Datasheet, V2.10a, 25 Mar 2014
CoolSET-F2
ICE2A0565/165/265/365
ICE2B0565/165/265/365
ICE2A0565G
ICE2A0565Z
ICE2A180Z/280Z
ICE2A765I/2B765I
ICE2A765P2/2B765P2
ICE2A380P2
Off-Line SMPS Current Mode
Controller with integrated 650V/
800V CoolMOS
PMM Power Management
&Multimarket
Edition 2014-3-25
Published by
Infineon Technologies AG,
81726 Munich, Germany,
© 2014 Infineon Technologies AG.
All Rights Reserved.
Legal disclaimer
The information given in this docu ment shall in no event be regarded as a guarantee of conditions or
characteristics. With respe ct to any examples or hints given herein, any typical values state d herein and/or any
information regarding the application of the device, Infineon Technologies her eby disclaims any and all warranties
and liabilities of an y kind, including without lim itation, warranties of non-infringement of intellec tual property rights
of any third party.
Information
For further inf or m at io n on t echnology, de liv e ry terms and conditions and prices, please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may conta in dangerous substances. For information on the types in
question, please c ontact your nearest Infineon Technologies Office.
Infineon Technologies Component s may be used in life-suppo rt devices or sy stems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system o r to a ffect the safety or effectiveness of that device o r s ys te m. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is rea sonable to as sum e that the health of th e user or o ther pers ons may
be endangered.
For questions on technolog y, delivery and prices please contact the Infin eon Technologies Offic es in Germany or
the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://
www.infineon.com.
CoolMOS™, CoolSET™ are trademarks of Infineon Technologies AG.
CoolSET™-F2
Revision History: 2014-3-25 Datasheet
Previous Version: 2.10
Page Subjects (major changes since last revision)
4, 22, 24 revised typo
Version 2.10a 3 25 Mar 2014
CoolSET™-F2
P-TO220-6-46
P-TO220-6-47
PG-TO220-6-47PG-TO220-6-46
P-DIP-8-4, -6
P-DIP-7-1
PG-DIP-7-1
PG-DIP-8
PG-DSO-16/12
Product Highlights
Best in class in DIP8, DIP7, TO220 and DSO16/12
packages
No heat-sink required for DIP8, DIP7 and DSO16/12
Increased creepage distance for TO220, DIP7 and
DSO16/12
Isolated drain for TO220 packages
Lowest standby power dissipation
Enhanced protection functions with
Auto Restart Mode
Pb-free plating, halogen free mold compound
C
Soft Start
C
VCC
R
Start-up
VCC
-
Converter
DC Output
+
CoolSET™-F2
Snubber
Power
Management
Protection Unit
Soft-Start Control PWM Controller
Current Mode
FB
85 ... 270 VAC
Drain
Feedback
Feedback
Typical Application
CoolMOS™
PWM-Controller
Low Power
StandBy
Precise Low Tolerance
Peak Current Limitation
R
Sense
Isense
GND
SoftS
Description
The second generation CoolSET™-F2 provides several
special enhancements to satisfy the needs for low power
standby and protection features. In standby mode
frequency reduction is used to lower the power
consumption and support a stable output voltage in this
mode. The frequency reduction is limited to 20kHz/21.5
kHz to avoid audible noise. In case of failure modes like
open loop, overvoltage or overload due to short circuit the
device switches in Auto Restart Mode which is controlled by
the internal protection unit. By means of the internal precise
peak current limitation, the dimension of the transformer
and the secondary d iode can be sized lower which leads to
more cost effective for the overall system.
Off-Line SMPS Current Mode Controller
with integrated 650V/800V CoolMOS™
Features
650V/800V avalanche rugged CoolMOS™
Only few external components required
Input Vcc Undervoltage Lockout
67kHz/100kHz s witching frequency
Max duty cycle 72%
Low Power Standby Mode to meet
European Commission Requirements
Thermal Shut Down with Auto Restart
Overload and Open Loop Protec tion
Overvoltage Protection during Auto Restart
Adjustable Peak Current Limitation via
external resistor
Overall tolerance of Current Limiting < ±5%
Internal Leading Edge Blanking
User defined Soft Start
Soft driving for low EMI
Version 2.10a 425 Mar 2014
CoolSET™-F2
Overview
Type Package VDS FOSC RDSon1)
1) typ @ T=25°C
230VAC ±15%2)
2) Maximum power rating at Ta=75°C, Tj=125°C and with copper area on PCB = 6cm2
85-265 VAC2)
ICE2A0565 PG-DIP-8 650V 100kHz 4.723W 13W
ICE2A165 PG-DIP-8 650V 100kHz 3.031W 18W
ICE2A265 PG-DIP-8 650V 100kHz 0.952W 32W
ICE2A365 PG-DIP-8 650V 100kHz 0.4567W 45W
ICE2B0565 PG-DIP-8 650V 67kHz 4.723W 13W
ICE2B165 PG-DIP-8 650V 67kHz 3.031W 18W
ICE2B265 PG-DIP-8 650V 67kHz 0.952W 32W
ICE2B365 PG-DIP-8 650V 67kHz 0.4567W 45W
ICE2A0565Z PG-DIP-7-1 650V 100kHz 4.723W 13W
ICE2A180Z PG-DIP-7-1 800V 100kHz 3.029W 17W
ICE2A280Z PG-DIP-7-1 800V 100KHz 0.850W 31W
Type Package VDS FOSC RDSon1)
1) typ @ T=25°C
230VAC ±15%2)
2) Maximum power rating at Ta=75°C, Tj=125°C and with copper area on PCB = 6cm²
85-265 VAC2)
ICE2A0565G PG-DSO-16/12 650V 100kHz 4.723W 13W
Type Package VDS FOSC RDSon1)
1) typ @ T=25°C
230VAC ±15%2)
2) Maximum practical continuous power in an open frame design at Ta=75°C, Tj=125°C and RthCA=2.7K/W
85-265 VAC2)
ICE2A765I PG-TO-220-6-46 650V 100kHz 0.45240W 130W
ICE2B765I PG-TO-220-6-46 650V 67kHz 0.45240W 130W
ICE2A765P2 PG-TO-220-6-47 650V 100kHz 0.45240W 130W
ICE2B765P2 PG-TO-220-6-47 650V 67kHz 0.45240W 130W
ICE2A380P2 PG-TO-220-6-47 800V 100kHz 1.89111W 60W
CoolSET™-F2
Table of Contents Page
Version 2.10a 5 25 Mar 2014
1Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.1 Pin Configuration wit h PG-DIP-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.2 Pin Configuration wit h PG-DIP-7-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.3 Pin Configuration with PG-TO220-6-46/7 . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.4 Pin Configuration with PG-DSO-16/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.5 Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2 Representative Blockdiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
3.1 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
3.2 Improved Current Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
3.2.1 PWM-OP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.2.2 PWM-Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.3 Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3.4 Oscillator and Frequency Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.4.1 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.4.2 Frequency Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.5 Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.5.1 Leading Edge Blanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.5.2 Propagation Delay Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
3.6 PWM-Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
3.7 Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
3.8 Protection Unit (Auto Restart Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
3.8.1 Overload / Open Loop with Normal Load . . . . . . . . . . . . . . . . . . . . . . . .15
3.8.2 Overvoltage due to Open Loop with No Load . . . . . . . . . . . . . . . . . . . . .16
3.8.3 Thermal Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
4.2 Thermal Impedance (ICE2X765I and ICE2X765P2) . . . . . . . . . . . . . . . . . .20
4.3 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
4.4 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
4.4.1 Supply Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
4.4.2 Internal Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
4.4.3 Control Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
4.4.4 Protection Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
4.4.5 Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
4.4.6 CoolMOS™ Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
5 Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .26
6 Layout Recommendation for C18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
7 Outline Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Version 2.10a 6 25 Mar 2014
CoolSET™-F2
Pin Configuration and Functionality
1 Pin Configuration and Functionality
1.1 Pin Configuration with PG-DIP-8
Figure 1 Pin Configuration PG-DIP-8 (top view)
1.2 Pin Configuration with PG-DIP-7-1
Figure 2 Pin Configuration PG-DIP-7-1 (top view)
Pin Symbol Function
1 SoftS Soft-Start
2 FB Feedback
3 Isense Controller Current Sense Input,
CoolMOS™ Source Output
4Drain650V1)/800V2) CoolMOS™ Drain
1) at Tj = 110°C
5Drain650V1)/800V2) CoolMOS™ Drain
2) at Tj = 25°C
6 N.C Not connected
7 VCC Controller Supply Voltage
8 GND Controller Ground
1
6
7
8
4
3
2
5
VCCFB
Isense
Drain
SoftS
N.C
GND
Drain
Pin Symbol Function
1 SoftS Soft-Start
2 FB Feedback
3 Isense Controller Current Sense Input,
CoolMOS™ Source Output
4 N.C. Not connected
5Drain650V1)/800V2) CoolMOS™ Drain
1) at Tj = 110°C
2) at Tj = 25°C
7 VCC Controller Supply Voltage
8 GND Controller Ground
1
7
8
4
3
2
5
VCCFB
Isense
n.c.
