QUAD D-TYPE FLIP-FLOP WITH RESET; POSITIVE-EDGE TRIGGER #### **FEATURES** - Four edge-triggered D flip-flops - Output capability: standard - I_{CC} category: MSI ## **GENERAL DESCRIPTION** The 74HC/HCT175 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT175 have four edgetriggered, D-type flip-flops with individual D inputs and both Q and Q outputs. The common clock (CP) and master reset (MR) inputs load and reset (clear) all flip-flops simultaneously. The state of each D input, one set-up time before the LOW-to-HIGH clock transition, is transferred to the corresponding output (Qn) of the flip-flop. All Qn outputs will be forced LOW independently of clock or data inputs by a LOW voltage level on the MR input. The device is useful for applications where both the true and complement outputs are required and the clock and master reset are common to all storage elements. | SYMBOL | DAD AMETED | CONDITIONS | TYF | UNIT | | |---|---|------------------------|----------|----------|----------| | | PARAMETER | CONDITIONS | нс нст | | UNIT | | ^t PHL | propagation delay
<u>CP</u> to Q _n , Q _n
MR to Q _n | C _L = 15 pF | 17
15 | 16
19 | ns
ns | | propagation delay CP to $\Omega_{n}, \overline{\Omega}_{n}$ MR to $\overline{\Omega}_{n}$ | | V _{CC} = 5 ∨ | 17
15 | 16
16 | ns
ns | | f _{max} | maximum clock frequency | 1 | 83 | 54 | MHz | | CI | input capacitance | | 3.5 | 3.5 | рF | | C _{PD} | power dissipation
capacitance per flip-flop | notes 1 and 2 | 32 | 34 | рF | GND = 0 V; $T_{amb} = 25$ °C; $t_r = t_f = 6$ ns #### Notes 1. CPD is used to determine the dynamic power dissipation (PD in μ W): $$P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_0)$$ where: fi = input frequency in MHz fo = output frequency in MHz CL = output load capacitance in pF VCC = supply voltage in V Σ (C_L x V_{CC}² x f_O) = sum of outputs 2. For HC the condition is V₁ = GND to V_{CC} For HCT the condition is V₁ = GND to V_{CC} - 1.5 V ### **PACKAGE OUTLINES** 16-lead DIL; plastic (SOT38Z). 16-lead mini-pack; plastic (SO16; SOT109A). ### PIN DESCRIPTION | PIN NO. | SYMBOL | NAME AND FUNCTION | | | | | | |--------------|--|---|--|--|--|--|--| | 1 | MR | master reset input (active LOW) | | | | | | | 2, 7, 10, 15 | Q ₀ to Q ₃ | flip-flop outputs | | | | | | | 3, 6, 11, 14 | $\overline{\Omega}_0$ to $\overline{\Omega}_3$ | complementary flip-flop outputs | | | | | | | 4, 5, 12, 13 | D ₀ to D ₃ | data inputs | | | | | | | 8 | GND | ground (0 V) | | | | | | | 9 | CP | clock input (LOW-to-HIGH, edge-triggered) | | | | | | | 16 | VCC | positive supply voltage | | | | | | # **FUNCTION TABLE** | OPERATING MODES | | INPUTS | OUTPUTS | | | |-----------------|----|----------|---------|----|----| | OPERATING MODES | MR | СР | Dn | an | ān | | reset (clear) | L | x | х | L | Н | | load "1" | Н | † | h | # | L | | load,"0" | н | 1 | I | L | H | H = HIGH voltage level h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition L = LOW voltage level = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition = LOW-to-HIGH CP transition X = don't care #### DC CHARACTERISTICS FOR 74HC For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications". Output capability: standard †CC category: MSI #### **AC CHARACTERISTICS FOR 74HC** $GND = 0 V; t_f = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}$ | SYMBOL | | T _{amb} (°C) | | | | | | | | TEST CONDITIONS | | |---|--|-----------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|------|-------------------|-----------| | | PARAMETER | 74HC | | | | | | | UNIT | Vaa | WAVEFORMS | | | | +25 | | | 40 to +85 | | -40 to +125 | | UNIT | V _{CC} | WATER | | | | min. | typ. | max. | min. | max. | min. | max. | | | | | t _{PHL} / | propagation delay CP to Q_n , \overline{Q}_n | | 55
20
16 | 175
35
