0 to 50 Celsius.
4. Bellcore GR.1244.CORE, Section 5.2., Table 4, shows
that an initial frequency offset of 50 ppb is permitted on
entering Holdover, whilst a drift over temperature of 280
ppb is allowed; an allowance of 40 ppb is permitted for all
other effects.
5. ITU G.822, Section 2.6, requires that the slip rate during
category(b) operation (interpreted as being applicable to
Holdover mode operation) be limited to less than 30 slips
(of 125 µs each) per hour
((((60 x 60)/30)+125µs)/(60x60)) = 1.042 ppm
Phase Build OutPhase Build Out
Phase Build OutPhase Build Out
Phase Build Out
Phase Build Out (PBO) is the function to minimise
phase transients on the output SEC clock during
input reference switching or mode switching. If
the currently selected input reference clock
source is lost (due to a short interruption, out
of frequency detection, or complete loss of
reference), the second, next highest priority
reference source will be selected. During this
transition, the Lost_Phase mode is entered.
The typical phase disturbance on clock
reference source switching will be less than
10 ns on the ACS8515. For clock reference
switching caused by the main input failing or
being disconnected, then the phase disturbance
on the output will still be less than the 120 ns
allowed for in the G.813 spec. The actual
value is dependant on the frequency being
locked to.
The PBO requirement, as specified in Telcordia
GR1244-CORE, Section 5.7, in that a phase
transient of greater than 3.5 µs occuring in
less than 0.1 seconds should be absorbed, will
be implemented on a future version. ITU-T
G.813 states that the max allowable short term
phase transient response, resulting from a
switch from one clock source to another, with
Holdover mode entered in between, should be
a maximum of 1 µs over a 15 second interval.
The maximum phase transient or jump should
be less than 120 ns at a rate of change of less
than 7.5 ppm and the Holdover performance
should be better than 0.05 ppm.
On the ACS8515, PBO can be enabled, disabled
or frozen using the µP interface. By default, it
is enabled. When PBO is enabled, it can also
be frozen, which will disable the PBO operation
on the next input reference switch, but will
remain with the current offset. If PBO is
disabled while the device is in the Locked mode,
there will be a phase jump on the output SEC
clocks as the DPLL locks back to 0 degree
phase error.
Microprocessor InterfaceMicroprocessor Interface
Microprocessor InterfaceMicroprocessor Interface
Microprocessor Interface
The ACS8515 incorporates a serial
microprocessor interface that is compatible with
the Serial Peripheral Interface (SPI) for device
setup.
Register SetRegister Set
Register SetRegister Set
Register Set
All registers are 8-bits wide, organised with the
most-significant bit positioned in the left-most
bit, with bit-significance decreasing towards the
right-most bit. Some registers carry several
individual data fields of various sizes, from
single-bit values (e.g., flags) upwards. Several
data fields are spread across multiple registers;
their organisation is shown in the register map.
Revision 2.01/December 2005 Semtech Corp. www.semtech.com17
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Configuration RegistersConfiguration Registers
Configuration RegistersConfiguration Registers
Configuration Registers
Each configuration register reverts to a default
value on power-up or following a reset. Most
default values are fixed, but some will be pin-
settable. All configuration registers can be read
out over the microprocessor port.
Status RegistersStatus Registers
Status RegistersStatus Registers
Status Registers
The Status Registers contain readable registers.
They may all be read from outside the chip but
are not writable from outside the chip (except
for a clearing operation). All status registers
are read via shadow registers to avoid data
hits due to dynamic operation. Each individual
status register has a unique location.
Register AccessRegister Access
Register AccessRegister Access
Register Access
Most registers are of one of two types,
configuration registers or status registers, the
exceptions being the chip_revision register.
Configuration registers may be written to or read
from at any time (the complete 8-bit register
must be written, even if only one bit is being
modified). All status registers may be read at
any time and, in some status registers (such as
the sts_interrupts register), any individual data
field may be cleared by writing a ‘1’ into each
bit of the field (writing a ‘0’ value into a bit will
not affect the value of the bit). Details of each
register are given in the Register Map and
Register Map Description sections.
Interrupt Enable and ClearInterrupt Enable and Clear
Interrupt Enable and ClearInterrupt Enable and Clear
Interrupt Enable and Clear
Interrupt requests are flagged on pin INTREQ
(active High).
Bits in the interrupt status register are set (high)
by the following conditions;
1. Any reference source becoming valid or going invalid
2. A change in the operating state (eg. Locked, Holdover
etc.)
3. A brief loss of the currently selected reference source
All interrupt sources are maskable via the mask
register cnfg_interrupt_mask, each one being
enabled by writing a '1' to the appropriate bit.
Any unmasked bit set in the interrupt status
register will cause the interrupt request pin to
be asserted (high).
All interrupts are cleared by writing a '1' to the
bit(s) to be cleared in the status register.
When all pending unmasked interrupts are
cleared the interrupt pin will go inactive (low).
The loss of the currently selected reference
source will eventually cause the input to be
considered invalid, triggering an interrupt. The
time taken to raise this interrupt is dependent
on the leaky bucket configuration of the activity
monitors. The very fastest leaky bucket setting
will still take up to 128 ms to trigger the
interrupt. The interrupt caused by the brief
loss of the currently selected reference source
is provided to facilitate very fast source failure
detection if desired. It is triggered after missing
just a couple of cycles of the reference source.
Revision 2.01/December 2005 Semtech Corp. www.semtech.com18
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Shaded areas in the map are ‘don’t care’ and writing either 0 or 1 will not affect any function of
the device.
Bits labelled ‘Set to 0’ or ‘Set to 1’ must be set as stated during initialisation of the device,
either following power up, or after a power on reset (PORB). Failure to correctly set these bits
may result in the device operating in an unexpected way.
Some registers do not appear in this list, for example 07 and 08. These are either not used, or
have test functionality. Do not write to any undefined registers as this may cause the device to
operate in a test mode. If an undefined register has been inadvertently addressed, the device
should be reset to ensure the undefined registers are at default values.
Register MapRegister Map
Register MapRegister Map
Register Map
Table 10. Register MapTable 10. Register Map
Table 10. Register MapTable 10. Register Map
Table 10. Register Map
.rddA.rddA .rddA .rddA.rddA )xeH()xeH( )xeH( )xeH()xeH( emaNretemaraPemaNretemaraP emaNretemaraP emaNretemaraPemaNretemaraPtiBataDtiBataD tiBataD tiBataDtiBataD
)bsm(7)bsm(7 )bsm(7 )bsm(7)bsm(766
6
6655
5
5544
4
4433
3
3322
2
2211
1
11)bsl(0)bsl(0 )bsl(0 )bsl(0)bsl(0
20 noisiver_pihc )ylnodaer( )0:7(rebmunnoisiverpihC
30 1lortnoc_gfnc )etirw/daer( '0'otteS golanA cnysvid '0'otteS egdEk8 ytiraloP '0'otteS'0'otteS
40 2lortnoc_gfnc )etirw/daer( timilgalfssolesahP'0'otteS'1'otteS'0'otteS
50 stpurretni_sts )etirw/daer( FFID2CESFFID1CES2CES1CES
60 gnitarepO edom ferniaM deliaf 3CES
90 edom_gnitarepo_sts )ylnodaer( )0:2(edomgnitarepO
A0 elbat_ytiroirp_sts )ylnodaer( ecruosdilavytiroirptsehgiH ecruosecnereferdetcelesyltnerruC
B03
dr
ecruosdilavytiroirptsehgih2
dn
ecruosdilavytiroirptsehgih
C0 tesffo_cni_rruc_sts )ylnodaer( )0:7(tesffotnemercnitnerruC
D0 )8:51(tesffotnemercnitnerruC
70 )61:81(tesffotnemercnitnerruC
E0 dilav_secruos_sts )ylnodaer( FFID2CESFFID1CES2CES1CES
F0 3CES
11 secruos_ecnerefer_sts )etirw/daer( >2CES<sutats>1CES<sutats
21>FFID2CES<sutats >FFID1CES<sutats
41 >3CES<sutats
81 ytiroirp_noitceles_fer_gfnc )etirw/daer( '0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS
91 >2CES<ytiroirp_demmargorp >1CES<ytiroirp_demmargorp
A1 >FFID2CES<ytiroirp_demmargorp >FFID1CES<ytiroirp_demmargorp
Revision 2.01/December 2005 Semtech Corp. www.semtech.com19
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Table 10. Register Map (continued).Table 10. Register Map (continued).
Table 10. Register Map (continued).Table 10. Register Map (continued).
Table 10. Register Map (continued).
.rddA.rddA .rddA .rddA.rddA )xeH()xeH( )xeH( )xeH()xeH( emaNretemaraPemaNretemaraP emaNretemaraP emaNretemaraPemaNretemaraPtiBataDtiBataD tiBataD tiBataDtiBataD
)bsm(7)bsm(7 )bsm(7 )bsm(7)bsm(766
6
6655
5
5544
4
4433
3
3322
2
2211
1
11)bsl(0)bsl(0 )bsl(0 )bsl(0)bsl(0
B1 ytiroirp_noitceles_fer_gfnc )etirw/daer( )deunitnoc(
'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS
C1'0'otteS'0'otteS'0'otteS'0'otteS>3CES<ytiroirp_demmargorp
D1'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS
E1'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS
22 ycneuqerf_ecruos_fer_gfnc )etirw/daer( nvidk8kcol)0:1(>1CES<di_tekcub )0:3(>1CES<ycneuqerf_ecruos_ecnerefer
32nvidk8kcol)0:1(>2CES<di_tekcub )0:3(>2CES<ycneuqerf_ecruos_ecnerefer
42nvidk8kcol di_tekcub )0:1(>FFID1CES< )0:3(>FFID1CES<ycneuqerf_ecruos_ecnerefer
52nvidk8kcol di_tekcub )0:1(>FFID2CES< )0:3(>FFID2CES<ycneuqerf_ecruos_ecnerefer
82nvidk8kcol)0:1(>3CES<di_tekcub )0:3(>3CES<ycneuqerf_ecruos_ecnerefer
23 edom_gnitarepo_gfnc )etirw/daer( edomgnitarepodecroF
33 noitceles_fer_gfnc )etirw/daer( ecruos_ecnerefer_tceles_ecrof
43
edom_gfnc )etirw/daer( otuA lanretxe elbanek2
esahP mrala tuoemit elbane
kcolC egde '0'otteS k2lanretxE elbanecnyS /TENOS P/IHDS evitreveR edom
53 3lortnoc_gfnc )etirw/daer( '1'otteS'0'otteS
63 stupni_laitnereffid_gfnc )etirw/daer( FFID2CES LCEP FFID1CES LCEP
83 elbane_tuptuo_gfnc )etirw/daer( 40.113 1OnozHM
TENOS=1 HDS=0 1giDrof '0'otteS'0'otteSelbane2O'0'otteS'0'otteS
93 seicneuqerf_tuptuo_1O_gfnc )etirw/daer( 1latigiD
A3 tuptuo_laitnereffid_gfnc )etirw/daer( noitcelesycneuqerf1O'0'otteS'0'otteS SDVL1O elbane LCEP1O elbane
B3 htdiwdnab_gfnc )etirw/daer( w/botuA hctiws kcol/qca htdiwdnabnoitisiuqcA'0'otteShtdiwdnabdekcol/lamroN
C3 ycneuqerf_lanimon_gfnc )etirw/daer( )0:7(ycneuqerflanimoN
D3 )8:51(ycneuqerflanimoN
04 tesffo_revodloh_gfnc )etirw/daer( '0'otteS
14 timil_qerf_gfnc )etirw/daer( )0:7(timiltesffoycneuqerFLLPD
24 tesffoycneuqerFLLPD )8:9(timil
Revision 2.01/December 2005 Semtech Corp. www.semtech.com20
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Table 10. Register Map (continued).Table 10. Register Map (continued).
Table 10. Register Map (continued).Table 10. Register Map (continued).
Table 10. Register Map (continued).