SoftS GND
Drain
Version 2.10a 7 25 Mar 2014
CoolSET™-F2
Pin Configuration and Functionality
1.3 Pin Configuration with PG-TO220-6-46/
7
Figure 3 Pin Configuration PG-TO220-6 -46/47
(top view)
1.4 Pin Configuration with PG-DSO-16/12
Figure 4 Pin Configuration PG-DSO-16/12 (top
view)
Pin Symbol Function
1Drain650V1) CoolMOS™ Drain
1) at Tj = 110°C
3 Isense Controller Current Sense Input,
CoolMOS™ Source Output
4 GND Controller Ground
5 VCC Controller Supply Voltage
6 SoftS Soft-Start
7 FB Feedback
1
Drain
234567
Isense
GND
VCC
SoftS
FB
Pin Symbol Function
1 N.C. Not Connected
2 SoftS Soft-Start
3 FB Feedback
4 Isense Controller Current Sense Input,
CoolMOS™ Source Output
5Drain 650V1) CoolMOS™ Drain
1) at Tj = 110°C
6Drain 650V1) CoolMOS™ Drain
7Drain 650V1) CoolMOS™ Drain
8Drain 650V1) CoolMOS™ Drain
9 N.C. Not Connected
10 N.C. Not Connected
11 VCC Controller Supply Voltage
12 GND Controller Ground
Package PG-DSO-16/12
10
11
12
9
VCC
SoftS
FB
Isense
N.C
N.C
GND
N.C.
Drain
Drain
8
7
3
2
1
4
Drain
Drain
5
6
Version 2.10a 8 25 Mar 2014
CoolSET™-F2
Pin Configuration and Functionality
1.5 Pin Functionality
SoftS (Soft Start & Auto Restart Control)
This pin combines the function of Soft Start in case of
Start Up and Auto Restart Mode and the controlling of
the Auto Restart Mode in case of an error detection.
FB (Feedback)
The information about the regulation is provide d by the
FB Pin to the internal Protection Unit and to the internal
PWM-Comparator to control the duty cycle.
Isense (Current Sense)
The Current Sense pin senses the voltage developed
on the series resistor inserted in the source of the
integrated CoolMOS™. When Isense reaches the
internal threshold of the Current Limit Comparator, the
Driver output is disabled. By this means the Over
Current De tection is realized.
Furthermore the current information is provided for the
PWM-Comparator to realiz e the Current Mode.
Drain (Drain of integrated CoolMOS™)
Pin Drain is the connection to the Drain of the internal
CoolMOSTM.
VCC (Power supply)
This pin is the positive supply of the IC. The operating
range is between 8.5V and 21V.
To provide overvoltage protection the driver gets
disabled when the voltage becomes higher than 16.5V
during Start Up Phase.
GND (Ground)
This pin is the ground of the primary side of the SMPS.
Version 2.10a 9 25 Mar 2014
CoolSET™-F2
Representative Blockdiagram
2 Representative Blockdiagram
Figure 5 Representative Blockdiagram
Thermal Shutdown
T
j
>140°C
Internal Bias
Voltage
Reference
6.5V
4.8V
Leading Edge
Blanking
220ns
Undervoltage
Lockout
Oscillator
Duty Cycle
max
Current-Limit
Comparator
x3.65
Soft-Start
Comparator
Current Limiting
PWM OP
Improved Current Mode
Soft Start
13.5V
8.5V
6.5V
C2
C1
16.5V
4.0V
R
FB
6.5V
Protection Unit
Power-Down
Reset
Power-Up
Reset
Power Management
C
Soft-Start
C
VCC
R
Start-up
85 ... 270 VAC C
Line
VCC
GND
+
-
Converter
DC Output
V
OUT
f
standby
-f
norm
CoolSET™-F2
Optocoupler
Snubber
Spike
Blanking
5
s
PWM
Comparator
R
SQ
Q
Error-Latch
C4
5.3V
C3
4.8V
R
Soft-Start
Gate
Driver
G3
G2
G1
G4
SoftS
5.3V
T1
V
csth
Propagation-Delay
Compensation
R
S
Q
Q
PWM-Latch
0.72
Clock
U
FB
f
osc
f
norm
f
standby
Standby Unit
FB
4.0V
R
Sense
Drain
Isense
0.8V
C5
0.3V
10k
D1
5.6V
CoolMOS™
ICE2Axxxx ICE2Bxxxx
f
norm
f
standby
100kHz
21.5kHz
67kHz
20kHz
Duty Cycle Max
Version 2.10a 10 25 Mar 2014
CoolSET™-F2
Functional Description
3 Functional Description
3.1 Power Management
Figure 6 Power Management
The Undervoltage Lockout monitors the external
supply voltage VVCC. In case the IC is inactive the
current consumption is max. 55µA. When the SMPS is
plugged to the main line the current through RStart-up
charges the external Capacitor CVCC. When VVCC
exceeds the on-threshold VCCon=13.5V the internal bias
circuit and the voltage reference are switched on . After
that the internal bandgap generates a reference
voltage VREF=6.5V to supply the internal circuits. To
avoid uncontrolled ringing at switch-on a hysteresis is
implemented which means that switch-off is only after
active mode when Vcc falls below 8.5V.
In case of switch-on a Power Up Reset is done by
resetting the in ternal error-lat ch in th e protection uni t.
When VVCC falls below the off-threshold VCCoff=8.5V the
internal reference is switched off and the Power Down
reset let T1 discharging the soft-start capacitor CSoft-Start
at pin SoftS. Thus it is ensured that at every switch-on
the voltage ramp at pin SoftS starts at zero.
3.2 Improved Current Mode
Figure 7 Current Mode
Current Mode means that the duty cycle is controlled
by the slope of the primary current. This is done by
comparison the FB signal with the amplified current
sense signal.
