MII 150-12 A4 MID 150-12 A4 MDI 150-12 A4 IC25 = 180 A VCES = 1200 V VCE(sat) typ. = 2.2 V IGBT Modules Short Circuit SOA Capability Square RBSOA MII MID MDI 3 3 3 1 2 3 11 10 9 8 9 1 11 10 2 1 11 10 Symbol Conditions VCES VCGR TJ = 25C to 150C TJ = 25C to 150C; RGE = 20 kW VGES VGEM 8 9 8 1 2 2 Maximum Ratings 1200 1200 V V Continuous Transient 20 30 V V IC25 IC80 ICM TC = 25C TC = 80C TC = 80C, tp = 1 ms 180 120 240 A A A tSC (SCSOA) VGE = 15 V, VCE = VCES, TJ = 125C RG = 10 W, non repetitive 10 ms RBSOA VGE = 15 V, TJ = 125C, RG = 10 W Clamped inductive load, L = 100 mH ICM = 200 VCEK < VCES A Ptot TC = 25C 760 W 150 C -40 ... +150 C 4000 4800 V~ V~ E 72873 Features NPT IGBT technology low saturation voltage low switching losses switching frequency up to 30 kHz square RBSOA, no latch up high short circuit capability positive temperature coefficient for easy parallelling MOS input, voltage controlled ultra fast free wheeling diodes package with DCB ceramic base plate isolation voltage 4800 V UL registered E72873 Advantages TJ Tstg VISOL 50/60 Hz, RMS t = 1 min t=1s IISOL 1 mA Insulating material: Al2O3 Typical Applications Md Mounting torque (module) (teminals) 2.25-2.75 20-25 2.5-3.7 22-33 Nm lb.in. Nm lb.in. dS dA a Creepage distance on surface Strike distance through air Max. allowable acceleration 10 9.6 50 mm mm m/s2 Weight Typical 250 8.8 g oz. space and weight savings reduced protection circuits AC and DC motor control AC servo and robot drives power supplies welding inverters 030 Data according to a single IGBT/FRED unless otherwise stated. (c) 2000 IXYS All rights reserved 1-4 MII 150-12 A4 Symbol Conditions V(BR)CES VGE = 0 V VGE(th) IC = 4 mA, VCE = VGE ICES VCE = VCES IGES VCE = 0 V, VGE = 20 V VCE(sat) IC = 100 A, VGE = 15 V Cies Coes Cres td(on) tr td(off) tf Eon Eoff RthJC RthJS Characteristic Values (TJ = 25C, unless otherwise specified) min. typ. max. 1200 Dimensions in mm (1 mm = 0.0394") V 4.5 TJ = 25C TJ = 125C MID 150-12 A4 MDI 150-12 A4 6.5 11 V 7.5 mA mA 400 nA 2.2 VCE = 25 V, VGE = 0 V, f = 1 MHz Inductive load, TJ = 125C IC = 100 A, VGE = 15 V VCE = 600 V, RG = 10 W with heatsink compound 2.7 V 6.6 1 0.44 nF nF nF 100 70 500 70 15 11.5 ns ns ns ns mJ mJ 0.33 0.17 K/W K/W Equivalent Circuits for Simulation Reverse Diode (FRED) Characteristic Values (TJ = 25C, unless otherwise specified) min. typ. max. VF IF = 100 A, VGE = 0 V, IF = 100 A, VGE = 0 V, TJ = 125C IF TC = 25C TC = 80C IRM trr IF = 100 A, VGE = 0 V, -diF/dt = 800 A/ms TJ = 125C, VR = 600 V RthJC RthJS with heatsink compound 2.3 1.8 2.5 1.9 V V 200 130 A A 80 200 A ns 0.66 0.33 K/W K/W Conduction IGBT (typ. at VGE = 15 V; TJ = 125C) V0 = 1.5 V; R0 = 10.2 mW Free Wheeling Diode (typ. at TJ = 125C) V0 = 1.3 V; R0 = 5.5 mW Thermal Response IGBT (typ.) Cth1 = 0.27 J/K; Rth1 = 0.163 K/W Cth2 = 0.63 J/K; Rth2 = 0.004 K/W Free Wheeling Diode (typ.) Cth1 = 0.19 J/K; Rth1 = 0.326 K/W Cth2 = 0.36 J/K; Rth2 = 0.007 K/W (c) 2000 IXYS All rights reserved 2-4 MII 150-12 A4 250 MID 150-12 A4 MDI 150-12 A4 250 TJ = 25C A 200 15V 13V IC 150 TJ = 125C A VGE=17V VGE=17V 15V 200 IC 13V 150 11V 100 11V 100 9V 9V 50 0 0.0 0.5 1.0 1.5 2.0 2.5 50 0 0.0 3.0 V 0.5 1.0 1.5 2.0 VCE Fig. 1 Typ. output characteristics 3.5 V Fig. 2 Typ. output characteristics 350 250 VCE = 20V A TJ = 125C A 300 TJ = 25C 200 2.5 3.0 VCE IF IC TJ = 25C 250 150 200 100 150 100 50 50 0 0 5 6 7 8 9 10 0 11 V 1 2 3 4 V VF VGE Fig. 3 Typ. transfer characteristics Fig. 4 Typ. forward characteristics of free wheeling diode 300 120 20 V VCE = 600V IC = 100A ns A IRM VGE 15 trr trr 200 80 10 TJ = 125C VR = 600V IF = 100A 40 IRM 5 100 150-12 0 0 0 100 200 300 400 QG 500 nC Fig. 5 Typ. turn on gate charge (c) 2000 IXYS All rights reserved 0 200 400 600 800 A/ms -di/dt 0 1000 Fig. 6 Typ. turn off characteristics of free wheeling diode 3-4 MII 150-12 A4 60 ns mJ Eon 30 120 td(on) tr 40 80 Eon VCE = 600V VGE = 15V 20 RG = 10W TJ = 125C MID 150-12 A4 MDI 150-12 A4 600 mJ t Eoff 20 400 t VCE = 600V VGE = 15V 10 40 ns td(off) Eoff 200 RG = 10W TJ = 125C tf 0 0 0 0 50 100 150 IC Fig. 7 Typ. turn on energy and switching times versus collector current 50 VCE = 600V mJ td(on) VGE = 15V IC = 100A TJ = 125C 40 Eon Eon 30 tr ns 24 32 40 48 W 200 A 1600 Eoff 15 ns Eoff 1200 td(off) t 150 50 16 150 IC VCE = 600V VGE = 15V IC = 100A TJ = 125C mJ t 10 8 100 20 200 100 0 50 Fig. 8 Typ. turn off energy and switching times versus collector current 250 20 0 0 0 200 A 10 800 5 400 tf 0 0 56 0 8 16 24 RG 40 48 0 W 56 RG Fig. 9 Typ. turn on energy and switching times versus gate resistor 240 A 200 32 Fig.10 Typ. turn off energy and switching times versus gate resistor 1 K/W 0.1 ICM 160 RG = 10W TJ = 125C VCEK < VCES 120 ZthJC diode 0.01 IGBT 0.001 80 0.0001 40 0 0 200 400 600 800 1000 1200 V VCE Fig. 11 Reverse biased safe operating area RBSOA (c) 2000 IXYS All rights reserved single pulse 0.00001 0.00001 0.0001 150-12 0.001 0.01 0.1 s 1 t Fig. 12 Typ. transient thermal impedance 4-4