.rddA.rddA .rddA .rddA.rddA )xeH()xeH( )xeH( )xeH()xeH( emaNretemaraPemaNretemaraP emaNretemaraP emaNretemaraPemaNretemaraPtiBataDtiBataD tiBataD tiBataDtiBataD
)bsm(7)bsm(7 )bsm(7 )bsm(7)bsm(766
6
6655
5
5544
4
4433
3
3322
2
2211
1
11)bsl(0)bsl(0 )bsl(0 )bsl(0)bsl(0
34 ksam_tpurretni_gfnc )etirw/daer( '0'otteS'0'otteS sutats FFID2CES sutats FFID1CES sutats 2CES sutats 1CES '0'otteS'0'otteS
44edom.repOferniaM'0'otteS'0'otteS'0'otteS'0'otteS'0'otteS sutats 3CES
54 '0'otteS'0'otteS'0'otteS'0'otteS'0'otteS
64 nvid_qerf_gfnc )etirw/daer( )0:7(oitarn-yb-tupni-ediviD
74 )8:31(oitarn-yb-tupni-ediviD
84
srotinom_gfnc )etirw/daer( tsaf-artlU gnihctiws
lanretxE ecruos hctiws elbane
ezeerF esahp tuodliub
esahP tuodliub elbane
srotinomycneuqerF )0:1(noitarugifnoc
05 0dlohserht_reppu_vitca_gfnc )etirw/daer( )0:7(dlohserhttesmralaytivitcA:0noitarugifnoC
15 0dlohserht_rewol_vitca_gfnc )etirw/daer( )0:7(dlohserhttesermralaytivitcA:0noitarugifnoC
25 0ezis_tekcub_gfnc )etirw/daer( )0:7(ezistekcubmralaytivitcA:0noitarugifnoC
35 0etar_yaced_gfnc )etirw/daer( :0noitarugifnoC )0:1(etar_yaced
45 1dlohserht_reppu_vitca_gfnc )etirw/daer( )0:7(dlohserhttesmralaytivitcA:1noitarugifnoC
55 1dlohserht_rewol_vitca_gfnc )etirw/daer( )0:7(dlohserhttesermralaytivitcA:1noitarugifnoC
65 1ezis_tekcub_gfnc )etirw/daer( )0:7(ezistekcubmralaytivitcA:1noitarugifnoC
75 1etar_yaced_gfnc )etirw/daer( :1noitarugifnoC )0:1(etar_yaced
85 2dlohserht_reppu_vitca_gfnc )etirw/daer( )0:7(dlohserhttesmralaytivitcA:2noitarugifnoC
95 2dlohserht_rewol_vitca_gfnc )etirw/daer( )0:7(dlohserhttesermralaytivitcA:2noitarugifnoC
A5 2ezis_tekcub_gfnc )etirw/daer( )0:7(ezistekcubmralaytivitcA:2noitarugifnoC
B5 2etar_yaced_gfnc )etirw/daer( :2noitarugifnoC )0:1(etar_yaced
C5 3dlohserht_reppu_vitca_gfnc )etirw/daer( )0:7(dlohserhttesmralaytivitcA:3noitarugifnoC
D5 3dlohserht_rewol_vitca_gfnc )etirw/daer( )0:7(dlohserhttesermralaytivitcA:3noitarugifnoC
E5 3ezis_tekcub_gfnc )etirw/daer( )0:7(ezistekcubmralaytivitcA:3noitarugifnoC
F5 3etar_yaced_gfnc )etirw/daer( :3noitarugifnoC )0:1(etar_yaced
Revision 2.01/December 2005 Semtech Corp. www.semtech.com21
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Table 11. Register Map DescriptionTable 11. Register Map Description
Table 11. Register Map DescriptionTable 11. Register Map Description
Table 11. Register Map Description
Register Map DescriptionRegister Map Description
Register Map DescriptionRegister Map Description
Register Map Description
.rddA.rddA .rddA .rddA.rddA )xeH()xeH( )xeH( )xeH()xeH( emaNretemaraPemaNretemaraP emaNretemaraP emaNretemaraPemaNretemaraPnoitpircseDnoitpircseD noitpircseD noitpircseDnoitpircseDtluafeDtluafeD tluafeD tluafeDtluafeD )nib(eulaV)nib(eulaV )nib(eulaV )nib(eulaV)nib(eulaV
20noisiver_pihc rebmunnoisiverpihcehtsniatnocretsigerylno-daersihT 1=noisiversihT 0=)selpmasgnireenigne(noisivertsaL
10000000
30
1lortnoc_gfncdesunU)6:7(stiB
5tiB .zhM67.77lamronehtfodaetsniLLPAehtotycneuqerf2giDx2sdeeF:LLPAotzHM42/231= stibtes2giD:etoN.setar1T/1Eelpitlumhtiwdecalpererastuptuo1MTS/3COlamronehtsuhT .edomsihtrof11ottesebtsum))6:7(stiBh93.geR( LLPAotzHM67.770=
4tiB noitcesLLPDehtnisredividehtotnoitcesLLPAtuptuoehtnisredividehtsezinorhcnyS1= stupnineewtebtnemngilaesahpevahotredroniyrassecensisihT.ngilasesahpriehttahthcus ebyamhgihtibsihtgnipeeK.)zHM67.77otzHM84.6(setardevired3COtaskcolctuptuodna ycneuqerfnisegnahckciuqnehwnoitazinorhcnysfotuognittegsredividehtdiovaotyrassecen .nuR-eerFotniecrofasahcusrucco ehtedomsihtnitub,ycneuqerfnisegnahcpetsgniwollofesahpfotuotegyamsredividehT0= ehT.doirepnoitazinorhcnysynanihtiwdeetneraugsisegdeycneuqerfhgihforebmuntcerroc .)tluafed(kcolycneuqerflliwtuptuo tluafedehterofeb,teseramorfsdnoces2noitazinorhcnysniniamersyawlalliwecivedehT .seilppagnittes
'0'ottesro,degnahcnuevael-lortnoctseT3stiB
2tiB .egdekcolctupnignisirehtotkcollliwmetsysehtedomgnikcolk8ninehW1= .egdekcolctupnignillafehtotkcollliwmetsysehtedomgnikcolk8ninehW0=
'00'ottesro,degnahcnuevael-slortnoctseT)0:1(stiB
000000XX
402lortnoc_gfnc.desunU)6:7(stiB
otsdnopserrochcihw)001(4ottestluafedyB.timilgalfssolesahpehtenifed)3:5(stiB timilgalfehT.timilesahprewolgnidnopserrocasteseulavrewolA.°041yletamixorppa esahpa,rettijtupnifotluserasatsolesahpsetacidniLLPDehthcihwtaeulavehtsenimreted .tupniehtnopmujycneuqerfaro,pmuj
.'010'ottesrodegnahcnuevael-slortnoctseT)0:2(stiB
010001XX
stpurretni_sts ehtecnereferfossolrofeno,dilav_secruos_stsfotibhcaeroftibenosniatnocretsigersihT .hgihevitcaerastibllA.edomgnitarepoehtrofrehtonadna,otdekcolsawecived
tnevelerehtfoetatsehtni'egnahc'anotesera)41tib(tib'deliafferniam'ehttpecxestibllA ehtfI.tpurretninareggirtlliwtidilavniseogro,dilavsemocebecruosafi.e.i,tibsutats .detarenegeblliwtpurretniehtetatssegnahc)9retsiger(edoMgnitarepO
ecnereferehtnoytivitcanigalfotdesusiretsigersutatstpurretniehtfo)deliafferniam(41tiB fo6tibfI.troppusnacsrotinomytivitcaehtnahtylkciuqeromhcumotdekcolsiecivedehttaht sitibsihtfoetatsehtneht,tessi)ODTnossolfergalf()84retsiger(retsigersrotinom_gfnceht .ecivedehtfonipODTehtotnonevird
deraelcebyamtibhcaE.retsigerksam_tpurretni_gfncehtnistibehtybelbaksamerastibllA ebnacstibforebmunynA.tpurretniehtgnittesersuht,tibtahtot'1'agnitirwybyllaudividni .tceffeonevahlliws'0'gnitirW.noitarepoetirwelgnisahtiwderaelc
Revision 2.01/December 2005 Semtech Corp. www.semtech.com22
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
.rddA.rddA .rddA .rddA.rddA )xeH()xeH( )xeH( )xeH()xeH( emaNretemaraPemaNretemaraP emaNretemaraP emaNretemaraPemaNretemaraPnoitpircseDnoitpircseD noitpircseD noitpircseDnoitpircseDtluafeDtluafeD tluafeD tluafeDtluafeD )nib(eulaV)nib(eulaV )nib(eulaV )nib(eulaV)nib(eulaV
50stpurretni_sts )deunitnoc( desunU)6:7(stiB
)5tibstpurretni_sts(FFID2CES5tiB
)4tibstpurretni_sts(FFID1CES4tiB
)3tibstpurretni_sts(2CES3tiB
)2tibstpurretni_sts(1CES2tiB
desunU)0:1(stiB
XX0000XX
60 )51tibstpurretni_sts(edomgnitarepO7stiB
)41tibstpurretni_sts(deliafferniaM6tiB
desunU)1:5(stiB
)8tibstpurretni_sts(3CES0tiB
0XXXXX00
90edom_gnitarepo_sts 01erugiF.enihcametatsniamehtfoetatsgnitarepotnerrucehtsdlohretsigerylno-daersihT .setatslaudividniehthtiwhctamelbairav'etatsgnitarepo'ehtfoseulavehtwohwohs
desunU)3:7(stiB
etatS)0:2(stiB )tluafed(nureerF100 revodloH010 dekcoL001 dekcol-erP011 2dekcol-erP101 tsolesahP111
100XXXXX
elbat_ytiroirp_sts.retsigerylno-daertib-61asisihT
ecnerefertupniehtforebmunlennahcehtsisiht:ecruosdilavytiroirptsehgih-drihT)21:51(stiB .ecruosdilavytiroirp-tsehgih-dnocesehtotytiroirptsehgih-txenehtsahdnadilavsihcihwecruos
ecnerefertupniehtforebmunlennahcehtsisiht:ecruosdilavytiroirptsehgih-dnoceS)8:11(stiB .ecruosdilavytiroirp-tsehgihehtotytiroirptsehgih-txenehtsahdnadilavsihcihwecruos
ecruosecnerefertupniehtforebmunlennahcehtsisiht:ecruosdilavytiroirp-tsehgiH)4:7(stiB detceles-yltnerrucehtsaemasehtebtonyamti;ytiroirptsehgihehtsahdnadilavsihcihw .)ytiroirpdemmargorpnisegnahcroyrotsiheruliafoteud(ecruosecnerefer
ecnerefertupniehtforebmunlennahcehtsisiht:ecruosecnereferdetceles-yltnerruC)0:3(stiB .LLPDehtottupniyltnerrucsihcihwecruos
ehtfostnetnocehtotesnopsernienihcametatsehtybdetadpuerasretsigeresehttahtetoN lennahc;slennahclaudividnifosutatsgniognoehtdnaretsigerytiroirp_noitceles_fer_gfnc tahtrofelbaliavasilennahcontahtsetacidni,sretsigeresehtfoynanigniraeppa,'0000'rebmun .ytiroirp
A0 ))4:7(stibelbat_ytiroirp_sts(ecruosdilavytiroirp-tsehgiH)4:7(stiB ))0:3(stibelbat_ytiroirp_sts(ecruosecnereferdetcelesyltnerruC)0:3(stiB 00000000
B0 3)4:7(stiB
dr
))21:51(stibelbat_ytiroirp_sts(ecruosdilavytiroirp-tsehgih-
2)0:3(stiB
dn
))8:11(stibelbat_ytiroirp_sts(ecruosdilavytiroirp-tsehgih- 00000000
tesffo_cni_rruc_sts ehtfostibtnacifingis91ehtgnitneserpereulavregetni-dengisasniatnocretsigerylno-daersihT apudliubotyllacidoirepdaerebyamretsigerehT.LLPlatigidehtfotesffotnemercnitnerruc nafiyrassecenebylnodluowsiht(sdoireprevodlohgnirudesuretalrofesabatadlacirotsih kcolCrotallicsOlacoLnidebircsedairetircytilibatsehtteemtondidhcihwrotallicsolanretxe .teserretfayletaidemmi00000000daerlliwretsigerehT.)desusinoitces
C0 )0:7(stibtesffo_cni_rruc_sts)0:7(stiB 00000000
D0 )8:51(stibtesffo_cni_rruc_sts)0:7(stiB 00000000
70desunU)3:7(stiB
)61:81(stibtesffo_cni_rruc_sts)0:2(stiB 000XXXXX
Table 11. Register Map Description (continued).Table 11. Register Map Description (continued).
Table 11. Register Map Description (continued).Table 11. Register Map Description (continued).
Table 11. Register Map Description (continued).