Figure 8 Pulse Width Modulation
In case the amplified current sense signal exceeds the
FB signal the on-time Ton of the driver is finished by
resetting the PWM-Latch (see Figure 8).
The primary current is sensed by the external series
resistor RSense inserted in the source of the integrated
CoolMOS™. By means of Current Mode regulation, the
Version 2.10a 11 25 Mar 2014
CoolSET™-F2
Functional Description
secondary output voltage is insensitive on line
variations. Line variation changes the current
waveform slope which con trols the duty cycle.
The external RSense allows an individual adjustment of
the maximum source current of the integrated
CoolMOS™.
Figure 9 Improved Current Mode
To improve the Current Mode during light load
conditions the amplified current ramp of the PWM-OP
is superimposed on a voltage ramp, which is built by
the switch T2, the voltage source V1 and the 1st order
low pass filter composed of R1 and C1(see Figure 9,
Figure 10). Every time the oscillator shuts down for
max. duty cycle limitation the switch T2 is closed by
VOSC. When the oscillator triggers the Gate Driver T2 is
opened so that the voltage ramp can start.
In case of light load the amplified current ramp is to
small to ensure a stable regulation. In that case the
Voltage Ramp is a well defined signal for the
comparison with the FB-signal. The duty cycle is then
controlled by the slope of the Voltage Ramp.
By means of the Comparator C5, the Gate Driver is
switched-off until the voltage ramp exceeds 0.3V. It
allows the duty cycle to be reduced continuously till 0%
by decreasing VFB below that threshold.
Figure 10 Light Load Condition s
3.2.1 PWM-OP
The input of the PWM-OP is applied over the internal
leading edge blanking to the external sense resistor
RSense connected to pin Isense. RSense converts the
source current into a sense voltage. The sens e voltage
is amplified with a gain of 3.65 by PWM OP. The output
of the PWM-OP is connected to the voltage so urce V1.
The voltage ramp with the superimposed amplified
current signal is fed into the positive inputs of the PWM-
Comparator, C5 and the Soft-Start-Comparator.
3.2.2 PWM-Comparator
The PWM-Comparator compares the sensed current
signal of the integrated CoolMOSTM with the feedback
signal VFB (see Figure 11). VFB is created by an
external optocoupler or external transistor in
combination with the internal pull-up resistor RFB and
provides the load information of the feedback circui try.
When the amplified current signal of the integrated
CoolMOS™ exceeds the signal VFB the PWM-
Comparator switches off the Gate Driver.
t
t
V
OSC
0.8V
FB
t
max.
Duty Cycle
0.3V
Gate Driver
Voltage Ramp
Version 2.10a 12 25 Mar 2014
CoolSET™-F2
Functional Description
Figure 11 PWM Controlling
3.3 Soft-Start
Figure 12 Soft-Start Phase
The Soft-Start is realized by the internal pull-up resistor
RSoft-Start and the external Capacitor CSoft-Start (see
Figure 5). The Soft-Start volt age VSoftS is generated by
charging the external capacitor CSoft-Start by the internal
pull-up resistor RSoft-Start. The Soft-Start-Comparator
compares the voltag e at pin SoftS at the negative in put
with the ramp signal of the PWM-OP at the positive
input. When Soft-Start voltage VSoftS is less than
Feedback voltage VFB the Soft-St a rt-Comparator limi ts
the pulse width by resetting the PWM-Latch (see
Figure 12). In addition to Start-Up, Soft-Start is also
activated at each restart attempt during Auto Restart.
By means of the above mentioned CSoft-Start the Soft-
Start can be defined by the user. The Soft-Start is
finished when VSoftS exceeds 5.3V. At that time the
Protection Unit is activated by Comparator C4 and
senses the FB by Comparator C3 wether th e voltage is
below 4.8V which means that the voltage on the
secondary side of the SMPS is settled. The internal
Zener Diode at SoftS has a clamp voltage of 5.6V to
prevent the internal circuit from saturation (see Figure
13).
Figure 13 Activation of Protection Unit
The Start-Up time TStart-Up within the converter output
voltage VOUT is settled must be shorter than the Soft-
Start Phase TSoft-Start (see Figure 14).
By means of Soft-Start there is an effective
minimization of current and voltage stresses on the
integrated CoolMOS™, the clamp circuit and the output
x3.65
PWM OP
Improved
Current Mode
PWM Comparator
Isense
Soft-Start Comparator
6.5V
PWM-Latch
0.8V
FB
Optocoupler
R
FB
t
5.3V
V
SoftS
Gate Driver
t
T
Soft-Start
5.6V
6.5V
R
FB
6.5V
Power-Up Reset
C4
5.3V
C3
4.8V
R
Soft-Start
FB
R
S
Q
Q
Error-Latch
R
S
Q
Q
PWM-Latch
G2
Clock
Gate
Driver
5.6V
SoftS
CSoft StartTSoft Start
RSoft Start1.69
-------------------------------------=
Version 2.10a 13 25 Mar 2014
CoolSET™-F2
Functional Description
overshoot and prevents saturation of the transformer
during Start-Up.
Figure 14 Start Up Phase
3.4 Oscillator and Frequency
Reduction
3.4.1 Oscillator
The oscillator generates a frequency fswitch = 67kHz/
100kHz. A resistor, a capacitor and a current source
and current sink which determine the frequency are
integrated. The charging and disc harging current of the
implemented oscillator capacitor are internally
trimmed, in order to achieve a very accurate switching
frequency. The ratio of controlled charge to discharge
current is adjusted to reach a max. duty cycle limitation
of Dmax=0.72.
3.4.2 Frequency Reduction
The frequency of the oscillator is depending on the
voltage at pin FB. The dependence is shown in Figure
15. This feature allows a power supply to operate at
lower frequency at light loads thus lowering the
switching losses while maintaining good cross
regulation performance and low output ripple. In case
of low power the power consumption of the whole
SMPS can now be reduced very effective. The minimal
reachable frequency is limited to 20kHz/21.5 kHz to
avoid audible noise in any case.
Figure 15 Frequency Dependence
3.5 Current Limiting
There is a cycle by cycle current lim iting realized by the
Current-Limit Comparator to provide an overcurrent
detection. The source current of the integrated
CoolMOSTM is sensed via an external sense resistor
RSense. By means of RSense the source current is
transformed to a sense voltage VSense. When the
voltage VSense exceeds the internal threshold voltage
Vcsth the Current-Limit-Comparator immediately turns
off the gate drive. To prevent the Current Limiting from
distortions caused by leading edge spikes a Leading
Edge Blanking is integrated at the Current Sense.
Furthermore a Propagation Delay Compensation is
added to support the immediate shut down of the
CoolMOS™ in case of overcurrent.
3.5.1 Leading Edge Blanking
Figure 16 Leading Edge Blanking
Each time wh en CoolMOS™ is switched on a leading
spike is generated due to the primary-side
capacitances and secondary-side rectifier reverse
recovery time . To avo id a premature te rm in atio n of th e
67kHz
100kHz
20kHz
21.5kHz
21.5
65
100
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
kHz
VFB
V
fOSC
ICE2BxxxxICE2Axxxx
fnorm
fstandby
t
V
Sense
V
csth
t
LEB
= 220ns
Version 2.10a 14 25 Mar 2014
CoolSET™-F2
Functional Description
switching pulse this spike is blanked out with a time
constant of tLEB = 220ns. During that time the output of
the Current-Limit Comparator cannot switch off the
gate drive .
