Please note that Cypress is an Infineon Technologies Company. The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio. Continuity of document content The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page. Continuity of ordering part numbers Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering. www.infineon.com S25FL128S / S25FL256S Military 128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V SPI Flash Memory Features Cycling Endurance - 100 Program-Erase Cycles CMOS 3.0 Volt Core with Versatile I/O Serial Peripheral Interface (SPI) with Multi-I/O - SPI Clock polarity and phase modes 0 and 3 - Double Data Rate (DDR) option - Extended Addressing: 24- or 32-bit address options - Serial Command set and footprint compatible with S25FL-A, S25FL-K, and S25FL-P SPI families - Multi I/O Command set and footprint compatible with S25FL-P SPI family Data Retention - >20 Year Data Retention Security features - One Time Program (OTP) array of 1024 bytes - Block Protection: READ Commands - Normal, Fast, Dual, Quad, Fast DDR, Dual DDR, Quad DDR - AutoBoot - power up or reset and execute a Normal or Quad read command automatically at a preselected address - Common Flash Interface (CFI) data for configuration information. Programming (1.5 Mbytes/s) - 256 or 512 Byte Page Programming buffer options - Quad-Input Page Programming (QPP) for slow clock systems - Automatic ECC -internal hardware Error Correction Code generation with single bit error correction - Status Register bits to control protection against program or erase of a contiguous range of sectors. - Hardware and software control options - Advanced Sector Protection (ASP) - Individual sector protection controlled by boot code or password Cypress(R) 65 nm MirrorBit(R) Technology with EclipseTM Architecture Core Supply Voltage: 2.7V to 3.6V I/O Supply Voltage: 1.65V to 3.6V - FBGA packages Temperature Range / Grade: - Military (-55C to +125C) Erase (0.5 to 0.65 Mbytes/s) - Hybrid sector size option - physical set of thirty two 4-kbyte sectors at top or bottom of address space with all remaining sectors of 64 kbytes, for compatibility with prior generation S25FL devices - Uniform sector option - always erase 256-kbyte blocks for software compatibility with higher density and future devices. Packages (all Pb-free) - BGA-24 6 x 8 mm - 5 x 5 ball (FAB024) footprint option Logic Block Diagram CS# X Decoders SRAM SCK SI/IO0 SO/IO1 MirrorBit Array Y Decoders I/O Data Latch WP#/IO2 Control Logic HOLD#/IO3 Data Path RESET# Cypress Semiconductor Corporation Document Number: 002-19099 Rev. *A * 198 Champion Court * San Jose, CA 95134-1709 * 408-943-2600 Revised October 26, 2018 S25FL128S S25FL128S / S25FL256S Performance Summary Maximum Read Rates with the Same Core and I/O Voltage (VIO = VCC = 2.7V to 3.6V) Command Clock Rate (MHz) Mbytes/s Read 50 6.25 Fast Read 133 16.6 Dual Read 104 26 Quad Read 104 52 Maximum Read Rates with Lower I/O Voltage (VIO = 1.65V to 2.7V, VCC = 2.7V to 3.6V) Clock Rate (MHz) Mbytes/s Read Command 50 6.25 Fast Read 66 8.25 Dual Read 66 16.5 Quad Read 66 33 Maximum Read Rates DDR (VIO = VCC = 3V to 3.6V) Clock Rate (MHz) Mbytes/s Fast Read DDR Command 80 20 Dual Read DDR 80 40 Quad Read DDR 80 80 Typical Program and Erase Rates Operation kbytes/s Page Programming (256-byte page buffer - Hybrid Sector Option) 1000 Page Programming (512-byte page buffer - Uniform Sector Option) 1500 4-kbyte Physical Sector Erase (Hybrid Sector Option) 30 64-kbyte Physical Sector Erase (Hybrid Sector Option) 500 256-kbyte Logical Sector Erase (Uniform Sector Option) 500 Current Consumption Operation Current (mA) Serial Read 50 MHz 22 (max) Serial Read 133 MHz 33 (max) Quad Read 104 MHz 61 (max) Quad DDR Read 80 MHz 90 (max) Program 100 (max) Erase 100 (max) Standby 0.115 (typ) Document Number: 002-19099 Rev. *A Page 2 of 140 S25FL128S / S25FL256S Contents 5.4 5.5 Features................................................................................. 1 Logic Block Diagram............................................................ 1 Performance Summary ........................................................ 2 1. Overview ....................................................................... 1.1 General Description............................................ 1.2 Migration Notes .................................................. 1.3 Glossary ............................................................. 1.4 Other Resources ................................................ 4 4 5 7 7 6. 3. Signal Descriptions ..................................................... 8 2.1 Input/Output Summary ....................................... 8 2.2 Address and Data Configuration ........................ 9 2.3 RESET#.............................................................. 9 2.4 Serial Clock (SCK).............................................. 9 2.5 Chip Select (CS#)............................................... 9 2.6 Serial Input (SI) / IO0........................................ 10 2.7 Serial Output (SO) / IO1 ................................... 10 2.8 Write Protect (WP#) / IO2................................. 10 2.9 Hold (HOLD#) / IO3 .......................................... 10 2.10 Core Voltage Supply (VCC)............................... 