Revision 2.01/December 2005 Semtech Corp. www.semtech.com23
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
.rddA.rddA .rddA .rddA.rddA )xeH()xeH( )xeH( )xeH()xeH( emaNretemaraPemaNretemaraP emaNretemaraP emaNretemaraPemaNretemaraPnoitpircseDnoitpircseD noitpircseD noitpircseDnoitpircseDtluafeDtluafeD tluafeD tluafeDtluafeD )nib(eulaV)nib(eulaV )nib(eulaV )nib(eulaV)nib(eulaV
dilav_secruos_sts .ecruosecnereferyreverofytidilavwohsottibasniatnocretsigersihT ecruosdilaV1= )tluafed(ecruosdilavnI0=
E0
desunU)6:7(stiB
FFID2CES5tiB
FFID1CES4tiB
2CES3tiB
1CES2tiB
desunU)0:1(stiB
XX0000XX
F0 desunU)1:7(stiB
3CES0tiB 0XXXXXXX
secruos_ecnerefer_sts ecnereferhcaefosutatsehT.secruosecnerefertupniehtfohcaefosutatsehtsdlohretsigersihT hcaefoypoca,gnikcehcsutatsdiaoT.hgihevitcasitibhcaE.dleiftib-4aninwohssiecruos hcaE(:swollofsadetropersisutatsehT.retsigerdilav_secruos_stsehtnidedivorpsi3tibsutats )yllaudividnideraelcebyamtib
)0tluafed()2-0stibfonoitanibmocsi3tib()smralaon(dilavecruoS=3tibsutatS )1tluafed(mraladnab-fo-tuO=2tibsutatS )1tluafed(mralaytivitcaoN=1tibsutatS )0tluafed(mralakcolesahP=0tibsutatS
11 2CESecruosecnerefertupnifosutatS)4:7(stiB
1CESecruosecnerefertupnifosutatS)0:3(stiB 01100110
21 FFID2CESecruosecnerefertupnifosutatS)4:7(stiB
FFID1CESecruosecnerefertupnifosutatS)0:3(stiB 01100110
41 desunU)4:7(stiB
3CESecruosecnerefertupnifosutatS)0:3(stiB 0110XXXX
ytiroirp_noitceles_fer_gfnc llaeraseulavytiroirpehT.secruosecnerefertupniehtfohcaefoytiroirpehtsdlohretsigersihT ot1seulavehtylnO.seitiroirprehgihgnikatsrebmundeulav-rewolhtiw,rehtohcaeotevitaler anevigebtsumecruosecnereferhcaE.ecruosecnereferehtselbasid'0'-dilavera)ced(51 nitsrifanodengissaeblliwrebmunytiroirpemasehtnevigsecruosowtrevewoh,ytiroirpeuqinu .sisabtuotsrif
noitcelesecnerefergnicrofnehwdesusisihtsa'1'eulavytiroirpehtevreserotdednemmocersitI noitceles_fer_gfncehtesuotdnetnitonseodresuehtfI.retsigernoitceles_fer_gfncehtaiv .devreserebtondeen'1'eulavytiroirpnehtretsiger
81 noitasilaitinignirud'00000000'ottesebtsuM)0:7(stiB 01001100
91 2CESecruosecnerefertupnifoytiroirpdemmargorP)4:7(stiB
1CESecruosecnerefertupnifoytiroirpdemmargorP)0:3(stiB 00101010
A1 FFID2CESecruosecnerefertupnifoytiroirpdemmargorP)4:7(stiB
FFID1CESecruosecnerefertupnifoytiroirpdemmargorP)0:3(stiB 01101110
B1 noitasilaitinignirud'00000000'ottesebtsuM)0:7(stiB 00011001
C1 noitasilaitinignirud'0000'ottesebtsuM)4:7(stiB
3CESecruosecnerefertupnifoytiroirpdemmargorP)0:3(stiB 01011101
D1 noitasilaitinignirud'00000000'ottesebtsuM)0:7(stiB 10001011
E1 noitasilaitinignirud'00000000'ottesebtsuM)0:7(stiB 01111111
Table 11. Register Map Description (continued).Table 11. Register Map Description (continued).
Table 11. Register Map Description (continued).Table 11. Register Map Description (continued).
Table 11. Register Map Description (continued).
Revision 2.01/December 2005 Semtech Corp. www.semtech.com24
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
.rddA.rddA .rddA .rddA.rddA )xeH()xeH( )xeH( )xeH()xeH( emaNretemaraPemaNretemaraP emaNretemaraP emaNretemaraPemaNretemaraPnoitpircseDnoitpircseD noitpircseD noitpircseDnoitpircseDtluafeDtluafeD tluafeD tluafeDtluafeD )nib(eulaV)nib(eulaV )nib(eulaV )nib(eulaV)nib(eulaV
ycneuqerf_ecruos_fer_gfnc .secruosecnerefertupniehtfohcaeputesotdesusiretsigersihT
ecnadroccani,ycneuqerftupniehtnonekatrednunoitarepoehtenifedetybhcaefo)6:7(stiB :yekgniwollofehthtiw
.)tluafed(LLPDehtotniyltceriddefsiycneuqerftupniehT00 ehtotnidefgnieberofeb,zHk8otnwoddedividyllanretnisiycneuqerftupniehT10 .)ecnarelotrettijhgihroF(.LLPD esutonod-noitarugifnocdetroppusnU01 edividot)nvid_qerf_gfnc(74&64sretsigerniderotstneiciffeocnoisividehtsesU11 srotinomycneuqerfehT.LLPDehtotnidefgniebotroirpeulavsihtybtupnieht ycneuqerfehT.zHk8lauqedluohsycneuqerfnwoddedividehT.delbasidebtsum tupnilautcaehtwolebtsujycneuqerftopstseraenehtottesebdluohs)0:3( dnazHM445.1neewtebseicneuqerftupnirofskrowerutaefNviDehT.ycneuqerf .zHM001
05sretsigernidenifedsa,desuera)3-0(sgnittestekcubykaelhcihwenifedrehtegot)4:5(stiB .)00tluafed(.F5ot
:yekgniwollofehthtiwecnadroccaniecruosecnereferehtfoycneuqerfehtenifed)0:3(stiB
)2CES,1CEStluafed(zHk80000 )2tib,43retsigeRybdenifedsA()HDS(zHk8402/)TENOS(zHk44511000 zHM84.60100 )3CES,FFID2CES,FFID1CEStluafed(zHM44.911100 zHM29.520010 zHM88.831010 zHM48.150110 zHM67.771110 zHM25.5510001 zHk21001 zHk40101
221CESecruosecnereferfoycneuqerF 00000000
322CESecruosecnereferfoycneuqerF 00000000
42 FFID1CESecruosecnereferfoycneuqerF 11000000
52 FFID2CESecruosecnereferfoycneuqerF 11000000
823CESecruosecnereferfoycneuqerF 11000000
23
edom_gnitarepo_gfnc yranibehtybdetneserper,etatsgnitarepoderisedaotniecivedehtecrofotdesusiretsigersihT etarepootenihcametatslortnocehtswolla)xeh(0eulaV.01erugiFninwohsseulav .yllacitamotua
desunU)3:7(stiB
)01erugiFrepsa(etatsgnitarepoderiseD)0:2(stiB
000XXXXX
33
noitceles_fer_gfnc evitcepserri,ecruosecnerefertupniralucitrapatcelesotecivedehtecrofotdesusiretsigersihT dedivorP.'1'ytiroirpottupnidetcelesehtsesiaryliraropmetretsigersihtotgnitirW.ytiroirpstifo lliwecruossiht,nosiedomevitreverdna,'1'ytiroirphtiwdemmargorpydaerlasitupnirehtoon .detceleseb
desunU)4:7(stiB
)0:3(stiB noitcelescitamotuA0000 1CES1100 2CES0010 FFID1CES1010 FFID2CES0110 3CES1001 )tluafed(noitcelescitamotuA1111 .desuebtondluohsseulavrehtO
1111XXXX
Table 11. Register Map Description (continued).Table 11. Register Map Description (continued).
Table 11. Register Map Description (continued).Table 11. Register Map Description (continued).
Table 11. Register Map Description (continued).
Revision 2.01/December 2005 Semtech Corp. www.semtech.com25
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
.rddA.rddA .rddA .rddA.rddA )xeH()xeH( )xeH( )xeH()xeH( emaNretemaraPemaNretemaraP emaNretemaraP emaNretemaraPemaNretemaraPnoitpircseDnoitpircseD noitpircseD noitpircseDnoitpircseDtluafeDtluafeD tluafeD tluafeDtluafeD )nib(eulaV)nib(eulaV )nib(eulaV )nib(eulaV)nib(eulaV
43
edom_gfnc :wolebdeliatedsa,sdleifnoitarugifnoclaudividnilarevessniatnocretsigersihT
7tiB dekcolsiecruosehtnehwylnodelbaneeblliwcnySzHk2lanretxE:elbanEcnySzHk2otuA1= .)tluafed(.delbasideblliwtiesiwrehtO.zHM84.6ot sa,retsigersihtfo3tibgnisunoitcnufsihtslortnocresuehT:elbasiDcnySzHk2otuA0= .wolebdebircsed
6tiB .)tluafed(.sdnoces001retfatuoemitlliwmralaesahpehT:elbanetuoemiTmralAesahP1= ybteserebtsumdnatuoemittonlliwmralaesahpehT:elbasidtuoemiTmralAesahP0= .erawtfos
5tiB lanretxeehtfoegdegnisirehtotecnereferlliwecivedehT:detcelesegdEkcolCgnisiR1= .langisrotallicso lanretxeehtfoegdegnillafehtotecnereferlliwecivedehT:detcelesegdEkcolCgnillaF0= .)tluafed(langisrotallicso
.noitasilaitinignirud'0'ottesebtsuM.desunU4tiB
3tiB detarenegyllanretnistifoesahpehtngilalliwecivedehT:elbanEcnySzHk2lanretxE1= deilppuslangisehtfotahthtiw)zHk2(langiscnySemarF-itluMdna)zHk8(langiscnySemarF .0158SCAnafocnySemarF-itluMzHk2ehtmorfebdluohstupnisihT.nipk2cnySehtot .)tluafed(nipk2cnySehterongilliwecivedehT:elbasiDcnySzHk2lanretxE0=
2tiB eulavehtneviglennahctupniynafoycneuqerftupniehtstcepxeecivedehT:edomTENOS1= .zHk4451ebotretsigerycneuqerf_ecruos_fer_gfncehtni'1000' eulavehtneviglennahctupniynafoycneuqerftupniehtstcepxeecivedehT:edomHDS0= .zHk8402ebotretsigerycneuqerf_ecruos_fer_gfncehtni'1000' gnittessihT.BHDSNOSnipfognittesehtotdetluafedeblliweulavtibehtteserroputratstA .eulavtibsihtgnignahcybderetlaebyltneuqesbusnac
desunU1tiB
0tiB ninwohsecruosytiroirptsehgihehtothctiwslliwecivedehT:edoMevitreveR1= .)4:7(stib,retsigerelbat_ytiroirp_sts .)tluafed(ecruosdetcelesyltneserpehtniaterlliwecivedehT:edoMevitrever-noN0=
0X00X011 )0=BHDSNOS( 0X10X011 )1=BHDSNOS(
53
3lortnoc_gfncdesunU)6:7(stiB
.noitasilaitinignirud'01'ottesebtsuM)4:5(stiB
desunU)0:3(stiB
XXXX00XX
63
stupni_laitnereffid_gfnc sdleifnoitarugifnoclaudividniowtsniatnocretsigersihT
desunU)2:7(stiB
1tiB )tluafed(elbitapmocLCEPsiFFID2CEStupnI1= elbitapmocSDVLsiFFID2CEStupnI0=
0tiB elbitapmocLCEPsiFFID1CEStupnI1= )tluafed(elbitapmocSDVLsiFFID1CEStupnI0=
01XXXXXX
Table 11. Register Map Description (continued).Table 11. Register Map Description (continued).
Table 11. Register Map Description (continued).Table 11. Register Map Description (continued).
Table 11. Register Map Description (continued).
Revision 2.01/December 2005 Semtech Corp. www.semtech.com26
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
.rddA.rddA .rddA .rddA.rddA )xeH()xeH( )xeH( )xeH()xeH( emaNretemaraPemaNretemaraP emaNretemaraP emaNretemaraPemaNretemaraPnoitpircseDnoitpircseD noitpircseD noitpircseDnoitpircseDtluafeDtluafeD tluafeD tluafeDtluafeD )nib(eulaV)nib(eulaV )nib(eulaV )nib(eulaV)nib(eulaV
83elbane_tuptuo_gfnc :swollofsa,sdleifnoitarugifnoclaudividnilarevessniatnocretsigersihT
7tiB zHM40.113ottesycneuqerftuptuo1O1= )tluafed()4:5(A3sserddAybtesycneuqerftuptuo1O0=
.noitasilaitinignirud'0'ottesebtsuM.desunU6tiB
5tiB 1giDrofdetcelesedomTENOS1= )tluafed(1giDrofdetcelesedomHDS0= seicneuqerf_tuptuo_1O_gfncretsigerees-
.noitasilaitinignirud'0'ottesebtsuM.desunU)3:4(stiB
2tiB )tluafed()zHM44.91(delbane2OtroptuptuO1= delbasid2OtroptuptuO0=
.noitasilaitinignirud'0'ottesebtsuM.desunU)0:1(stiB
.)detats-irTtonsitropeht(eulavcigolcitatsasdlohtroptuptuoehtsnaem"delbasiD":etoN
XX1XX0X0
93seicneuqerf_tuptuo_1O_gfnc .wolebdeliatedsa,troptuptuohcaerofsnoitcelesycneuqerfehtsdlohretsigersihT
1giD)4:5(stiBdesunU)6:7(stiB )tluafed(zHk8402/zHk445100 zHk6904/zHk880310 zHk2918/zHk671601 zHk48361/zHk2532111
desunU)0:1(stiBdesunU)2:3(stiB
HDS/TENOSehtaivdetceleserayehT.HDS/TENOSrofnwohseraseulavycneuqerfeht1giDroF .elbane_tuptuo_gfncretsigernistib
XXXX00XX
A3tuptuo_laitnereffid_gfnc laitnereffidehtrofepytygolonhcet-tropehtdnasnoitcelesycneuqerfehtsdlohretsigersihT .wolebdeliatedsa,1Otuptuo
desunU)2:3(stiBdesunU)6:7(stiB
1O)0:1(stiB1O)4:5(stiB delbasidtroP00)tluafed(zHM88.8300 elbitapmoc-LCEP10zHM44.9110 )tluafed(elbitapmoc-SDVL01zHM25.55101 desunU111giD11
01XX00XX
B3htdiwdnab_gfnc nehW.LLPlatigidehtfonoitarepoehtlortnocotdesunoitamrofnisniatnocretsigersihT gnitteshtdiwdnabnoitisiuqcaehtesulliwLLPDeht,citamotuaottessinoitceleshtdiwdnab ,launamottesnehW.kcolninehwgnitteshtdiwdnabdekcol/lamronehtdna,kcolfotuonehw .gnitteshtdiwdnabdekcol/lamronehtesuyawlalliwLLPDeht
7tiB noitarepocitamotuA1= )tluafed(noitarepolaunaM0=
htdiwdnabpooL)0:2(tiBhtdiwdnabnoitisiuqcA)4:6(stiB zH1.0000zH1.0000 zH3.0100zH3.0100 zH5.0010zH5.0010 zH0.1110zH0.1110 zH0.2001zH0.2001 )tluafed(zH0.4101zH0.4101 zH0.8011zH0.8011 zH71111)tluafed(zH71111
desunU3tiB
101X1110
Table 11. Register Map Description (continued).Table 11. Register Map Description (continued).