3.5.2 Propagation Delay Compensation
In case of overcurrent detection by ILimit the shut down
of CoolMOS™ is delayed due to the propagation delay
of the circuit. This delay causes an overshoot of the
peak current Ipeak which depends on the ratio of d I/dt of
the peak current (see Figure 17).
.
Figure 17 Current Limiting
The overshoot of Signal2 is bigger than of Signal1 due
to the steeper rising waveform.
A propagation delay compensation is integrated to
bound the overshoot dependent on dI/dt of the rising
primary current. That means the propagation delay
time between exceeding the current sense threshold
Vcsth and the switch off of CoolMOS™ is compensated
over temperature within a range of at least.
Figure 18 Dynamic Voltage Thresho ld Vcsth
The propagation delay compensation is done by
means of a dynamic thres hold voltage Vcsth (see Figure
18). In case of a steeper slope the switch off of the
driver is earlier to compensate the delay.
E.g. Ipeak = 0.5A with RSense = 2. Without propagation
delay compensation the current sense threshold is set
to a static voltage level Vcsth=1V. A current ramp of
dI/dt = 0.4A/µs, that means dV Sense/dt = 0.8V/µs, and a
propagation delay time of i.e. tPropagation Delay =180ns
leads then to a Ipeak overshoot of 14.4%. By means of
propagation delay compensation the overshoot is only
about 2% (see Figure 19).
Figure 19 Overcurrent Shutdown
3.6 PWM-Latch
The oscillator clock output applies a set pulse to the
PWM-Latch when initiating CoolMOS™ conduction.
After setting the PWM-La tch can be reset b y the PWM-
OP, the Soft-Start-Comparator, the Current-Limit-
Comparator, Comparator C3 or the Error-Latch of the
Protection Unit. In case of resetting the driver is shut
down immediately.
3.7 Driver
The driver-stage drives the gate of the CoolMOS™ and
is optimized to minimize EMI an d to provide high circuit
efficiency. This is don e by reducing the switch on slope
when reaching the CoolMOS™ threshold. This is
achieved by a slope control of the rising edge at the
driver’s output (see Figure 20) to the CoolMOS™ gate.
Thus the leading switch on spike is minimized. When
CoolMOS™ is switched off, the falling shape of the
driver is slowed down when reaching 2V to prevent an
overshoot below groun d. Furthermore the driver circuit
is designed to eliminate cross conduction of the output
stage. At voltages below the undervoltage lockout
threshol d VVCCoff the gate drive is active low.
t
ISense
ILimit
tPropagation Delay
IOvershoot1
Ipeak1
Signal2Signal1
IOvershoot2
Ipeak2
0RSense dIpeak
dt
------------dVSense
dt
---------------
t
Vcsth
VOSC
Signal1 Signal2
VSense
max. Duty Cycle
off time
t
Propagation Delay
0.9
0.95
1
1.05
1.1
1.15
1.2
1.25
1.3
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
with compensation without com pen sation
dt
dVSense
V
V/us
VSense
Version 2.10a 15 25 Mar 2014
CoolSET™-F2
Functional Description
Figure 20 Internal Gate Rising Slope
3.8 Protection Unit (Auto Restart Mode)
An overload, open loop and overvoltage detection is
integrated within the Protection Unit. These three
failure modes are latched by an Error-Latc h. Additional
thermal shutdown is latched by the Error-Latch. In case
of those failure modes the Error-Latch is set after a
blanking time of 5µs and the CoolMOS™ is shut down .
That blanking prevents the Error-Latch from distortions
caused by spikes during operation mode.
3.8.1 Overload / Open Loop with Normal
Load
Figure 21 shows the Auto Restart Mode in case of
overload or open loop with normal load. The detection
of open loop or o verload is provided by the C omparator
C3, C4 and the AND-gate G2 (see Figure 22). The
detection is activated by C4 when the voltage at pin
SoftS exceeds 5.3V. Till this time the IC operates in the
Soft-Start Phase. After this phase the comparator C3
can set the Error-Latch in case of open loop or overload
which leads the feedback voltage VFB to exceed the
threshold of 4.8V. After latching VCC decreases till
8.5V and inactivates the IC. At this time the external
Soft-Start capacitor is discharged by the internal
transistor T1 due to Power Down Reset. When the IC
is inactive VVCC increases till VCCon = 13.5V by charging
the Capacitor CVCC by means of the Start-Up Resistor
RStart-Up. Then the Error-Latch is reset by Power Up
Reset and the external Soft-Start capacitor CSoft-Start is
charged by the internal pull-up resistor RSoft-Start. During
the Soft-Start Phase which ends when the voltage at
pin SoftS exceeds 5.3V the detection of overload and
open loop by C3 and G2 is inactive. In this way the Start
Up Phase is not detected as an overload.
Figure 21 Auto Restart Mode
Figure 22 FB-Detection
t
V
Gate
5V
ca. t = 130ns
Overload / O pen Loop w ith Norm al Load
FB
t
4.8V
5.3V
SoftS
5µs B lanking
Failure
Detection
So ft-Sta rt Ph a s e
VCC
13.5V
8.5V
t
Driver
t
TRestart
TBurst1 t
Version 2.10a 16 25 Mar 2014
CoolSET™-F2
Functional Description
But the Soft-Start Phase must be finished within the
Start Up Phase to force the voltage at pin F B below the
failure detection threshold of 4.8V.
3.8.2 Overvoltage due to Open Loop with
No Load
Figure 23 Auto Restart Mode
Figure 23 shows the Auto Restart Mode for open loop
and no load condition. In case of this failure mode the
converter output voltage increases and also VCC. An
additional protection by the comparators C1, C2 and
the AND-gate G1 is implemented to consider this
failure mode (see Figure 24).The o vervoltage detection
is provided by Comparator C1 only in the first time
during the Soft-Start Phase till the Soft-Start voltage
exceeds the threshold of the Comparator C2 at 4.0V
and the voltage at pin FB is above 4.8V. When VCC
exceeds 16.5 V during the o vervoltage d etection pha se
C1 can set the Erro r-La tch a nd th e Bu rst Pha se during
Auto Restart Mode is finished earlier. In that case
TBurst2 is shorter than TSoft-Start. By means of C2 the
normal operation mode is prevented from overvoltage
detection due to varying of VCC concerning the
regulation of the converter output. When the voltage
VSoftS is above 4.0V the overvoltage detection by C1 is
deactivated.
Figure 24 Overvoltage Detection
3.8.3 Thermal Shut Down
Thermal Shut Down is latched by the Erro r-Latch when
junction temperature Tj of the pwm controller is
exceeding an internal threshold of 140°C. In that case
the IC switches in Auto Restart Mode.
Note: All the values which are mentioned in the
functional description are typical. Please refer
to Electrical Characteristics for min/max limit
values.
Open loop & no load condition
t
Driver
13.5V
16.5V
FB
4.8V
5μs Blanking
Failure
Detection
5.3V
SoftS
4.0V Overvoltage
Detection Phase
Soft-Start Phase
t
t
T
Restart
T
Burst2
VCC
8.5V
Overvoltage Detection
t
Version 2.10a 17 25 Mar 2014
CoolSET™-F2
Electrical Characteristics
4 Electrical Characteristics
4.1 Absolute Maximum Ratings
Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction
of the integrated circuit. For the same rea son make sure, that any capacitor that will b e connected to pin 6
(VCC) is discharged before asse m b lin g the applicatio n ci rcu i t .