11 2.11 Versatile I/O Power Supply (VIO)...................... 11 2.12 Supply and Signal Ground (VSS) ...................... 11 2.13 Not Connected (NC) ......................................... 11 2.14 Reserved for Future Use (RFU) ....................... 11 2.15 Do Not Use (DNU)............................................ 11 2.16 Block Diagrams ................................................ 12 Signal Protocols......................................................... 3.1 SPI Clock Modes .............................................. 3.2 Command Protocol........................................... 3.3 Interface States ................................................ 3.4 Configuration Register Effects on the Interface 3.5 Data Protection................................................. 13 13 14 18 22 22 4. Electrical Specifications............................................ 4.1 Absolute Maximum Ratings.............................. 4.2 Thermal Resistance.......................................... 4.3 Operating Ranges ............................................ 4.4 Power-Up and Power-Down ............................. 4.5 DC Characteristics............................................ 24 24 24 24 25 27 5. Timing Specifications................................................ 5.1 Key to Switching Waveforms............................ 5.2 AC Test Conditions........................................... 5.3 Reset ................................................................ 28 28 28 29 Document Number: 002-19099 Rev. *A Physical Interface ....................................................... 37 6.1 FAB024 24-Ball BGA Package.......................... 37 Software Interface 7. Address Space Maps.................................................. 39 7.1 Overview............................................................ 39 7.2 Flash Memory Array .......................................... 39 7.3 ID-CFI Address Space....................................... 41 7.4 OTP Address Space.......................................... 41 7.5 Registers ........................................................... 42 8. Data Protection ........................................................... 51 8.1 Secure Silicon Region (OTP) ............................ 51 8.2 Write Enable Command .................................... 51 8.3 Block Protection................................................. 52 8.4 Advanced Sector Protection .............................. 53 9. Commands .................................................................. 57 9.1 Command Set Summary ................................... 58 9.2 Identification Commands ................................... 64 9.3 Register Access Commands ............................. 66 9.4 Read Memory Array Commands ....................... 77 9.5 Program Flash Array Commands ...................... 94 9.6 Erase Flash Array Commands ........................ 102 9.7 One Time Program Array Commands ............. 108 9.8 Advanced Sector Protection Commands......... 109 9.9 Reset Commands............................................ 115 9.10 Embedded Algorithm Performance Tables...... 117 10. Data Integrity ............................................................. 118 10.1 Erase Endurance............................................. 118 10.2 Data Retention................................................. 118 11. Software Interface Reference .................................. 119 11.1 Command Summary........................................ 119 11.2 Device ID and Common Flash Interface (ID-CFI) Address Map............................................................... 121 11.3 Device ID and Common Flash Interface (ID-CFI) ASO Map -- Automotive Only .................................... 133 11.4 Registers ......................................................... 133 11.5 Initial Delivery State......................................... 137 12. Ordering Information ................................................ 138 13. Contacting Cypress .................................................. 138 14. Revision History........................................................ 139 Hardware Interface 2. SDR AC Characteristics .................................... 31 DDR AC Characteristics .................................... 35 Page 3 of 140 S25FL128S / S25FL256S 1. Overview 1.1 General Description The Cypress S25FL128S and S25FL256S devices are flash non-volatile memory products using: MirrorBit technology - that stores two data bits in each memory array transistor Eclipse architecture - that dramatically improves program and erase performance 65 nm process lithography This family of devices connect to a host system via a Serial Peripheral Interface (SPI). Traditional SPI single bit serial input and output (SIngle I/O or SIO) is supported as well as optional two bit (Dual I/O or DIO) and four bit (Quad I/O or QIO) serial commands. This multiple width interface is called SPI Multi-I/O or MIO. In addition, the FL-S family adds support for Double Data Rate (DDR) read commands for SIO, DIO, and QIO that transfer address and read data on both edges of the clock. The Eclipse architecture features a Page Programming Buffer that allows up to 128 words (256 bytes) or 