Table 11. Register Map Description (continued).Table 11. Register Map Description (continued).
Table 11. Register Map Description (continued).
Revision 2.01/December 2005 Semtech Corp. www.semtech.com27
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
.rddA.rddA .rddA .rddA.rddA )xeH()xeH( )xeH( )xeH()xeH( emaNretemaraPemaNretemaraP emaNretemaraP emaNretemaraPemaNretemaraPnoitpircseDnoitpircseD noitpircseD noitpircseDnoitpircseDtluafeDtluafeD tluafeD tluafeDtluafeD )nib(eulaV)nib(eulaV )nib(eulaV )nib(eulaV)nib(eulaV
ycneuqerf_lanimon_gfnc latsyrcehtfotesfforofnoitasnepmocgniwollaregetnidengisnutib61asdlohretsigersihT tluafeD.noitarbilaCycneuqerFlatsyrCnoitceseeS.zHM8.21lanimonehtmorfrotallicso .tnemtsujdampp0nistluser
C3 )0:7(stibycneuqerf_lanimon_gfnc)0:7(stiB 10011001
D3 )8:51(stibycneuqerf_lanimon_gfnc)0:7(stiB 10011001
tesffo_revodloh_gfnc .noitazilaitinignirud'0'ottesebtsumhcihwtib1sdlohretsigersihT
04 noitazilaitinignirud'0'ottesebtsuM7tiB
desunU)0:6(stiB XXXXXXX1
timil_qerf_gfnc tI.LLPDehtfoegnarni-llupehtgnitneserperregetnidengisnutib01asdlohretsigersihT ehtgnisu,noitacilppaehtnidetnemelpmilatsyrcfoycaruccaehtotgnidroccatesebdluohs ;alumrofgniwollof
ro74610.0+)5870.0xtimil_qerf_gfnc(=)mpp(-/+egnarycneuqerF 5870.0/)74610.0-)mpp(-/+egnarycneuqerF(=timil_qerf_gfnc
nehweulavtluafeD.mpp3.9±siwoldeitrodetcennocnutfelsiWSCRSnehweulavtluafeD .mpp08±dnuorafoegnarllufehtsihgihsiWSCRS
14)0:7(stibtimil_qerf_gfnc)0:7(stiB
01101110 )wolWSCRS( 11111111 )hgihWSCRS(
24 desunU)2:7(stiB
)8:9(stibstimil_qerf_gfnc)0:1(stiB
00XXXXXX )wolWSCRS( 11XXXXXX )hgihWSCRS(
ksam_tpurretni_gfnc .retsigersutatstpurretniehtniecruostpurretnietairporppaehtelbasidlliw'0'tesfi,tibhcaE
34
noitasilaitinignirud'00'ottesebtsuM)6:7(tiB
FFID2CESsutatS5tiB
FFID1CESsutatS4tiB
2CESsutatS3tiB
1CESsutatS2tiB
noitasilaitinignirud'00'ottesebtsuM)0:1(tiB
11111111
44
edom.repO7tiB
ferniaM6tiB
noitasilaitinignirud'00000'ottesebtsuM)1:5(tiB
ecruostpurretnI0tiB
11111111
54 desunU)5:7(tiB
noitasilaitinignirud'00000'ottesebtsuM)0:4(tiB 11111XXX
nvid_qerf_gfnc ycneuqerfgnikcolesahpehttegottupniynarofrosividehtsadesusiregetnitib41sihT ycneuqerftupniehtesuaclliwsihT.1ottestibNviDehthtiwstupnirofevitcaylnO.derised :otNmargorp.g.e,nosirapmocesahpotroirp)1+n(ybdedividebot
1-)zHk8/)qerftupni((
ehtotycneuqerftopstsesolcehttcelferottesebdluohsstibycneuqerf_ecruos_ecnereferehT .ycneuqerftupniehtnahtrewolebtsumtub,ycneuqerftupni
64)0:7(stibnvid_qerf_gfnc)0:7(stiB 00000000
74 desunU)6:7(stiB
)8:31(stibnvid_qerf_gfnc)0:5(stiB 000000XX
Table 11. Register Map Description (continued).Table 11. Register Map Description (continued).
Table 11. Register Map Description (continued).Table 11. Register Map Description (continued).
Table 11. Register Map Description (continued).
Revision 2.01/December 2005 Semtech Corp. www.semtech.com28
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Table 11. Register Map Description (continued).Table 11. Register Map Description (continued).
Table 11. Register Map Description (continued).Table 11. Register Map Description (continued).
Table 11. Register Map Description (continued).
.rddA.rddA .rddA .rddA.rddA )xeH()xeH( )xeH( )xeH()xeH( emaNretemaraPemaNretemaraP emaNretemaraP emaNretemaraPemaNretemaraPnoitpircseDnoitpircseD noitpircseD noitpircseDnoitpircseDtluafeDtluafeD tluafeD tluafeDtluafeD )nib(eulaV)nib(eulaV )nib(eulaV )nib(eulaV)nib(eulaV
84
srotinom_gfnc .tuodliubesahpfolortnocdnasrotinomfonoitarugifnoclabolgswollaretsigersihT
desunU7tiB
desunU6tiB
5tiB yltnerrucehtnomralaytivitcanaesiarotLLPDehtswollA:gnihctiwstsafartluselbanE1= .gnihctiwStsaFartlUnonoitceseeS.selcycwefaylnognissimretfaecruosdetceles )tluafed(noitarepolamroN0=
4tiB wolWSCRSnipfi)03nip(2CESro,hgihWSCRSnipfi)92nip(1CESotgnikcolsecroF1= delbanelortnoccitamotuadna,derongiWSCRSniP0=
3tiB tesffoesahptuptuoottupnitnerrucehthtiwpihsnoitaleresahptuptuoehtezeerflliW1= )edomtuodliubesahplamroN(ecalpekatottesffoesahptuptuoottupninisegnahcswollA0= )tluafed(
2tiB )tluafed(tuodtliubesahpselbanE1= °0otkcolswollalliwLLPD0=
rofdevresererasrehto,mpp51=10,ffo=00-srotinomycneuqerfgnirugifnocrofera)0:1(stiB .esuerutuf
1010000X )wolWSCRS( 1010100X )hgihWSCRS(
05 0dlohserht_reppu_vitca_gfnc .desiarebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehttes)0:7(stiB 01100000
15 0dlohserht_rewol_vitca_gfnc .deraelcebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehttes)0:7(stiB 00100000
25 0ezis_tekcub_gfnc .tupnievitcaninanevighcaernactekcubykaelehttahteulavmumixamehttes)0:7(stiB 00010000
35
0etar_yaced_gfncdesunU)2:7(stiB
yreverof1+sitekcubehtfoetar-llifehT.tekcubykaelehtfoetarkaelehtlortnoc)0:1(stiB elbammargorpsietaryacedehT.ytivitcanifolevelemosdecneirepxesahtahtlavretnism821 ,01,10,00foseulavgnisuyb1:8,1:4,1:2,1:1ottesebnacoitarehT.etarllifehtfosoitarni tekcubehT.erutannistekcubykaeleurttonerastekcubeseht,revewoH.ylevitcepser11 emasehtebnacsetaryaceddnallifehttahtsnaemsihT.dellifgniebsitinehwgnikaelspots nasaetaremasehttadesingocerebnactupnievitcanatahttceffetenehthtiw)1:1=00( .enoevitcani
10XXXXXX
45 1dlohserht_reppu_vitca_gfnc .1tekcubroftub05retsigerrofsA 01100000
55 1dlohserht_rewol_vitca_gfnc .1tekcubroftub15retsigerrofsA 00100000
65 1ezis_tekcub_gfnc .1tekcubroftub25retsigerrofsA 00010000
75 1etar_yaced_gfnc .1tekcubroftub35retsigerrofsA 10XXXXXX
85 2dlohserht_reppu_vitca_gfnc .2tekcubroftub05retsigerrofsA 01100000
95 2dlohserht_rewol_vitca_gfnc .2tekcubroftub15retsigerrofsA 00100000
A5 2ezis_tekcub_gfnc .2tekcubroftub25retsigerrofsA 00010000
B5 2etar_yaced_gfnc .2tekcubroftub35retsigerrofsA 10XXXXXX
C5 3dlohserht_reppu_vitca_gfnc .3tekcubroftub05retsigerrofsA 01100000
D5 3dlohserht_rewol_vitca_gfnc .3tekcubroftub15retsigerrofsA 00100000
E5 3ezis_tekcub_gfnc .3tekcubroftub25retsigerrofsA 00010000
F5 3etar_yaced_gfnc .3tekcubroftub35retsigerrofsA 10XXXXXX
Revision 2.01/December 2005 Semtech Corp. www.semtech.com29
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
to do so by the software; by briefly setting the
Revertive mode bit. When there is a reference
available with higher priority than the selected
reference, there will be NO change of reference
source as long as the Non-Revertive mode
remains on AND the device will remain indicating
a locked state on the failed reference. This is
the case even if there are lower priority
references available or the currently selected
reference fails. When the ONLY valid reference
sources that are available have a lower priority
than the selected reference, a failure of the
selected reference will always trigger a switch-
over, regardless of whether Revertive or Non-
Revertive mode has been chosen.
Automatic Control SelectionAutomatic Control Selection
Automatic Control SelectionAutomatic Control Selection
Automatic Control Selection
When automatic selection is required, the
cnfg_ref_selection registers must be set to all-
zero or all-one. The configuration registers,
cnfg_ref_selection_priority, held in the µP port
are organised as 5, 4-bit registers with each
representing an input reference port. Unused
ports should be given the value '0000' in the
relevant register to indicate they are not to be
included in the priority table. On power-up, or
following a reset, the whole of the configuration
file will be defaulted to the values defined by
Table 4. The selection priority values are all
relative to each other, with lower-valued
numbers taking higher priorities. Each reference
source should be given a unique number, the
valid values are 1 to 15 (dec). A value of 0
disables the reference source. However if two
or more inputs are given the same priority
number those inputs will be selected on a first
in, first out basis. If the first of two same priority
number sources goes invalid the second will be
switched in. If the first then becomes valid
again, it becomes the second source on the
first in, first out basis, and there will not be a
switch. If a third source with the same priority
number as the other two becomes valid, it joins
the priority list on the same first in, first out
basis. There is no implied priority based on the
channel numbers.
Selection of Input Reference ClockSelection of Input Reference Clock
Selection of Input Reference ClockSelection of Input Reference Clock
Selection of Input Reference Clock
SourceSource
SourceSource
Source
Under normal operation, the input reference
sources are selected automatically by an order
of priority, where SEC1 is the highest priority,
SEC2 is the second highest priority and SEC3
is the lowest priority. The priorities can be
re-assigned with external software. The SEC1
reference source has inputs via either a low
speed TTL input port or a high speed PECL/
LVDS input port. Similarly, the SEC2 reference
source has both a low speed TTL or a high
speed PECL/LVDS input port. The SEC3
(standby) reference source only has provision
via a low speed TTL input port. There is provision
for one sync clock input via a TTL port. Whilst
SEC1, SEC2 and SEC3 reference source inputs
can all be active at the same time, only one of
the TTL or PECL/LVDS input ports for the SEC1
and SEC2 reference sources may be used at
any time, the inactive port is ignored, by setting
the priority of that port to zero.
Restoration of repaired reference sources is
handled carefully to avoid inadvertent
disturbance of the output clock. The ACS8510
has two modes of operation; Revertive and
Non-Revertive. In Revertive mode, if a re-
validated (or newly validated) source has a
higher priority than the reference source which
is currently selected, a switch over will take
place. Many applications prefer to minimise the
clock switching events and choose Non-
Revertive mode. In Non-Revertive mode , when
a re-validated (or newly validated) source has a
higher priority then the selected source will be
maintained. The re-validation of the reference
source will be flagged in the sts_sources_valid
register and, if not masked, will generate an
interrupt. Selection of the re-validated source
can only take place under software control -
the software should briefly enable Revertive
mode to affect a switch-over to the higher
priority source. If the selected source fails under
these conditions the device will indicate that it
is still locked to the failed reference. It will not
select the higher priority source until instructed
Revision 2.01/December 2005 Semtech Corp. www.semtech.com30
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Any of these registers can be subsequently set
by external s/w if required.