Parameter Symbol Limit Values Unit Remarks
min. max.
Drain Source Voltage
ICE2A0565/165/265/365/765I/765P2
ICE2B0565/165/265/365/765I/765P2
ICE2A0565G
ICE2A0565Z
VDS -650VTj = 110°C
Drain Source Voltage
ICE2A180Z/280Z/380P2 VDS -800VTj = 25°C
Pulsed drai n cu rrent,
tp limited by Tjmax
ICE2A0565/
ICE2B056/
ICE2A0565G/
ICE2A0565Z
ID_Puls1 2.0 A
ICE2A165/
ICE2B165 ID_Puls2 3.8 A
ICE2A265/
ICE2B265 ID_Puls3 9.8 A
ICE2A365/
ICE2B365 ID_Puls4 23.3 A
ICE2A180Z ID_Puls5 4.1 A
ICE2A280Z ID_Puls6 14.8 A
ICE2A765P2/
ICE2B765P2/
ICE2A765I/
ICE2B765I
ID_Puls7 19.0 A
ICE2A380P2 ID_Puls8 5.7 A
CoolSET™-F2
Electrical Characteristics
Version 2.10a 18 25 Mar 2014
Avalanche energy,
repetitive tAR limited by
max. Tj=150°C1)
ICE2A0565 EAR1 -0.01mJ
ICE2A165 EAR2 -0.07mJ
ICE2A265 EAR3 -0.40mJ
ICE2A365 EAR4 -0.50mJ
ICE2B0565 EAR5 -0.01mJ
ICE2B165 EAR6 -0.07mJ
ICE2B265 EAR7 -0.40mJ
ICE2B365 EAR8 -0.50mJ
ICE2A0565G EAR9 -0.01mJ
ICE2A0565Z EAR10 -0.01mJ
ICE2A180Z EAR11 -0.07mJ
ICE2A280Z EAR12 -0.40mJ
ICE2A765I EAR13 -0.50mJ
ICE2B765I EAR14 -0.50mJ
ICE2A765P2 EAR15 -0.50mJ
ICE2B765P2 EAR16 -0.50mJ
ICE2A380P2 EAR17 -0.06mJ
1) Repetitive avalanche causes additional power losses that can be calculated as PAV=EAR* f
Parameter Symbol Limit Values Unit Remarks
min. max.
Version 2.10a 19 25 Mar 2014
CoolSET™-F2
Electrical Characteristics
Parameter Symbol Limit Values Unit Remarks
min. max.
Avalanche current,
repetitive tAR limited by
max. Tj=150°C
ICE2A0565 IAR1 -0.5A
ICE2A165 IAR2 -1A
ICE2A265 IAR3 -2A
ICE2A365 IAR4 -3A
ICE2B0565 IAR5 -0.5A
ICE2B165 IAR6 -1A
ICE2B265 IAR7 -2A
ICE2B365 IAR8 -3A
ICE2A0565G IAR9 -0.5A
ICE2A0565Z IAR10 -0.5A
ICE2A180Z IAR11 -1A
ICE2A280Z IAR12 -2A
ICE2A765I IAR13 -7A
ICE2B765I IAR14 -7A
ICE2A765P2 IAR15 -7A
ICE2B765P2 IAR16 -7A
ICE2A380P2 IAR17 -2.4A
VCC Supply Voltage VCC -0.3 22 V
FB Voltage VFB -0.3 6.5 V
SoftS Voltage VSoftS -0.3 6.5 V
ISense ISense -0.3 3 V
Junction Temperature Tj-40 150 °C Controller & CoolMOS™
Storage Temperature TS-50 150 °C
Thermal Resistance
Junction-Ambient RthJA1 - 90 K/W PG-DIP-8
RthJA2 - 96 K/W PG-DIP-7-1
RthJA3 - 110 K/W P-DSO-16/12
ESD Robustness1)
1) Equivalent to discharging a 100pF capacitor through a 1.5 kW series resistor
2) 1kV at pin drain of ICE2x0565, ICE2A0565Z and ICE2A0565G
VESD -2
2) kV Human Body Model
CoolSET™-F2
Electrical Characteristics
Version 2.10a 20 25 Mar 2014
4.2 Thermal Impedance (ICE2X765I and ICE2X765P2)
4.3 Operating Range
Note: Within the operating range the IC operate s as described in the functional description.
Parameter Symbol Limit Values Unit Remarks
min. max.
Thermal Resistance
Junction-Ambient ICE2A765I
ICE2B765I
ICE2A765P2
ICE2B765P2
RthJA4 - 74 K/W Free standing with no
heat-sink
ICE2A380P2 RthJA5 -82K/W
Junction-Case ICE2A765I
ICE2B765I
ICE2A765P2
ICE2B765P2
RthJC1 -2.5K/W
ICE2A380P2 RthJC2 -2.86K/W
Parameter Symbol Limit Values Unit Remarks
min. max.
VCC Supply Voltage VCC VCCoff 21 V
Junction Temperature of
Controller TJCon -25 130 °C Limited due to thermal shut down
of controller
Junction Temperature of
CoolMOS™ TJCoolMOS -25 150 °C
Version 2.10a 21 25 Mar 2014
CoolSET™-F2
Electrical Characteristics
4.4 Characteristics
Note: The electrical characteristics involve the spread of values given within the specified supply voltage and
junction temperatu re range TJ from – 25 °C to 125 °C.Typical valu es represent the m edian v alues, which
are related to 25°C. If not otherwise stated, a supply v oltage of VCC = 15 V is assumed.