256 words (512 bytes) to be programmed in one operation, resulting in faster effective programming and erase than prior generation SPI program or erase algorithms. Executing code directly from flash memory is often called Execute-In-Place or XIP. By using FL-S devices at the higher clock rates supported, with QIO or DDR-QIO commands, the instruction read transfer rate can match or exceed traditional parallel interface, asynchronous, NOR flash memories while reducing signal count dramatically. The S25FL128S and S25FL256S products offer high densities coupled with the flexibility and fast performance required by a variety of embedded applications. They are ideal for code shadowing, XIP, and data storage. Document Number: 002-19099 Rev. *A Page 4 of 140 S25FL128S / S25FL256S 1.2 Migration Notes 1.2.1 Features Comparison The S25FL128S and S25FL256S devices are command set and footprint compatible with prior generation FL-K and FL-P families. Table 1 FL Generations Comparison Parameter Technology Node Architecture FL-K FL-P FL-S 90 nm 90 nm 65 nm Floating Gate MirrorBit MirrorBit Eclipse Release Date In Production In Production 2H2011 Density 4 Mb - 128 Mb 32 Mb - 256 Mb 128 Mb - 256 Mb Bus Width Supply Voltage Normal Read Speed (SDR) Fast Read Speed (SDR) x1, x2, x4 x1, x2, x4 x1, x2, x4 2.7V - 3.6V 2.7V - 3.6V 2.7V - 3.6V / 1.65V - 3.6V VIO 6 MB/s (50 MHz) 5 MB/s (40 MHz) 6 MB/s (50 MHz) 13 MB/s (104 MHz) 13 MB/s (104 MHz) 17 MB/s (133 MHz) Dual Read Speed (SDR) 26 MB/s (104 MHz) 20 MB/s (80 MHz) 26 MB/s (104 MHz) Quad Read Speed (SDR) 52 MB/s (104 MHz) 40 MB/s (80 MHz) 52 MB/s (104 MHz) Fast Read Speed (DDR) - - 20 MB/s (80 MHz) Dual Read Speed (DDR) - - 40 MB/s (80 MHz) Quad Read Speed (DDR) Program Buffer Size Erase Sector Size Parameter Sector Size Sector Erase Time (typ.) Page Programming Time (typ.) OTP - - 80 MB/s (80 MHz) 256B 256B 256B / 512B 4 kB / 32 kB / 64 kB 64 kB / 256 kB 64 kB / 256 kB 4 kB 4 kB 4 kB (option) 30 ms (4 kB), 150 ms (64 kB) 500 ms (64 kB) 171 ms (64 kB), 685ms (256 kB) 700 s (256B) 1500 s (256B) 400 s (256B), 540 s (512B) 768B (3 x 256B) 506B 1024B Advanced Sector Protection No No Yes Auto Boot Mode No No Yes Erase Suspend/Resume Yes No Yes Program Suspend/Resume Operating Temperature Yes No Yes -40C to +85C -40C to +85C / +105C -55C to +125C Notes: 1. 256B program page option only for 128-Mb and 256-Mb density FL-S devices. 4. FL-K family devices can erase 4-kB sectors in groups of 32 kB or 64 kB. 2. FL-P column indicates FL129P MIO SPI device (for 128-Mb density). 5. Refer to individual data sheets for further details. 3. 64-kB sector erase option only for 128-Mb/256-Mb density FL-P and FL-S devices. 1.2.2 1.2.2.1 Known Differences from Prior Generations Error Reporting Prior generation FL memories either do not have error status bits or do not set them if program or erase is attempted on a protected sector. The FL-S family does have error reporting status bits for program and erase operations. These can be set when there is an internal failure to program or erase or when there is an attempt to program or erase a protected sector. In either case the program or erase operation did not complete as requested by the command. 1.2.2.2 Secure Silicon Region (OTP) The size and format (address map) of the One Time Program area is different from prior generations. The method for protecting each portion of the OTP area is different. For additional details see Secure Silicon Region (OTP) on page 51. Document Number: 002-19099 Rev. *A Page 5 of 140 S25FL128S / S25FL256S 1.2.2.3 Configuration Register Freeze Bit The configuration register Freeze bit CR1[0], locks the state of the Block Protection bits as in prior generations. In the FL-S family it also locks the state of the configuration register TBPARM bit CR1[2], TBPROT bit CR1[5], and the Secure Silicon Region (OTP) area. 1.2.2.4 Sector Erase Commands The command for erasing an 8-kbyte area (two 4-kbyte sectors) is not supported. The command for erasing a 4-kbyte sector is supported only in the 128-Mbit and 256-Mbit density FL-S devices and only for use on the thirty two 4-kbyte parameter sectors at the top or bottom of the device address space. The erase command for 64-kbyte sectors are supported for the 128-Mbit and 256-Mbit density FL-S devices when the ordering option for 4-kbyte parameter sectors with 64-kbyte uniform sectors are used. The 64-kbyte erase command may be applied to erase a group of sixteen 4-kbyte sectors. The erase command for a 256-kbyte sector replaces the 64-kbyte erase command when the ordering option for 256-kbyte uniform sectors is used for the 128-Mbit and 256-Mbit density FL-S devices. 1.2.2.5 Deep Power Down The Deep Power Down (DPD) function is not supported in FL-S family devices. The legacy DPD (B9h) command code is instead used to enable legacy SPI memory controllers, that can issue the former DPD command, to access a new bank address register. The bank address register allows SPI memory controllers that do not support more than 24 bits of address, the ability to provide higher order address bits for commands, as needed to access the larger address space of the 256-Mbit density FL-S device. For additional information see Extended Address on page 39. 