When external protection switching is enabled,
the device will operate as a simple switch. All
clock monitoring is disabled and the DPLL will
simply be forced to try to lock on to the
indicated reference source. The operating state
(sts_operating_mode register) will always
indicate ‘locked’ in the mode.
Activity MonitoringActivity Monitoring
Activity MonitoringActivity Monitoring
Activity Monitoring
The ACS8515 has a combined inactivity and
irregularity monitor. The ACS8515 uses a ‘leaky
bucket’ accumulator, which is a digital circuit
which mimics the operation of an analog
integrator, in which input pulses increase the
output amplitude but die away over time. Such
integrators are used when alarms have to be
triggered either by fairly regular defect events,
which occur sufficiently close together, or by
defect events which occur in bursts. Events
which are sufficiently spread out should not
trigger the alarm. By controlling the alarm-
setting threshold, the point at which the alarm
is triggered can be controlled. The point at which
Ultra Fast SwitchingUltra Fast Switching
Ultra Fast SwitchingUltra Fast Switching
Ultra Fast Switching
A reference source is normally disqualified after
the leaky bucket monitor thresholds have been
crossed. An option for a faster disqualification
has been implemented, whereby if register 48H,
bit 5 (Ultra Fast Switching), is set then a loss of
activity of just a few reference clock cycles will
set the ‘no activity alarm’ and cause a
reference switch. This can be chosen to cause
an interrupt to occur instead of, or as well as,
causing the reference switch.
External Protection SwitchingExternal Protection Switching
External Protection SwitchingExternal Protection Switching
External Protection Switching
Fast external switching between inputs SEC1
and SEC2 can also be triggered directly from a
dedicated pin (SRCSW). This mode can be
activated either by holding this pin high during
reset, or by writing to bit 4 of register address
48Hex.
Once external protection switching is enabled,
then the value of this pin directly selects either
SEC1 (SRCSW high) or SEC2 (SRCSW low). If
this mode is activated at reset by pulling the
SRCSW pin high, then it configures the default
frequency tolerance of SEC1 and SEC2 to +/-
80 ppm (register address 41Hex and 42Hex).
reference
leaky bucket
source
response
alarm
bucket_size
upper_threshold
lower_threshold
(all programmable)programmable fall slopes
inactivities/irregularities
Figure 9. Inactivity and Irregularity MonitoringFigure 9. Inactivity and Irregularity Monitoring
Figure 9. Inactivity and Irregularity MonitoringFigure 9. Inactivity and Irregularity Monitoring
Figure 9. Inactivity and Irregularity Monitoring
Revision 2.01/December 2005 Semtech Corp. www.semtech.com31
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
The time taken to raise an inactivity alarm on a reference source that has previously been fully active (leaky
bucket empty) will be:
(cnfg_activ_upper_threshold N)
8
where N is the number of the relevent leaky bucket configuration. If an input is intermittently inactive then
this time can be longer. The default setting of cnfg_activ_upper_threshold is 6, therefore the default time is
0.75 s.
The time taken to cancel the activity alarm on a previously completely inactive reference source is calculated
as:
2 x ((cnfg_bucket_size N) - (cnfg_activ_lower_threshold N))
8
where N is the number of the relevent leaky bucket configuration in each case. The default settings are shown
in the following:
2 x (8-4) = 1.0 s
8
secs
secs
(cnfg_decay_rate N)
Leaky bucket timing Leaky bucket timing
Leaky bucket timing Leaky bucket timing
Leaky bucket timing
1
the alarm is cleared depends upon the decay
rate and the alarm-clearing threshold. On the
alarm-setting side, if several events occur close
together, each event adds to the amplitude
and the alarm will be triggered quickly; if events
occur a little more spread out, but still
sufficiently close together to overcome the
decay, the alarm will be triggered eventually. If
events occur at a rate which is not sufficient to
overcome the decay, the alarm will not be
triggered. On the alarm-clearing side, if no defect
events occur for a sufficient time, the amplitude
will decay gradually and the alarm will be cleared
when the amplitude falls below the alarm-
clearing threshold. The ability to decay the
amplitude over time allows the importance of
defect events to be reduced as time passes
by. This means that, in the case of isolated
events, the alarm will not be set, whereas, once
the alarm becomes set, it will be held on until
normal operation has persisted for a suitable
time (but if the operation is still erratic, the
alarm will remain set). See Figure 9.
The ‘leaky bucket’ accumulators are
programmable for size, alarm set & reset
thresholds and decay rate. Each source is
monitored over a 128 ms period. If, within a
128 ms period, an irregularity occurs that is
not deemed to be due to allowable jitter/wander,
then the accumulator is incremented. The
accumulator will continue to increment up to
the point that it reaches the programmed
bucket size. The ‘fill rate’ of the leaky bucket
is, therefore, 8 units/second. The "leak rate"
of the leaky bucket is programmable to be in
multiples of the fill rate (x1, x0.5, x0.25 and
x0.125) to give a programmable leak rate from
8 units/sec down to 1 unit/sec. A conflict
between trying to ‘leak’ at the same time as a
‘fill’ is avoided by preventing a ‘leak’ when a
‘fill’ event occurs.
Disqualification of a non-selected reference
source is based on inactivity, or on an out of
band result from the frequency monitors. The
currently selected reference source can be
Revision 2.01/December 2005 Semtech Corp. www.semtech.com32
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
the Free-run mode, the timing and
synchronization signals generated from the
ACS8515 are based on the Master clock
frequency provided from the external oscillator
and are not synchronized to an input reference
source. The frequency of the output clock is a
fixed multiple of the frequency of the external
oscillator, and the accuracy of the output clock
is equal to the accuracy of the Master clock.
The transition from Free-run to Pre-locked
occurs when the ACS8515 selects a reference
source.
Pre-Locked ModePre-Locked Mode
Pre-Locked ModePre-Locked Mode
Pre-Locked Mode
The ACS8515 will enter the Locked state in a
maximum of 100 seconds, as defined by GR-
1244-CORE specification, if the selected
reference source is of good quality. If the device
cannot achieve lock within 100 seconds, it
reverts to Free-run mode and another reference
source is selected.
Locked ModeLocked Mode
Locked ModeLocked Mode
Locked Mode
The Locked mode is used when an input
reference source has been selected and the
PLL has had time to lock. When the Locked
mode is achieved, the output signal is in phase
and locked to the selected input reference
source. The selected input reference source is
determined by the priority table. When the
ACS8515 is in Locked mode, the output
frequency and phase follows that of the
selected input reference source. Variations of
the external crystal frequency have a minimal
effect on the output frequency. Only the
minimum to maximum frequency range is
affected. Note that the term, 'in phase', is not
applied in the conventional sense when the
ACS8515 is used as a frequency translator (e.g.,
when the input frequency is 2.048 MHz and
the output frequency is 19.44 MHz) as the input
and output cycles will be constantly moving past
each other; however, this variation will itself be
cyclical over time unless the input and output
are not locked.
disqualified for phase, frequency, inactivity or if
the source is outside the DPLL lock range. If
the currently selected reference source is
disqualified, the next highest priority, active
reference source is selected.
Restoration of repaired reference sources is
handled carefully to avoid inadvertant disruption
of the output clock. The ACS8515 operates in
a Non-Revertive mode by default. In this mode,
if the restored reference source has a higher
priority than the reference source which is
currently selected, a switch-over to the restored
source will not tale place automatically. A
restored reference source will assume its
correct place in the priority table but a switch-
over will only take place automatically upon
failure of the currently selected source. It is
possible to invoke a switch-over by external
control or by enabling Revertive mode.
Modes of OperationModes of Operation
Modes of OperationModes of Operation
Modes of Operation
The ACS8515 has three primary modes of
operation (Free-run, Locked and Holdover)
supported by three secondary, temporary
modes (Pre-Locked, Lost_Phase and Pre-
Locked2). These are shown in the State
Transition Diagram, Figure 10.
The ACS8515 can operate in Forced or
Automatic control. On reset, the ACS8515
reverts to Automatic Control, where transitions
between states are controlled completely
automatically. Forced Control can be invoked
by configuration, allowing transitions to be
performed under external control. This is not
the normal mode of operation, but is provided
for special occasions such as testing, or where
a high degree of hands-on control is required.
Free-run ModeFree-run Mode
Free-run ModeFree-run Mode
Free-run Mode
The Free-run mode is typically used following a
power-on-reset or a device reset before
network synchronization has been achieved. In
Revision 2.01/December 2005 Semtech Corp. www.semtech.com33
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Lost-Phase ModeLost-Phase Mode
Lost-Phase ModeLost-Phase Mode
Lost-Phase Mode
Lost-phase mode is entered when the current
phase error, as measured within the DPLL, is
larger than a preset limit (see register 04, bits
5:3), as a result of a frequency or phase tran-
sient on the selected reference source. This
mode is similar in behavior to the Pre-locked or
Pre-locked(2) modes, although in this mode the
DPLL is attempting to regain lock to the same
reference rather than attempt lock to a new ref-
erence. If the DPLL cannot regain lock within 100
s, the source is disqualified, and one of the fol-
lowing transitions takes place:
1. Go to Pre-Locked(2);
- If a known-good standby source is available.
2. Go to Holdover;
- If no standby sources are available.
Holdover ModeHoldover Mode
Holdover ModeHoldover Mode
Holdover Mode
The Holdover mode is used when the circuit
was in Locked mode but the selected reference
source has become unavailable and a
replacement has not yet been selected.
Holdover freezes the DPLL at the current
frequency (as reported by the
sts_curr_inc_offset register). The proportional
DPLL path is ignored so that recent signal
disturbances do not affect the Holdover
frequency value.
Pre-Locked(2) ModePre-Locked(2) Mode
Pre-Locked(2) ModePre-Locked(2) Mode
Pre-Locked(2) Mode
This state is very similar to the Pre-Locked state.
It is entered from the Holdover state when a
reference source has been selected and applied
to the phase locked loop. It is also entered if
the device is operating in Revertive mode and
a higher-priority reference source is restored.
Power On Reset - PORBPower On Reset - PORB
Power On Reset - PORBPower On Reset - PORB
Power On Reset - PORB
The Power On Reset (PORB) pin resets the
device if forced Low for a power-on-reset to be
initiated. The reset is asynchronous, the
minimum low pulse width is 5 ns. Reset is
needed to initialize all of the register values to
their defaults. Asserting Reset (POR) is required
at power on, and may be re-asserted at any
time to restore defaults. This is implemented
most simplistically by an external capacitor to
GND along with the internal pull-up resistor.
The ACS8515 is held in a reset state for 250
ms after the PORB pin has been pulled High. In
normal operation PORB should be held High.
Revision 2.01/December 2005 Semtech Corp. www.semtech.com34
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
pre-locked
wait for up to 100s
(state 110)
locked
keep ref
(state 100)
holdover
select ref
(state 010)
(2) all refs evaluated
&
at least one ref valid
(5) se lected re f
phase lock ed
(3) no valid standby ref
&
(main ref in v alid
or out of lock >100s)
(14) all refs evaluated
&
at least one ref valid
pre-locked2
wait for up to 100s
(state 101)
(10) selected source phase
locked
(6) no valid standby ref
&
ma in ref in v alid
free-run
select ref
(state 001)
(1)Reset
Referenc e sources are flagged as 'va
l
active, 'in- band' and have no phase al
a
A
ll sources are continuously checke
d
activi ty and frequency.
Only the main source is checked for
p
A
phase lock alarm is only raised on
a
ref erence when t hat reference has los
whilst being used as the main referen
c
micro-processor ca n reset the phase
alarm.
A
source is considered to have phase
when it has been continuously in pha
s
for between 1 and 2 seconds
Lost phase
wait for up to 100s
(state 111)
(7) phase lost
on main ref
(8) phase
re gained with in
100s
(12) valid standby ref
&
(main ref invalid
or out of lock >100s)
(13) no valid standby ref
&
(main re f inv al id
or out of lock >100s)
(11) no valid standby ref
&
(main re f inv al id
or out of lock >100s)
(9) valid standby ref
&
[ main ref inva lid or
(hig her-prio rity ref valid
& in re v e rtive mo de ) ]
(15) valid standby ref
&
[ main ref invalid or
(higher-priority ref valid
& in revertive mode) or
out of lock >100s]
(4) valid standby ref
&
[ main ref inva lid or
(hig her-prio rity ref valid
& in revertive mode) or
out of lock >100s]
Figure 10. Automatic Mode Control State DiagramFigure 10. Automatic Mode Control State Diagram
Figure 10. Automatic Mode Control State DiagramFigure 10. Automatic Mode Control State Diagram
Figure 10. Automatic Mode Control State Diagram
Revision 2.01/December 2005 Semtech Corp. www.semtech.com35
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Electrical Specification Electrical Specification
Electrical Specification Electrical Specification
Electrical Specification
Important NoteImportant Note
Important NoteImportant Note
Important Note: The ‘Absolute Maximum Ratings’ are stress ratings only, and functional operation
of the device at conditions other than those indicated in the ‘Operating Conditions’ sections of
this specification are not implied. Exposure to the absolute maximum ratings for an extended
period may reduce the reliability or useful lifetime of the product.