4.4.1 Supply Section
Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Start Up Current IVCC1 -2755µAVCC=VCCon -0.1V
Supply Current with Inactive
Gate IVCC2 -5.06.6mAVSoftS = 0
IFB = 0
Supply Current
with Active Ga te ICE2A0565 IVCC3 -5.36.7mAVSoftS = 5V
IFB = 0
ICE2A165 IVCC4 -6.57.8mA
ICE2A265 IVCC5 -6.78.0mA
ICE2A365 IVCC6 -8.59.8mA
ICE2B0565 IVCC7 -5.26.7mA
ICE2B165 IVCC8 -5.57.0mA
ICE2B265 IVCC9 -6.17.3mA
ICE2B365 IVCC10 -7.18.3mA
ICE2A0565G IVCC11 -5.36.7mA
ICE2A0565Z IVCC12 -5.36.7mA
ICE2A180Z IVCC13 -6.57.8mA
ICE2A280Z IVCC14 -7.79.0mA
Supply Current
with Active Ga te ICE2A765I IVCC15 -8.59.8mAVSoftS = 5V
IFB = 0
ICE2B765I IVCC16 -7.18.3mA
ICE2A765P2 IVCC17 -8.59.8mA
ICE2B765P2 IVCC18 -7.18.3mA
ICE2A380P2 IVCC19 -6.78.0mA
VCC Turn-On Threshold
VCC Turn-Off Threshold
VCC Turn-On/Off Hysteresis
VCCon
VCCoff
VCCHY
13
-
4.5
13.5
8.5
5
14
-
5.5
V
V
V
CoolSET™-F2
Electrical Characteristics
Version 2.10a 22 25 Mar 2014
4.4.2 Internal Voltage Reference
4.4.3 Control Section
Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Trimmed Reference Voltage VREF 6.37 6.50 6.63 V measured at pin FB
Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Oscillator Frequency
ICE2A0565/165/265/365/765I/765P2
ICE2A0565G/0565Z/180Z/280Z/380P2
fOSC1 93 100 107 kHz VFB = 4V
Oscillator Frequency
ICE2B0565/165/265/365/765I/765P2 fOSC3 62 67 72 kHz VFB = 4V
Reduced Osc. Frequency
ICE2A0565/165/265/365/765I/765P2
ICE2A0565G/0565Z/180Z/280Z/380P2
fOSC2 -21.5-kHzVFB = 1V
Reduced Osc. Frequency
ICE2B0565/165/265/365/765I/765P2 fOSC4 -20-kHzVFB = 1V
Frequency Ratio fosc1/fosc2
ICE2A0565/165/265/365/765I/765P2
ICE2A0565G/0565Z/180Z/280Z/380P2
4.5 4.65 4.9
Frequency Ratio fosc3/fosc4
ICE2B0565/165/265/365/765I/765P2 3.18 3.35 3.53
Max Duty Cycle Dmax 0.67 0.72 0.77
Min Duty Cycle Dmin 0- - VFB < 0.3V
PWM-OP Gain AV3.45 3.65 3.85
VFB Operating Range Min Level VFBmin 0.3 - - V
VFB Operating Range Max level VFBmax --4.6V
Feedback Resistance RFB 3.0 3.7 4.9 k
Soft-Start Resistance RSoft-Start 42 50 62 k
Version 2.10a 23 25 Mar 2014
CoolSET™-F2
Electrical Characteristics
4.4.4 Protection Unit
4.4.5 Current Limiting
Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Over Load & Open Loop
Detection Limit VFB2 4.65 4.8 4.95 V VSoftS > 5.5V
Activation Limit of Overload &
Open Loop Detection VSoftS1 5.15 5.3 5.46 V VFB > 5V
Deactivation Limit of
Overvoltage Detection VSoftS2 3.88 4.0 4.12 V VFB > 5V
VCC > 17.5V
Overvoltage Detection Limit VVCC1 16 16.5 17.2 V VSoftS < 3.8V
VFB > 5V
Latched Thermal Shutdown TjSD 130 140 150 °C 1)
1) The parameter is not subject to production test - verified by design/characterization
Spike Blanking tSpike -5s
Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Peak Current Limitation
(incl. Propagation Delay Time) Vcsth 0.95 1.0 1.05 V dVsense / dt = 0.6V/ms
Leading Edge Blanking tLEB -220-ns
CoolSET™-F2
Electrical Characteristics
Version 2.10a 24 25 Mar 2014
4.4.6 CoolMOS™ Section
Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Drain Source Breakdown Voltage
ICE2A0565/165/265/365/765I/765P2
ICE2B0565/165/265/365/765I/765P2
ICE2A0565G/0565Z
V(BR)DSS 600
650 -
--
-V
VTj=25°C
Tj=110°C
Drain Source Breakdown Voltage
ICE2A180Z/280Z/380P2 V(BR)DSS 800
870 -
--
-V
VTj=25°C
Tj=110°C
Drain Source
On-Resistance ICE2A0565 RDSon1 -
-4.7
10.0 5.5
12.5
Tj=25°C
Tj=125°C
ICE2A165 RDSon2 -
-3
6.6 3.3
7.3
Tj=25°C
Tj=125°C
ICE2A265 RDSon3 -
-0.9
1.9 1.08
2.28
Tj=25°C
Tj=125°C
ICE2A365 RDSon4 -
-0.45
0.95 0.54
1.14
Tj=25°C
Tj=125°C
ICE2B0565 RDSon5 -
-4.7
10.0 5.5
12.5
Tj=25°C
Tj=125°C
ICE2B165 RDSon6 -
-3
6.6 3.3
7.3
Tj=25°C
Tj=125°C
ICE2B265 RDSon7 -
-0.9
1.9 1.08
2.28
Tj=25°C
Tj=125°C
ICE2B365 RDSon8 -
-0.45
0.95 0.54
1.14
Tj=25°C
Tj=125°C
ICE2A0565G RDSon9 -
-4.7
10.0 5.5
12.5
Tj=25°C
Tj=125°C
ICE2A0565Z RDSon10 -
-4.7
10.0 5.5
12.5
Tj=25°C
Tj=125°C
ICE2A180Z RDSon11 -
-3
6.6 3.3
7.3
Tj=25°C
Tj=125°C
ICE2A280Z RDSon12 -
-0.8
1.7 1.06
2.04
Tj=25°C
Tj=125°C
ICE2A765I RDSon13 -
-0.45
0.95 0.54
1.14
Tj=25°C
Tj=125°C
ICE2B765I RDSon14 -
-0.45
0.95 0.54
1.14
Tj=25°C
Tj=125°C
ICE2A765P2 RDSon15 -
-0.45
0.95 0.54
1.14
Tj=25°C
Tj=125°C
ICE2B765P2 RDSon16 -
-0.45
0.95 0.54
1.14
Tj=25°C
Tj=125°C
ICE2A380P2 RDSon17 -
-1.89
4.15 2.27
4.98
Tj=25°C
Tj=125°C
Version 2.10a 25 25 Mar 2014
CoolSET™-F2
Electrical Characteristics
Parameter Symbol Limit Values Unit Test Condition
min. typ. max.