30 | | 220
44
37 | | 265
53
45 | ns | 2.0
4.5
6.0 | Fig. 6 | | ^t PHL [/]
^t PLH | propagation delay
MR to O _n , Ō _n | | 50
18
14 | 150
30
26 | | 190
38
33 | | 225
45
38 | ns | 2.0
4.5
6.0 | Fig. 8 | | ^t THL [/]
^t TLH | output transition time | | 19
7
6 | 75
15
13 | | 95
19
16 | | 110
22
19 | ns | 2.0
4.5
6.0 | Fig. 6 | | tW | clock pulse width
HIGH or LOW | 80
16
14 | 22
8
6 | | 100
20
17 | | 120
24
20 | | ns | 2.0
4.5
6.0 | Fig. 6 | | tw | master reset pulse width
LOW | 80
16
14 | 19
7
6 | | 100
20
17 | | 120
24
20 | | ns | 2.0
4.5
6.0 | Fig. 8 | | t _{rem} | removal time
MR to CP | 5
5
5 | -33
-12
-10 | | 5
5
5 | | 5
5
5 | | ns | 2.0
4.5
6.0 | Fig. 8 | | t _{SU} | set-up time
D _n to CP | 80
16
14 | 3 1 1 | | 100
20
17 | | 120
24
20 | | ns | 2.0
4.5
6.0 | Fig. 7 | | t _h | hold time
CP to D _n | 25
5
4 | 2
0
0 | | 30
6
5 | | 40
8
7 | | ns | 2.0
4.5
6.0 | Fig. 7 | | f _{max} | maximum clock pulse frequency | 6.0
30
35 | 25
75
89 | | 4.8
24
28 | | 4.0
20
24 | | MHz | 2.0
4.5
6.0 | Fig. 6 | #### DC CHARACTERISTICS FOR 74HCT For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications". Output capability: standard I_{CC} category: MSI ## Note to HCT types The value of additional quiescent supply current ($\triangle I_{CC}$) for a unit load of 1 is given in the family specifications. To determine $\triangle I_{CC}$ per input, multiply this value by the unit load coefficient shown in the table below. | INPUT | UNIT LOAD
COEFFICIENT | |----------------|--------------------------| | MR | 1.00 | | CP | 0.60 | | D _n | 0.40 | ### **AC CHARACTERISTICS FOR 74HCT** GND = 0 V; $t_f = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$ | SYMBOL | PARAMETER | T _{amb} (°C) 74HCT | | | | | | | UNIT | TEST CONDITIONS | | |---|--|-----------------------------|------|------|------------|------|-------------|------|------|-----------------|------------| | | | | | | | | | | | | WAN/FEODMS | | | | +25 | | | -40 to +85 | | -40 to +125 | | ONII | V _{CC} | WAVEFORMS | | | | min. | typ. | max. | min. | max. | min. | max. | | | | | t _{PHL} /
t _{PLH} | propagation delay CP to $\mathbf{Q}_{\mathbf{n}}$, $\overline{\mathbf{Q}}_{\mathbf{n}}$ | | 19 | 33 | | 41 | | 50 | ns | 4.5 | Fig. 6 | | ^t PHL | propagation delay
MR to Q _n | | 22 | 38 | | 48 | | 57 | ns | 4.5 | Fig. 8 | | ^t PLH | propagation delay \overline{MR} to \overline{Q}_n | | 19 | 35 | | 44 | | 53 | ns | 4.5 | Fig. 8 | | ^t THL [/]
^t TLH | output transition time | | 7 | 15 | | 19 | | 22 | ns | 4.5 | Fig. 6 | | t₩ | clock pulse width
HIGH or LOW | 20 | 12 | | 25 | | 30 | | ns | 4.5 | Fig. 6 | | ^t w | master reset pulse width
LOW | 20 | 11 | | 25 | | 30 | | ns | 4.5 | Fig. 8 | | t _{rem} | removal time
MR to CP | 5 | -10 | | 5 | | 5 | | ns | 4.5 | Fig. 8 | | t _{su} | set-up time
D _n to CP | 16 | 5 | | 20 | | 24 | | ns | 4.5 | Fig. 7 | | t _h | hold time
CP to D _n | 5 | 0 | | 5 | | 5 | | ns | 4.5 | Fig. 7 | | f _{max} | maximum clock pulse frequency | 25 | 49 | | 20 | | 17 | | MHz | 4.5 | Fig. 6 | 384 January 1986 #### **AC WAVEFORMS** Fig. 6 Waveforms showing the clock (CP) to outputs $(\Omega_n, \overline{\Omega}_n)$ propagation delays, the clock pulse width, output transition times and the maximum clock pulse frequency. Fig. 7 Waveforms showing the data set-up and hold times for the data input $(D_{\mbox{\scriptsize n}})$. # Note to Fig. 7 The shaded areas indicate when the input is permitted to change for predictable output performance. Fig. 8 Waveforms showing the master reset (\overline{MR}) pulse width, the master reset to outputs (Q_n, \overline{Q}_n) propagation delays and the master reset to clock (CP) removal time. # Note to AC waveforms (1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} . HCT: $V_M = 1.3 \text{ V}$; $V_I = GND$ to 3 V.