PP
P
PPRETEMARARETEMARA RETEMARA RETEMARARETEMARA SS
S
SSLOBMYLOBMY LOBMY LOBMYLOBMY MM
M
MMNININININI MM
M
MMXAXAXAXAXA UU
U
UUSTINSTIN STIN STINSTIN
ppuSegatloVyl
V
DD
V,
D
V,+
A
,+1V
A
+2 V
DD
5.0-6.3V
egatloVtupnI )snipylppus-non( niV- 5.5V
egatloVtuptuO )snipylppus-non( tuoV-5.5V
erutarepmeTgnitarepOtneibmA egnaR T
A
04-5C
erutarepmeTegarotST
rots
05-05C
Across all operating conditions, unless otherwise stated
PP
P
PPRETEMARARETEMARA RETEMARA RETEMARARETEMARA SS
S
SSLOBMYLOBMY LOBMY LOBMYLOBMY NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM STINUSTINU STINU STINUSTINU
)egatlovcd(ylppuSrewoP
VDD+2AV,+1AV,+DV,FFID_DDV, DDV0.33.36.3V
)egatlovcd(ylppuSrewoP 5DDV 5DDV0.30.5/3.35.5V
egnaRerutarepmeTtneibmAT
A
04--5C
tnerruCylppuS
tuptuozHM91eno-lacipyT w/serofebAm091-mumixaM noitasilaitniw/sretfaAm051,noitasilaitini
DDI-011051/091Am
noitapissidrewoplatoTP
TOT
-063586Wm
RETEMARAPRETEMARAP RETEMARAP RETEMARAPRETEMARAP LOBMYSLOBMYS LOBMYS LOBMYSLOBMYS NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM STINUSTINU STINU STINUSTINU
V
ni
hgiHV
hi
0.2--V
V
ni
woLV
li
-- 8.0V
tnerruCtupnII
ni
--01Aµ
Table 12. Absolute Maximum RatingsTable 12. Absolute Maximum Ratings
Table 12. Absolute Maximum RatingsTable 12. Absolute Maximum Ratings
Table 12. Absolute Maximum Ratings
Table 13. Operating ConditionsTable 13. Operating Conditions
Table 13. Operating ConditionsTable 13. Operating Conditions
Table 13. Operating Conditions
Table 14. DC Characteristics: TTL Input PadTable 14. DC Characteristics: TTL Input Pad
Table 14. DC Characteristics: TTL Input PadTable 14. DC Characteristics: TTL Input Pad
Table 14. DC Characteristics: TTL Input Pad
Revision 2.01/December 2005 Semtech Corp. www.semtech.com36
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Across all operating conditions, unless otherwise stated
Across all operating conditions, unless otherwise stated
Across all operating conditions, unless otherwise stated
RETEMARAPRETEMARAP RETEMARAP RETEMARAPRETEMARAP LOBMYSLOBMYS LOBMYS LOBMYSLOBMYS NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM STINUSTINU STINU STINUSTINU
V
ni
hgiHV
hi
0.2--V
V
ni
woLV
li
-- 8.0V
rotsiseRpu-lluPUP03-08k!
tnerruCtupnII
ni
-- 021Aµ
RETEMARAPRETEMARAP RETEMARAP RETEMARAPRETEMARAP LOBMYSLOBMYS LOBMYS LOBMYSLOBMYS NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM STINUSTINU STINU STINUSTINU
V
ni
hgiHV
hi
0.2--V
V
ni
woLV
li
-- 8.0V
rotsiseRnwod-lluPDP03-08k!
tnerruCtupnII
ni
-- 021Aµ
RETEMARAPRETEMARAP RETEMARAP RETEMARAPRETEMARAP LOBMYSLOBMYS LOBMYS LOBMYSLOBMYS NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM STINUSTINU STINU STINUSTINU
woLtuoV Am4=loI loV0- 4.0V
hgiHtuoV Am4=hoI hoV4.2- V
tnerruCevirDDI--4Am
Table 15. DC Characteristics: TTL Input Pad with Internal Pull-upTable 15. DC Characteristics: TTL Input Pad with Internal Pull-up
Table 15. DC Characteristics: TTL Input Pad with Internal Pull-upTable 15. DC Characteristics: TTL Input Pad with Internal Pull-up
Table 15. DC Characteristics: TTL Input Pad with Internal Pull-up
Table 16. DC Characteristics: TTL Input Pad with Internal Pull-downTable 16. DC Characteristics: TTL Input Pad with Internal Pull-down
Table 16. DC Characteristics: TTL Input Pad with Internal Pull-downTable 16. DC Characteristics: TTL Input Pad with Internal Pull-down
Table 16. DC Characteristics: TTL Input Pad with Internal Pull-down
Table 17. DC Characteristics: TTL Output PadTable 17. DC Characteristics: TTL Output Pad
Table 17. DC Characteristics: TTL Output PadTable 17. DC Characteristics: TTL Output Pad
Table 17. DC Characteristics: TTL Output Pad
Revision 2.01/December 2005 Semtech Corp. www.semtech.com37
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Notes for Table 18Notes for Table 18
Notes for Table 18Notes for Table 18
Notes for Table 18
Unused differential input ports should be left floating and set in LVDS mode, or the positive and negative inputs tied to
VDD and GND respectively.
Note 1. Assuming a differential input voltage of at least 100 mV.
Note 2. Unused differential input terminated to VDD-1.4 V.
Note 3. With 50 ! load on each pin to VDD-2 V . i.e. 82 ! to GND and 130 ! to VDD.
Across operating conditions, unless otherwise stated
RETEMARAPRETEMARAP RETEMARAP RETEMARAPRETEMARAP LOBMYSLOBMYS LOBMYS LOBMYSLOBMYS NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM STINUSTINU STINU STINUSTINU
egatlovwoLtupnILCEP
stupnilaitnereffiD)1etoN(
V
LCEPLI
-DDV5.2- 5.0-DDVV
egatlovhgiHtupnILCEP
stupnilaitnereffiD)1etoN(
V
LCEPHI
-DDV4.2- 4.0-DDVV
egatlovlaitnereffiDtupnIV
LCEPDI
1.0-4.1V
egatlovwoLtupnILCEP
tupnidedneelgniS)2etoN(
V
S_LCEPLI
-DDV4.2- 5.1-DDVV
egatlovhgiHtupnILCEP
tupnidedneelgniS)2etoN(
V
S_LCEPHI
1-DDV3.- 5.0-DDVV
tnerruchgiHtupnI
egatlovlaitnereffidtupnIV
DI
v4.1=
I
LCEPHI
01--01+Aµ
tnerrucwoLtupnI
egatlovlaitnereffidtupnIV
DI
v4.1=
I
LCEPLI
01--01+Aµ
egatlovwoLtuptuOLCEP
)3etoN(
V
LCEPLO
-DDV01.2- 26.1-DDVV
egatlovhgiHtuptuOLCEP
)3etoN(
V
LCEPHO
52.1-DDV-88.0-DDVV
egatlovlaitnereffiDtuptuOLCEP
)1etoN(
V
LCEPDO
085-009Vm
Table 18. DC Characteristics: PECL Input/Output PadTable 18. DC Characteristics: PECL Input/Output Pad
Table 18. DC Characteristics: PECL Input/Output PadTable 18. DC Characteristics: PECL Input/Output Pad
Table 18. DC Characteristics: PECL Input/Output Pad
Revision 2.01/December 2005 Semtech Corp. www.semtech.com38
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
130R
SEC2_POS
SEC2_NEG
SEC1_NEG
SEC1_POS
O1POS
O1NEG
ZO=50
ZO=50
ZO=50
ZO=50
82R
DD
V
82R
130R
ZO=50
ZO=50
130R
82R
82R
130R
DD
V
130R
82R
82R
130R
DD
V
GND
GND
GND
8kHz, 1.544/2.048,
6.48, 19 .44, 38.88,
51.8 4, 77.76 or
155.5 2 M H z
51.8 4, 77.76 or
155.5 2 M H z
8kHz, 1.544/2.048,
6.48, 19 .44, 38.88,
19.44, 38 .88, 155.52,
311.04 MHz & DIG1
VDD = +3.3 V
Across all operating conditions, unless otherwise stated
Note 1. With 100 ! load between the differential outputs.
Table 19. DC Characteristics: LVDS Input/Output PadTable 19. DC Characteristics: LVDS Input/Output Pad
Table 19. DC Characteristics: LVDS Input/Output PadTable 19. DC Characteristics: LVDS Input/Output Pad
Table 19. DC Characteristics: LVDS Input/Output Pad
Figure 11. Recommended Line Termination for PECL Input/Output PortsFigure 11. Recommended Line Termination for PECL Input/Output Ports
Figure 11. Recommended Line Termination for PECL Input/Output PortsFigure 11. Recommended Line Termination for PECL Input/Output Ports
Figure 11. Recommended Line Termination for PECL Input/Output Ports
RETEMARAPRETEMARAP RETEMARAP RETEMARAPRETEMARAP LOBMYSLOBMYS LOBMYS LOBMYSLOBMYS NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM STINUSTINU STINU STINUSTINU
LSDVegnaregatlovtupnI
Vm001=egatlovtupnilaitnereffiD
V
SDVLRV
0- 04.2V
dlohserhttupnilaitnereffiDSDVLV
HTID
001--001+mV
egatlovlaitnereffiDtupnISDVLV
SDVLDI
1.0-4.1V
ecnatsisernoitanimrettupnISDVL
ehtssorcayllanretxedecalpebtsuM .5158SCAfosniptupni-/+SDVL %5htiwmho001ebdluohsrotsiseR ecnarelot
R
MRET
59001501 W
egatlovhgihtuptuOSDVL
)1etoN(
V
SDVLHO
-- 585.1V
egatlovwoltuptuOSDVL
)1etoN(
V
SDVLLO
588.0--V
egatlovtuptuolaitnereffiDSDVL
)1etoN(
V
SDVLDO
052-054Vm
LSDVfoedutingamniegrahC rofegatlovtuptuolaitnereffid setatsyratnemilpmoc
)1etoN(
V
SDVLSOD
--52Vm
LSDVegatlovtesffotuptuo
C°52=erutarepmeT )1etoN(
V
SDVLSO
521.1-572.1V
Revision 2.01/December 2005 Semtech Corp. www.semtech.com39
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.
Table 20. DC Characteristics: Output Jitter Generation (Test definition G.813)Table 20. DC Characteristics: Output Jitter Generation (Test definition G.813)
Table 20. DC Characteristics: Output Jitter Generation (Test definition G.813)Table 20. DC Characteristics: Output Jitter Generation (Test definition G.813)
Table 20. DC Characteristics: Output Jitter Generation (Test definition G.813)
Across all operating conditions, unless otherwise stated
Figure 12. Recommended Line Termination for LVDS Input/Output PortsFigure 12. Recommended Line Termination for LVDS Input/Output Ports
Figure 12. Recommended Line Termination for LVDS Input/Output PortsFigure 12. Recommended Line Termination for LVDS Input/Output Ports
Figure 12. Recommended Line Termination for LVDS Input/Output Ports
SEC2_POS
SEC2_NEG
SEC1_NEG
SEC1_POS
O1POS
O1NEG
ZO=50
ZO=50
ZO=50
ZO=50
100R
ZO=50
ZO=50
8kHz, 1.544/2.048,
6.48, 19.44, 38.88,
51.84, 77.76 or
155.52 MHz
51.84, 77.76 or
155.52 MHz
8kHz, 1.544/2.048,
6.48, 19.44, 38.88,
19.44,
311.0
4
100R
100R
NOITINIFEDTSETNOITINIFEDTSET NOITINIFEDTSET NOITINIFEDTSETNOITINIFEDTSETDESURETLIFDESURETLIF DESURETLIF DESURETLIFDESURETLIFCEPSIUCEPSIU CEPSIU CEPSIUCEPSIU 5158SCANOTNEMERUSAEMIU5158SCANOTNEMERUSAEMIU 5158SCANOTNEMERUSAEMIU 5158SCANOTNEMERUSAEMIU5158SCANOTNEMERUSAEMIU 2VER2VER 2VER 2VER2VER
1noitpozHM25.551rof318.GzHM3.1otzH005IU
pp
5.0=)2etoN(850.0
1noitpozHM25.551rof318.GzHM3.1otzHk56IU
pp
1.0= )3etoN(840.0 )2etoN(840.0
2noitpozHM25.551rof318.GzHM3.1otzHk21IU
pp
1.0=
)4etoN(350.0 )5etoN(350.0
)6etoN(850.0 )7etoN(350.0
)2etoN(350.0 )3etoN(850.0
)8etoN(750.0 )9etoN(550.0
)01etoN(750.0 )11etoN(750.0
)21etoN(750.0 )31etoN(350.0
zHM840.2rof218.G&318.G 1noitpo zHk001otzH02IU
pp
50.0=)41etoN(640.0
Revision 2.01/December 2005 Semtech Corp. www.semtech.com40
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
NOITINIFEDTSETNOITINIFEDTSET NOITINIFEDTSET NOITINIFEDTSETNOITINIFEDTSETDESURETLIFDESURETLIF DESURETLIF DESURETLIFDESURETLIFCEPSIUCEPSIU CEPSIU CEPSIUCEPSIU 5158SCANOTNEMERUSAEMIU5158SCANOTNEMERUSAEMIU 5158SCANOTNEMERUSAEMIU 5158SCANOTNEMERUSAEMIU5158SCANOTNEMERUSAEMIU 2VER2VER 2VER 2VER2VER
zHM840.2rof3-264-003-STE CES zHk001otzH02IU
pp
5.0=)41etoN(640.0
zHM840.2rof3-264-003-STE CES )zHk001otzH94cepsretliF( zHk001otzH02IU
pp
2.0=)41etoN(640.0
zHM840.2rof3-264-003-STE USS zHk001otzH02IU
pp
50.0=)41etoN(640.0
zHM25.551rof3-264-003-STEzHM3.1otzH005IU
pp
5.0=)3etoN(850.0
zHM25.551rof3-264-003-STEzHM3.1otzHk56IU
pp
1.0=)3etoN(840.0
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.