Effective ou tp u t
capacitance,
energy related
ICE2A0565 Co(er)1 -4.751-pFVDS =0V to 480V
ICE2A165 Co(er)2 -7-pF
ICE2A265 Co(er)3 -21-pF
ICE2A365 Co(er)4 -30-pF
ICE2B0565 Co(er)5 -4.751-pF
ICE2B165 Co(er)6 -7-pF
ICE2B265 Co(er)7 -21-pF
ICE2B365 Co(er)8 -30-pF
ICE2A0565G Co(er)9 -4.751-pF
ICE2A0565Z Co(er)10 -4.751-pF
ICE2A180Z Co(er)11 -7-pF
ICE2A280Z Co(er)12 -22-pF
ICE2A765I Co(er)13 -30-pF
ICE2B765I Co(er)14 -30-pF
ICE2A765P2 Co(er)15 -30-pF
ICE2B765P2 Co(er)16 -30-pF
ICE2A380P2 Co(er)17 -16.8-pF
Zero Gate Voltage Drain Current IDSS -0.5AVVCC=0V
Rise Time trise -30
1)
1) Measured in a Typical Flyback Converter Application
-ns
Fall Time tfall -30
1) -ns
Version 2.10a 26 25 Mar 2014
CoolSET™-F2
Typical Performance Characteristics
5 Typical Performance
Characteristics
Figure 25 Start Up Current IVCC1 vs. Tj
Figure 26 Static Supply Current IVCC2 vs. Tj
Figure 27 Supply Current IVCCI vs. Tj
Figure 28 Supply Current IVCCI vs. Tj
Figure 29 Supply Current IVCCI vs. Tj
Figure 30 Supply Current IVCCI vs. Tj
Junction Temperature [°C]
Start Up Current IVCC1 [µA]
PI-001-190101
22
24
26
28
30
32
34
36
38
40
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
Supply Current IVCC2 [mA]
PI-003-190101
4,5
4,7
4,9
5,1
5,3
5,5
5,7
5,9
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
Supply Current IVCCi [mA]
PI-002-190101
4.0
4.4
4.8
5.2
5.6
6.0
6.4
6.8
7.2
7.6
8.0
8.4
8.8
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2A0565/G/Z
ICE2A165
ICE2A265
ICE2A365
Junction Temperature [°C]
Supply Current IVCCi [mA]
PI-002-190101
4,5
4,7
4,9
5,1
5,3
5,5
5,7
5,9
6,1
6,3
6,5
6,7
6,9
7,1
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2B165
ICE2B365
ICE2B265
ICE2B0565
Junction Temperature [°C]
Supply Current IVCCi [mA]
PI-002-190101
5,5
5,7
5,9
6,1
6,3
6,5
6,7
6,9
7,1
7,3
7,5
7,7
7,9
8,1
8,3
8,5
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2A280Z
ICE2A180Z
Junction Temperature [°C]
Supply Current IVCCi [mA]
PI-002-190101
5.9
6.1
6.3
6.5
6.7
6.9
7.1
7.3
7.5
7.7
7.9
8.1
8.3
8.5
8.7
8.9
-25-15-5 5 152535455565758595105115125
ICE2A765P2
ICE2B765P2
ICE2A380P2
Version 2.10a 27 25 Mar 2014
CoolSET™-F2
Typical Performance Characteristics
Figure 31 VCC Turn-On Threshold VCCon vs. Tj
Figure 32 VCC Turn-Off Threshold VVCCoff vs. Tj
Figure 33 VCC Turn-On/Off Hysteresis VVCCHY vs . Tj
Figure 34 Trimmed Reference VREF vs. Tj
Figure 35 Oscillator Frequency fOSC1 vs. Tj
Figure 36 Oscillator Frequency fOSC3 vs. Tj
Junction Temperature [°C]
VCC Turn-On Threshold VCCon [V]
PI-004-190101
13,42
13,44
13,46
13,48
13,50
13,52
13,54
13,56
13,58
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
VCC Turn-Off Threshold VVCCoff [V]
PI-005-190101
8,40
8,43
8,46
8,49
8,52
8,55
8,58
8,61
8,64
8,67
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
VCC Turn-On/Off Hysteresis VCCHY [V]
PI-006-190101
4,83
4,86
4,89
4,92
4,95
4,98
5,01
5,04
5,07
5,10
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
Trimmed Reference Voltage VREF [V]
PI-007-190101
6,470
6,475
6,480
6,485
6,490
6,495
6,500
6,505
6,510
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
Oscillator Frequency fOSC1 [kHz]
PI-008-190101
97.0
97.5
98.0
98.5
99.0
99.5
100.0
100.5
101.0
101.5
102.0
-25-15-5 5 152535455565758595105115125
ICE2A0565/G/Z
ICE2A165
ICE2A265
ICE2A365
ICE2A180Z
ICE2A280Z
ICE2A765P2
ICE2A380P2
Junction Temperature [°C]
Oscillator Frequency fOSC3 [kHz]
PI-008a-190101
64,0
64,5
65,0
65,5
66,0
66,5
67,0
67,5
68,0
68,5
69,0
69,5
70,0
-25-15-5 5 152535455565758595105115125
ICE2B0565
ICE2B165
ICE2B265
ICE2B365
ICE2B765P2
Version 2.10a 28 25 Mar 2014
CoolSET™-F2
Typical Performance Characteristics
Figure 37 Reduced Osc. Frequency fOSC2 vs. Tj
Figure 38 Reduced Osc. Frequency fOSC4 vs. Tj
Figure 39 Frequency Ratio fOSC1 / fOSC2 vs. Tj
Figure 40 Frequency Ratio fOSC3 / fOSC4 vs. Tj
Figure 41 Max. Duty Cycle vs. Tj
Figure 42 PWM-OP Gain AV vs. Tj
Junction Temperature [°C]
Reduced Osc. Frequency fOSC2 [kH z]
PI-009-190101
20.0
20.2
20.4
20.6
20.8
21.0
21.2
21.4
21.6
21.8
22.0
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2A0565/G/Z
ICE2A165
ICE2A265
ICE2A365
ICE2A180Z
ICE2A280Z
ICE2A765P2
ICE2A380P2
Junction Temperature [°C]
Reduced Osc. Frequency f OSC4 [kHz]
PI-009a-190101
19,0
19,2
19,4
19,6
19,8
20,0
20,2
20,4
20,6
20,8
21,0
-25-15-5 5 152535455565758595105115125
ICE2B0565
ICE2B165
ICE2B265
ICE2B365
ICE2B765P2
Junction Temperature [°C]
Frequency Ratio fOSC1/fOSC2
PI-010-190101
4.55
4.57
4.59
4.61
4.63
4.65
4.67
4.69
4.71
4.73
4.75
-25-15-5 5 152535455565758595105115125
ICE2A0565/G/Z
ICE2A165
ICE2A265
ICE2A365
ICE2A180Z
ICE2A280Z
ICE2A765P2
ICE2A380P2
Junction Temperature [°C]
Frequency Ratio fOSC3/fOSC4
PI-010a-190101
3,25
3,27
3,29
3,31
3,33
3,35
3,37
3,39
3,41
3,43
3,45
-25-15-5 5 152535455565758595105115125
ICE2B0565
ICE2B165
ICE2B265
ICE2B365
ICE2B765P2
Junction Temperature [°C]
Max. Duty Cycle
PI-011-190101
0,710
0,712
0,714
0,716
0,718
0,720
0,722
0,724
0,726
0,728
0,730
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
PWM-OP Gain AV
PI-012-190101
3,60
3,61
3,62
3,63
3,64
3,65
3,66
3,67
3,68
3,69
3,70
-25-15-5 5 152535455565758595105115125
Version 2.10a 29 25 Mar 2014
CoolSET™-F2
Typical Performance Characteristics
Figure 43 Feedback Resistance RFB vs. Tj
Figure 44 Soft-Start Resistance RSoft-Start vs. Tj
Figure 45 Detection Limit VFB2 vs. Tj
Figure 46 Detection Limit VSoft-Start1 vs. Tj
Figure 47 Detection Limit VSoft-Start2 vs. Tj
Figure 48 Overvoltage Detection Limit VVCC1 vs. Tj
Junction Temperature [°C]
Feedback Resistance RFB [kOhm]
PI-013-190101
3,50
3,55
3,60
3,65
3,70
3,75
3,80
3,85
3,90
3,95
4,00
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
Soft-Start Resistance RSoft-Start [kOhm]
PI-014-190101
40
42
44
46
48
50
52
54
56
58
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
Detection Limit VFB2 [V]
PI-015-190101
4,780
4,785
4,790
4,795
4,800
4,805
4,810
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
Detection Limit VSoft-Start1 [V]
PI-016-190101
5,270
5,275
5,280
5,285
5,290
5,295
5,300
5,305
5,310
5,315
5,320
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
Detection Limit VSoft-Start2 [V]
PI-017-190101
3,95
3,96
3,97
3,98
3,99
4,00
4,01
4,02
4,03
4,04
4,05