Table 21. DC Characteristics: Output Jitter Generation (Test definition G.812)Table 21. DC Characteristics: Output Jitter Generation (Test definition G.812)
Table 21. DC Characteristics: Output Jitter Generation (Test definition G.812)Table 21. DC Characteristics: Output Jitter Generation (Test definition G.812)
Table 21. DC Characteristics: Output Jitter Generation (Test definition G.812)
Across all operating conditions, unless otherwise stated
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.
Table 22. DC Characteristics: Output Jitter Generation (Test definition ETS-300-462-3)Table 22. DC Characteristics: Output Jitter Generation (Test definition ETS-300-462-3)
Table 22. DC Characteristics: Output Jitter Generation (Test definition ETS-300-462-3)Table 22. DC Characteristics: Output Jitter Generation (Test definition ETS-300-462-3)
Table 22. DC Characteristics: Output Jitter Generation (Test definition ETS-300-462-3)
Across all operating conditions, unless otherwise stated
NOITINIFEDTSETNOITINIFEDTSET NOITINIFEDTSET NOITINIFEDTSETNOITINIFEDTSETDESURETLIFDESURETLIF DESURETLIF DESURETLIFDESURETLIFCEPSIUCEPSIU CEPSIU CEPSIUCEPSIU 5158SCANOTNEMERUSAEMIU5158SCANOTNEMERUSAEMIU 5158SCANOTNEMERUSAEMIU 5158SCANOTNEMERUSAEMIU5158SCANOTNEMERUSAEMIU 2VER2VER 2VER 2VER2VER
zHM445.1rof218.GzHk04otzH01IU
pp
50.0=)41etoN(630.0
lacirtcelezHM25.551rof218.GzHM3.1otzH005IU
pp
5.0=)3etoN(850.0
lacirtcelezHM840.2rof218.GzHM3.1otzHk56 IU
pp
=
570.0 )3etoN(840.0
Revision 2.01/December 2005 Semtech Corp. www.semtech.com41
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
NOITINIFEDTSETNOITINIFEDTSET NOITINIFEDTSET NOITINIFEDTSETNOITINIFEDTSETDESURETLIFDESURETLIF DESURETLIF DESURETLIFDESURETLIFCEPSIUCEPSIU CEPSIU CEPSIUCEPSIU 5158SCANOTNEMERUSAEMIU5158SCANOTNEMERUSAEMIU 5158SCANOTNEMERUSAEMIU 5158SCANOTNEMERUSAEMIU5158SCANOTNEMERUSAEMIU 2VER2VER 2VER 2VER2VER
48.15,f/itenEROC-352-RG zHM zHk004otzH001IU
pp
5.1=)3etoN(220.0
48.15,f/itenEROC-352-RG zHM )zHk004otzHk02cepsretliF( zHk004otzHk81IU
pp
51.0=)3etoN(910.0
25.551,f/itenEROC-352-RG zHM zHM3.1otzH005IU
pp
5.1=)3etoN(850.0
25.551,f/itenEROC-352-RG zHM zHM3.1otzHk56IU
pp
51.0=)3etoN(840.0
,f/itceleIItacEROC-352-RG zHM25.551 zHM3.1otzHk21 IU
pp
1.0=)3etoN(850.0
IU
smr
10.0=)3etoN(600.0
,f/itceleIItacEROC-352-RG zHM48.15 zHk004otzHk21 IU
pp
1.0=)3etoN(710.0
IU
smr
10.0=)3etoN(300.0
445.1,f/i1SDEROC-352-RG zHM zHk04otzH01 IU
pp
1.0=)41etoN(630.0
IU
smr
10.0=)41etoN(5500.0
NOITINIFEDTSETNOITINIFEDTSET NOITINIFEDTSET NOITINIFEDTSETNOITINIFEDTSETDESURETLIFDESURETLIF DESURETLIF DESURETLIFDESURETLIFCEPSIUCEPSIU CEPSIU CEPSIUCEPSIU 5158SCANOTNEMERUSAEMIU5158SCANOTNEMERUSAEMIU 5158SCANOTNEMERUSAEMIU 5158SCANOTNEMERUSAEMIU5158SCANOTNEMERUSAEMIU 2VER2VER 2VER 2VER2VER
zHM445.1rof11426T&TA )zHk8otzH01cepsretliF( zHk04otzH01IU
smr
20.0=)41etoN(5500.0
zHM445.1rof11426T&TAzHk04otzH01 IU
smr
=
520.0 )41etoN(5500.0
zHM445.1rof11426T&TAzHk04otzH01 IU
smr
=
520.0 )41etoN(5500.0
zHM445.1rof11426T&TAdnabdaorBIU
smr
50.0=)41etoN(5500.0
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.
Table 23. DC Characteristics: Output Jitter Generation (Test definition GR-253-CORE)Table 23. DC Characteristics: Output Jitter Generation (Test definition GR-253-CORE)
Table 23. DC Characteristics: Output Jitter Generation (Test definition GR-253-CORE)Table 23. DC Characteristics: Output Jitter Generation (Test definition GR-253-CORE)
Table 23. DC Characteristics: Output Jitter Generation (Test definition GR-253-CORE)
Across all operating conditions, unless otherwise stated
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.
Table 24. DC Characteristics: Output Jitter Generation (Test definition AT&T 62411)Table 24. DC Characteristics: Output Jitter Generation (Test definition AT&T 62411)
Table 24. DC Characteristics: Output Jitter Generation (Test definition AT&T 62411)Table 24. DC Characteristics: Output Jitter Generation (Test definition AT&T 62411)
Table 24. DC Characteristics: Output Jitter Generation (Test definition AT&T 62411)
Across all operating conditions, unless otherwise stated
Revision 2.01/December 2005 Semtech Corp. www.semtech.com42
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
NOITINIFEDTSETNOITINIFEDTSET NOITINIFEDTSET NOITINIFEDTSETNOITINIFEDTSETDESURETLIFDESURETLIF DESURETLIF DESURETLIFDESURETLIFCEPSIUCEPSIU CEPSIU CEPSIUCEPSIU 5158SCANOTNEMERUSAEMIU5158SCANOTNEMERUSAEMIU 5158SCANOTNEMERUSAEMIU 5158SCANOTNEMERUSAEMIU5158SCANOTNEMERUSAEMIU 2VER2VER 2VER 2VER2VER
zHM445.1rofEROC-4421-RGzH01>IU
pp
50.0=)41etoN(630.0
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.
Table 25. DC Characteristics: Output Jitter Generation (Test definition G.742)Table 25. DC Characteristics: Output Jitter Generation (Test definition G.742)
Table 25. DC Characteristics: Output Jitter Generation (Test definition G.742)Table 25. DC Characteristics: Output Jitter Generation (Test definition G.742)
Table 25. DC Characteristics: Output Jitter Generation (Test definition G.742)
Across all operating conditions, unless otherwise stated
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.
Table 26. DC Characteristics: Output Jitter Generation (Test definition TR-NWT-000499)Table 26. DC Characteristics: Output Jitter Generation (Test definition TR-NWT-000499)
Table 26. DC Characteristics: Output Jitter Generation (Test definition TR-NWT-000499)Table 26. DC Characteristics: Output Jitter Generation (Test definition TR-NWT-000499)
Table 26. DC Characteristics: Output Jitter Generation (Test definition TR-NWT-000499)
Across all operating conditions, unless otherwise stated
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.
Table 27. DC Characteristics: Output Jitter Generation (Test definition GR-1244-CORE)Table 27. DC Characteristics: Output Jitter Generation (Test definition GR-1244-CORE)
Table 27. DC Characteristics: Output Jitter Generation (Test definition GR-1244-CORE)Table 27. DC Characteristics: Output Jitter Generation (Test definition GR-1244-CORE)
Table 27. DC Characteristics: Output Jitter Generation (Test definition GR-1244-CORE)
Across all operating conditions, unless otherwise stated
NOITINIFEDTSETNOITINIFEDTSET NOITINIFEDTSET NOITINIFEDTSETNOITINIFEDTSETDESURETLIFDESURETLIF DESURETLIF DESURETLIFDESURETLIFCEPSIUCEPSIU CEPSIU CEPSIUCEPSIU 5158SCANOTNEMERUSAEMIU5158SCANOTNEMERUSAEMIU 5158SCANOTNEMERUSAEMIU 5158SCANOTNEMERUSAEMIU5158SCANOTNEMERUSAEMIU 2VER2VER 2VER 2VER2VER
zHM840.2rof247.GzHk001otCDIU
pp
52.0=)41etoN(740.0
zHM840.2rof247.G )zHk001otzHk81cepsretliF( zHk001otzH02IU
pp
50.0=)41etoN(640.0
zHM840.2rof247.GzHk001otzH02IU
pp
50.0=)41etoN(640.0
NOITINIFEDTSETNOITINIFEDTSET NOITINIFEDTSET NOITINIFEDTSETNOITINIFEDTSETDESURETLIFDESURETLIF DESURETLIF DESURETLIFDESURETLIFCEPSIUCEPSIU CEPSIU CEPSIUCEPSIU 5158SCANOTNEMERUSAEMIU5158SCANOTNEMERUSAEMIU 5158SCANOTNEMERUSAEMIU 5158SCANOTNEMERUSAEMIU5158SCANOTNEMERUSAEMIU 2VER2VER 2VER 2VER2VER
rof428.G&994000-TWN-RT zHM445.1 zHk04otzH01IU
pp
0.5=)41etoN(630.0
rof428.G&994000-TWN-RT zHM445.1 )zHk04otzHk8cepsretliF( zHk04otzH01IU
pp
1.0=)41etoN(630.0
Revision 2.01/December 2005 Semtech Corp. www.semtech.com43
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
(Multiples have the
E1
< ± 0.5 ns311.04 MHz
< ± 1 ns
+2.0 to +4. 0 ns
+6.0 to +8. 0 ns
+3.0 to +4. 5 ns
+3.0 to +5.0 ns
+2.5 to +4. 5 ns
+3.0 to +5. 0 ns
155.52 MHz
77.76 MHz
51.84 MHz
38.88 MHz
19.44 MHz
25.92 MHz
6.48 MHz
for this outpu t)
(Additional delay
same offset)
+3.5 to +5. 5 ns
+3.5 to +5. 5 ns
< ±1 n s
Alignment
Phase
T1
8 kHz
2 kHz
Output
same offset)
(Multiples have the
8 kHz input
8 kHz outp ut
6.48 MHz input
6.48 MHz output
19.44 MHz input
19.44 MHz output
25.92 MHz input
25.92 MHz output
38.88 MHz input
38.88 MHz output
51.84 MHz input
51.84 MHz output
77.76 MHz input
77.76 MHz output
Input/Output Delay
± 1.5 ns
+6.5 to +8.5 ns
+5.5 to +7.5 ns
+6.5 to +8.5 ns
+4.0 to +6.0 ns
+6.0 to +8.0 ns
+5.5 to +7.5 ns
Typical
Typical
Figure 13. Input/Output TimingFigure 13. Input/Output Timing
Figure 13. Input/Output TimingFigure 13. Input/Output Timing
Figure 13. Input/Output Timing
Notes for tables 20 - 227Notes for tables 20 - 227
Notes for tables 20 - 227Notes for tables 20 - 227
Notes for tables 20 - 227
Note 1. Filter used is that defined by test definition unless otherwise stated
Note 2. 5 Hz bandwidth, 19.44 MHz input, direct lock
Note 3. 5 Hz bandwidth, 19.44 MHz input, 8 kHz lock
Note 4. 20 Hz bandwidth, 19.44 MHz input, direct lock
Note 5. 20 Hz bandwidth, 19.44 MHz input, 8 kHz lock
Note 6. 10 Hz bandwidth, 19.44 MHz input, direct lock
Note 7. 10 Hz bandwidth, 19.44 MHz input, 8 kHz lock
Note 8. 2.5 Hz bandwidth, 19.44 MHz input, direct lock
Note 9. 2.5 Hz bandwidth, 19.44 MHz input, 8 kHz lock
Note 10. 1.2 Hz bandwidth, 19.44 MHz input, direct lock
Note 11. 1.2 Hz bandwidth, 19.44 MHz input, 8 kHz lock
Note 12. 0.6 Hz bandwidth, 19.44 MHz input, direct lock
Note 13. 0.6 Hz bandwidth, 19.44 MHz input, 8 kHz lock
Note 14. 5 Hz bandwidth, 2.048 MHz input, 8 kHz lock
Revision 2.01/December 2005 Semtech Corp. www.semtech.com44
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
The device has a Serial microprocessor interface. The combined minimum High and Low times for SCLK define
the maximum clock rate.