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
Overvoltage Detection Limit VVCC1 [V]
PI-018-190101
16,20
16,25
16,30
16,35
16,40
16,45
16,50
16,55
16,60
16,65
16,70
16,75
16,80
-25-15-5 5 152535455565758595105115125
Version 2.10a 30 25 Mar 2014
CoolSET™-F2
Typical Performance Characteristics
Figure 49 Peak Current Limitation Vcsth vs. Tj
Figure 50 Leading Edge Blanking VVCC1 vs. Tj
Figure 51 Drain Source On-Resistance RDSon vs. Tj
Figure 52 Drain Source On-Resistance RDSon vs. Tj
Figure 53 Drain Source On-Resistance RDSon vs. Tj
Figure 54 Drain Source On-Resistance RDSon vs. Tj
Junction Temperature [°C]
Peak Current Limitation Vcsth [V]
PI-019-190101
0,990
0,992
0,994
0,996
0,998
1,000
1,002
1,004
1,006
1,008
1,010
-25-15-5 5 152535455565758595105115125
Junction Temperature [°C]
Leading Edge Blanking tLEB [ns]
PI-020-190101
180
190
200
210
220
230
240
250
260
270
280
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
Junction Temperature [°C]
On-Resistance Rdson [Ohm]
PI-022-190101
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2A365
ICE2B365
Junction Temperature [°C]
On-Resistance Rdson [Ohm]
PI-022-190101
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
2,2
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2A280Z
ICE2A265
ICE2B265
Junction Temperature [°C]
On-Resistance Rdson [Ohm]
PI-022-190101
1
2
3
4
5
6
7
8
9
10
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2A0565/G/Z
ICE2B0565 ICE2A165
ICE2B165
ICE2A180Z
ICE2A380P2
Junction Temperature [°C]
On-Resistance Rdson [Ohm]
PI-022-190101
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2A765P2
ICE2B765P2
Version 2.10a 31 25 Mar 2014
CoolSET™-F2
Typical Performance Characteristics
Figure 55 Breakdown Voltage VBR(DSS) vs. Tj
Figure 56 Breakdown Voltage VBR(DSS) vs. Tj
Junction Temperature [°C]
Breakdown Voltage V(BR)DSS [V]
PI-025-190101
560
580
600
620
640
660
680
700
720
-25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125
ICE2A0565/G/Z
ICE2A165
ICE2A265
ICE2A365
ICE2B0565
ICE2B165
ICE2B265
ICE2B365
ICE2A765P2
ICE2B765P2
Junction Temperature [°C]
Breakdown Voltage V(BR)DS S [V]
PI-025-190101
780
800
820
840
860
880
900
920
940
-25-15-5 5 152535455565758595105115125
ICE2A180Z
ICE2A280Z
ICE2A380P2
CoolSET™-F2
Layout Recommendation for C18
Version 2.10a 32 25 Mar 2014
6 Layout Recommendation for C18
Note: Only for ICE2A765I/P2 and ICE2B765I/P2
Figure 57 Layout Recommendation for ICE2A765I/P2 and ICE2B765I/P2
Soft Start Capacitor Layout Recommendation in Detail
Figure 57A Layout of Board EVALSF2_ICE2B765P2
To improve the startup behavior of the IC during
startup or auto restart mode, place the soft start
capacitor C18 (red section Detail X in Figure 57A)
as close as possible to the soft start PIN 6 and
GND PIN 4. More details see Detail X in Figure
57B.
Figure 57B Detail X, Soft Start Capacitor C
18
Layout
Recommendation
Place Soft Start capacitor C18 in the same way as
shown in Detail X (blue mark).
Detail X
Version 2.10a 33 25 Mar 2014
CoolSET™-F2
Outline Dimension
7 Outline Dimension
Figure 58 PG-DIP-8 (Plastic Dual In-line Package)
PG-DIP-8
CoolSET™-F2
Outline Dimension
Version 2.10a 34 25 Mar 2014
Figure 59 PG-DIP-7-1(Plastic Dual In-line Package)
PG-DIP-7-1
(Plastic Dual In-Line Package)
Version 2.10a 35 25 Mar 2014
CoolSET™-F2
Outline Dimension
Figure 60 PG-TO220-6-46 (Isodrain Package)
Figure 61 PG-TO220-6-47 (Isodrain Package) Dimensions in mm
B
+0.1
-0.02
1.3
4.4
±0.2
9.2
1)
0.05
±0.3
5.3
8.4
2.4
±0.3
0.5
±0.1
9.9 A
6.6
7.5
±0.3
8.6
4 x1.27
7.62 0.25 A
M
B
±0.1
6 x 0.6
0...0.15
±0.3
8
±0.3
12.1
10.2
(0.8)
Back side, heatsink contour
1) Shear and punch direction no burrs this surface
All metal surfaces tin plated, except area of cut.
PG-TO220-6-46
Isodrain Package
PG-TO220-6-47
Isodrain Package
All metal surfaces tin plated, except area of cut.
1) Shear and punch direction no burrs this surface
Back side, heatsink contour
6.6
9.5
±0.2
±0.2
9.9 A
3.7
2.8
-0.15
±0.2
13
±0.3
15.6
±0.3
17.5
7.5
0...0.15
±0.3
8.6
±0.1
6 x 0.6
1.274 x
0.25 A
M B
7.62
1.3
-0.02
4.4
+0.1
B
0.05
1)
±0.1
0.5
2.4
±0.3
5.3
±0.3
8.4
9.2
±0.2
CoolSET™-F2
Outline Dimension
Version 2.10a 36 25 Mar 2014
Figure 62 PG-DSO-16/12 (Plastic Dual Small Outline Package)
Dimensions in mm
PG-DSO-16/12
(Plastic Dual Small
Outline Package)
Qualität hat für uns eine umfassende
Bedeutung. Wir wollen allen Ihren
Ansprüchen in der bestmöglichen
Weise gerecht werden. Es geht uns also
nicht nur um die Produktqualität –
unsere Anstrengungen gelten
gleichermaßen der Lieferqualität und
Logistik, dem Service und Support
sowie allen sonstigen Beratungs- und
Betreuungsleistungen.
Dazu gehört eine bestimmte
Geisteshaltung unserer Mitarbeiter.
Total Quality im Denken und Handeln
gegenüber Kollegen, Lieferanten und
Ihnen, unserem Kunden. Unsere
Leitlinie ist jede Aufgabe mit „Null
Fehlern“ zu lösen – in offener
Sichtweise auch über den eigenen
Arbeitsplatz hinaus – und uns ständig
zu verbessern.
Unternehmensweit orientieren wir uns
dabei auch an „top“ (Time Optimized
Processes), um Ihnen durch größere
Schnelligkeit den entscheidenden
Wettbewerbsvorsprung zu verschaffen.
Geben Sie uns die Chance, hohe
Leistung durch u mfassende Qualität zu
beweisen.
Wir werden Sie überzeugen.
Quality takes on an allencompassing
significance at Semiconductor Group.
For us it means living up to each and
every one of your demands in the best
possible way. So we are not only
concerned with product quality. We
direct our efforts equally at quality of
supply and logistics, service and
support, as well as all the other ways in
which we advise and attend to you.
Part of this is the very special attitude of
our staff. Total Quality in thought and
deed, towards co-workers, suppliers
and you, our customer. Ou r guideline is
“do everything with zero defects”, in an
open manner that is demonstrated
beyond your immediate workpla ce, and
to constantly improve.
Throughout the corporation we also
think in terms of Time Optimized
Processes (top), greater speed on our
part to give you that decisive
competitive edge.
Give us the chance to prove the best of
performance through the best of quali ty
– you will be convinced.
http://www.infineon.com
Total Quality Management
Published by Infineon Technologies AG