For Write access this is 2.77 MHz (360 ns). For Read access the maximum SCLK rate is slightly slower and is
affected by the setting of CLKE, being either 2.0 MHz (500 ns) or 1 MHz (1 us).
This mismatch in rates is caused by the sampling technique used to detect the end of the address field in Read
mode. It takes up to 3 cycles of an internal 6.40 MHz clock to start the Read process following receipt of the final
address bit. This is 468 ns. The Read data is then decoded and clocked out onto SDO directly using SCLK. With
CLKE=1, the falling edge of SCLK is used to clock out the SDO. With CLKE=0, the rising edge of SCLK is used to clock
out the SDO.
A minimum period of 500 ns (468 capture plus 32 decode) is required between the final address bit and clocking
it out onto SDO. This means that to guarantee the correct operation of the Serial interface, with CLKE=0, SCLK has
a maximum clock rate of 2 MHz. With CLKE=1, SCLK has a maximum clock rate of 1 MHz.
SCLK is not required to run between accesses (i.e., when CSB = 1). The following Figures show the timing
diagrams for Write and Read access for this mode.
Microprocessor Interface Timing Microprocessor Interface Timing
Microprocessor Interface Timing Microprocessor Interface Timing
Microprocessor Interface Timing
Figure 14. Read Access TimingFigure 14. Read Access Timing
Figure 14. Read Access TimingFigure 14. Read Access Timing
Figure 14. Read Access Timing
F8525D_013ReadAccSerial_01
SCLK
CSB
CLKE = 0; SDO data is clocked out on the rising edge of SCLK
CLKE = 1; SDO data is clocked out on the falling edge of SCLK
R/W
Output not driven, pulled low by internal resistor
SDI
SDO
t
su2
t
su1
t
h1
t
pw1
t
pw2
_
A0 A1 A2 A3 A4 A5 A6
D0 D1 D2 D3 D4 D5 D6 D7
t
h2
t
d2
t
d1
SCLK
CSB
R/W
Output not driven, pulled low by internal resistor
SDI
SDO
_
A0 A1 A2 A3 A4 A5 A6
D0 D1 D2 D3 D4 D5 D6 D7
t
h2
t
d2
t
d1
Revision 2.01/December 2005 Semtech Corp. www.semtech.com45
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
lobmySlobmyS lobmyS lobmySlobmyS retemaraPretemaraP retemaraP retemaraPretemaraP NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM
t
1us
KLCSotdilavIDSputeS
egdegnisir
0sn- -
t
2us
BSCputeS
egdegnillaf
KLCSot
egdegnisir
sn061--
t
1wp
emitwolKLCS sn081--
t
2wp
emithgihKLCS sn081--
t
1h
KLCSretfadilavIDSdloH
egdegnisir
sn071--
t
2h
KLCSretfawolBSCdloH
egdegnisir
sn5--
t
p
BSC(sesseccaevitucesnocneewtebemiT
egdegnisir
BSCot
egdegnillaf
)sn061--
lobmySlobmyS lobmyS lobmySlobmyS retemaraPretemaraP retemaraP retemaraPretemaraP NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM
t
1us
KLCSotdilavIDSputeS
egdegnisir
0sn- -
t
2us
BSCputeS
egdegnillaf
KLCSot
egdegnisir
sn061--
t
1d
KLCSyaleD
egdegnisir
KLCS(
egdegnillaf
dilavODSot)1=EKLCrof--sn71
t
2d
BSCyaleD
egdegnisir
Z-hgihODSot--sn01
t
1wp
emitwolKLCS 0=EKLC 1=EKLC sn052 sn005 --
t
2wp
emithgihKLCS 0=EKLC 1=EKLC sn052 sn005 --
t
1h
KLCSretfadilavIDSdloH
egdegnisir
sn071--
t
2h
KLCSretfawolBSCdloH
egdegnisir
0=EKLCrof,
KLCSretfawolBSCdloH
egdegnillaf
1=EKLCrof, sn5--
t
p
BSC(sesseccaevitucesnocneewtebemiT
egdegnisir
BSCot
egdegnillaf
)sn061--
Figure 15. Write Access TimingFigure 15. Write Access Timing
Figure 15. Write Access TimingFigure 15. Write Access Timing
Figure 15. Write Access Timing
Table 29. Write Access TimingTable 29. Write Access Timing
Table 29. Write Access TimingTable 29. Write Access Timing
Table 29. Write Access Timing
Table 28. Read Access TimingTable 28. Read Access Timing
Table 28. Read Access TimingTable 28. Read Access Timing
Table 28. Read Access Timing
SCLK
CSB
R/W
Output not driven, pulled low by internal resistor
SDI
SDO
tsu2
tsu1 th1 tpw1
tpw2
_A0 A1 A2 A3 A4 A5 A6
th2
D0 D1 D2 D3 D4 D5 D6 D7
F8525D_014WriteAccSerial_01
Revision 2.01/December 2005 Semtech Corp. www.semtech.com46
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Package Information Package Information
Package Information Package Information
Package Information
E
D
AA2
A1 b
e
b1
b
c
L
L1
AN2
S
AN1
AA
Seating plane
1
2
3
4
5
6
D1
E1
1
1
2
3
7
7
7
Notes
1
2
3
4
5
6
7
8
R1
B
The top package body may be smaller than the bottom package body by as much as 0.15 mm.
To be determined at seating plane.
Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side.
D1 and E1 are maximum plastic body size dimensions including mold mismatch.
Details of pin 1 identifier are optional but will be located within the zone indicated.
Exact shape of corners can vary.
A1 is defined as the distance from the seating plane to the lo west point of the packa ge body.
These dimensions appl
y
to the flat sec tion of the lead between 0.10 mm and 0. 25 mm from the lead
Shows plating.
123
Figure 16. LQFP PackageFigure 16. LQFP Package
Figure 16. LQFP PackageFigure 16. LQFP Package
Figure 16. LQFP Package
Revision 2.01/December 2005 Semtech Corp. www.semtech.com47
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Thermal ConditionsThermal Conditions
Thermal ConditionsThermal Conditions
Thermal Conditions
The device is rated for full temperature range when this package is used with a 4 layer or more
PCB. Copper coverage must exceed 50%. All pins must be soldered to the PCB. Maximum
operating temperature must be reduced when the device is used with a PCB with less than these
requirements.
PFQL46PFQL46 PFQL46 PFQL46PFQL46 egakcaPegakcaP egakcaP egakcaPegakcaP
snoisnemiDsnoisnemiD snoisnemiD snoisnemiDsnoisnemiD mmnimmni mmni mmnimmni
E/DE/D E/D E/DE/D1E/1D1E/1D 1E/1D 1E/1D1E/1DAA
A
AA1A1A1A1A1A2A2A2A2A2Aee
e
ee1NA1NA 1NA 1NA1NA2NA2NA 2NA 2NA2NA3NA3NA 3NA 3NA3NA4NA4NA 4NA 4NA4NA1R1R1R1R1R2R2R2R2R2RLL
L
LL1L1L1L1L1LSS
S
SSbb
b
bb1b1b1b1b1bcc
c
cc1c1c1c1c1c
niM04.150.053.11080.080.054.002.071.071.090.090.0
moN00.2100.0105.101.004.105.221- °5.3--06.0 00.1 )fer( -22.002.0--
xaM06.151.054.331-°7- 02.057.0-72.032.002.061.0
Figure 17. Typical 64 Pin LQFP FootprintFigure 17. Typical 64 Pin LQFP Footprint
Figure 17. Typical 64 Pin LQFP FootprintFigure 17. Typical 64 Pin LQFP Footprint
Figure 17. Typical 64 Pin LQFP Footprint
10.6 mm
13.0 mm (1)
14.3 mm
Pitch 0.5 mm
Width 0.3 mm
1.85 mm
Notes
(1) Solderable to this limit.
Square package - dimensions apply in both X and Y directions.
Typical example - the user is responsible for ensuring compatibility with PCB manufacturing process, etc.
Table 30. 64 Pin LQFP Package Dimension Data (for use with Figure 16)Table 30. 64 Pin LQFP Package Dimension Data (for use with Figure 16)
Table 30. 64 Pin LQFP Package Dimension Data (for use with Figure 16)Table 30. 64 Pin LQFP Package Dimension Data (for use with Figure 16)
Table 30. 64 Pin LQFP Package Dimension Data (for use with Figure 16)
Revision 2.01/December 2005 Semtech Corp. www.semtech.com48
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Application Information Application Information
Application Information Application Information
Application Information
Figure 18. Simplified Application SchematicFigure 18. Simplified Application Schematic
Figure 18. Simplified Application SchematicFigure 18. Simplified Application Schematic
Figure 18. Simplified Application Schematic
Revision 2.01/December 2005 Semtech Corp. www.semtech.com49
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Appendix A Rev2.1 Changes Described Appendix A Rev2.1 Changes Described
Appendix A Rev2.1 Changes Described Appendix A Rev2.1 Changes Described
Appendix A Rev2.1 Changes Described
SummarySummary
SummarySummary
Summary
This section summarizes the minor changes and improvements made to the ACS8515 from Rev2.0 to Rev2.1.
The bulk of these changes are designed to remove the need for software work arounds associated with Phase
Build Out.
Two new features have been added, necessitating changes to the control software. These are described in detail
below.
Input Edge Alignment for 8k locking modeInput Edge Alignment for 8k locking mode
Input Edge Alignment for 8k locking modeInput Edge Alignment for 8k locking mode
Input Edge Alignment for 8k locking mode
An additional bit in the register cnfg_control1 (Bit 2) has been allocated to select which edge of the input
reference to lock to when the device is configured in 8k locking mode.
This bit, when set to one ensures that the rising edge of the output clock phase locks to the rising edge of the
input clock, when 8k locking mode is used on the input.
Low Jitter n x E1/DS1 ModeLow Jitter n x E1/DS1 Mode
Low Jitter n x E1/DS1 ModeLow Jitter n x E1/DS1 Mode
Low Jitter n x E1/DS1 Mode
A second bit of the cnfg_control1 register has been allocated to controlling what frequency is fed into the APLL.
This allows the user to switch from the normal 77.76MHz to twice the dig2 output frequency.
This has the effect of replacing the normal OC/STM outputs with multiples of the E1 or DS1 rate. The E1/DS1
choice is controlled by the SONET/SDH bit in the cnfg_mode register.
Revision History Revision History
Revision History Revision History
Revision History
Table 31. Table 31.
Table 31. Table 31.
Table 31. Changes from Revision 1.05 to 2.00 September 2003.
Item Section Page Description
1Non-Revertive
Mode 29 Updated N on-Revertive mode description
Revision 2.01/December 2005 Semtech Corp. www.semtech.com50
ACS8515 Rev2.1 LC/P
ADVANCED COMMUNICATIONS FINAL
Ordering Information Ordering Information
Ordering Information Ordering Information
Ordering Information
DisclaimersDisclaimers
DisclaimersDisclaimers
Disclaimers
Life support - This product is not designed or intended for use in life suport equipment, devices or systems, or
other critical applications. This product is not authorized or warranted by Semtech Corporation for such use.
Right to change - Semtech Corporation reserves the right to make changes, without notice, to this product.
Customers are advised to obtain the latest version of the relevant information before placing orders.
Compliance to relevant standards - Operation of this device is subject to the user’s implementation, and design
practices. The user is responsible to ensure equipment using this device is compliant to any relevant standards.
REBMUNTRAPREBMUNTRAP REBMUNTRAP REBMUNTRAPREBMUNTRAP NOITPIRCSEDNOITPIRCSED NOITPIRCSED NOITPIRCSEDNOITPIRCSED
1.2veR5158SCA PFQLnip46,noitcetorPdraCeniLHDS/TENOS
T1.2veR5158SCA 1.2ver5158SCAfonoisrevegakcapeerf-)bP(daeL
ISO9001
CERTIFIED
For additional information, contact the following:
Semtech Corporation Advanced Communications ProductsSemtech Corporation Advanced Communications Products
Semtech Corporation Advanced Communications ProductsSemtech Corporation Advanced Communications Products
Semtech Corporation Advanced Communications Products
E-Mail: sales@semtech.com acsupport@semtech.com
Internet: http://www.semtech.com
USA: 20 0 F lynn Road, Camarillo, CA 93012-8790
Tel: +1 805 498 2111, Fax: +1 805 498 3804
FAR EAST: 11F, No. 46, Lane 11, Kuang Fu North Road, Taipei, Taiwan, R.O.C.
Tel: +886 2 2748 3380, Fax: +886 2 2748 3390
EUROPE: Units 2 & 3 Park Court, Premier Way, Abbey Park Industrial Estate,
Romsey, Hampshire, SO51 9DN, UK
Tel: +44 1794 527 600, Fax: +44 1794 527 601