1.2.2.6 New Features The FL-S family introduces several new features to SPI category memories: Extended address for access to higher memory density. AutoBoot for simpler access to boot code following power up. Enhanced High Performance read commands using mode bits to eliminate the overhead of SIO instructions when repeating the same type of read command. Multiple options for initial read latency (number of dummy cycles) for faster initial access time or higher clock rate read commands. DDR read commands for SIO, DIO, and QIO. Automatic ECC for enhanced data integrity. Advanced Sector Protection for individually controlling the protection of each sector. This is very similar to the Advanced Sector Protection feature found in several other Cypress parallel interface NOR memory families. Document Number: 002-19099 Rev. *A Page 6 of 140 S25FL128S / S25FL256S 1.3 Glossary Command All information transferred between the host system and memory during one period while CS# is low. This includes the instruction (sometimes called an operation code or opcode) and any required address, mode bits, latency cycles, or data. DDP (Dual Die Package) Two die stacked within the same package to increase the memory capacity of a single package. Often also referred to as a Multi-Chip Package (MCP) DDR (Double Data Rate) When input and output are latched on every edge of SCK. ECC ECC Unit = 16 byte aligned and length data groups in the main Flash array and OTP array, each of which has its own hidden ECC syndrome to enable error correction on each group. Flash The name for a type of Electrical Erase Programmable Read Only Memory (EEPROM) that erases large blocks of memory bits in parallel, making the erase operation much faster than early EEPROM. High A signal voltage level VIH or a logic level representing a binary one (1). Instruction The 8 bit code indicating the function to be performed by a command (sometimes called an operation code or opcode). The instruction is always the first 8 bits transferred from host system to the memory in any command. Low A signal voltage level VIL or a logic level representing a binary zero (0). LSB (Least Significant Bit) Generally the right most bit, with the lowest order of magnitude value, within a group of bits of a register or data value. MSB (Most Significant Bit) Generally the left most bit, with the highest order of magnitude value, within a group of bits of a register or data value. Non-Volatile No power is needed to maintain data stored in the memory. OPN (Ordering Part Number) The alphanumeric string specifying the memory device type, density, package, factory non-volatile configuration, etc. used to select the desired device. Page 512 bytes or 256 bytes aligned and length group of data. The size assigned for a page depends on the Ordering Part Number. PCB Printed Circuit Board PPAP Production Part Approval Process Register Bit References Are in the format: Register_name[bit_number] or Register_name[bit_range_MSB: bit_range_LSB] SDR (Single Data Rate) When input is latched on the rising edge and output on the falling edge of SCK. Sector Erase unit size; depending on device model and sector location this may be 4 kbytes, 64 kbytes or 256 kbytes. Write An operation that changes data within volatile or non-volatile registers bits or non-volatile flash memory. When changing non-volatile data, an erase and reprogramming of any unchanged non-volatile data is done, as part of the operation, such that the non-volatile data is modified by the write operation, in the same way that volatile data is modified - as a single operation. The non-volatile data appears to the host system to be updated by the single write command, without the need for separate commands for erase and reprogram of adjacent, but unaffected data. 1.4 1.4.1 Other Resources Cypress Flash Memory Roadmap http://www.cypress.com/Flash-Roadmap 1.4.2 Links to Software http://www.cypress.com/software-and-drivers-cypress-flash-memory 1.4.3 Links to Application Notes http://www.cypress.com/cypressappnotes Document Number: 002-19099 Rev. *A Page 7 of 140 S25FL128S / S25FL256S Hardware Interface Serial Peripheral Interface with Multiple Input / Output (SPI-MIO) Many memory devices connect to their host system with separate parallel control, address, and data signals that require a large number of signal connections and larger package size. The large number of connections increase power consumption due to so many signals switching and the larger package increases cost. The S25FL128S and S25FL256S devices reduce the number of signals for connection to the host system by serially transferring all control, address, and data information over 4 to 6 signals. This reduces the cost of the memory package, reduces signal switching power, and either reduces the host connection count or frees host connectors for use in providing other features. The S25FL128S and S25FL256S devices use the industry standard single bit Serial Peripheral Interface (SPI) and also supports optional extension commands for two bit (Dual) and four bit (Quad) wide serial transfers. This multiple width interface is called SPI Multi-I/O or SPI-MIO. 2. Signal Descriptions 2.1 Input/Output Summary Table 2 Signal List Signal Name Type Description RESET# Input Hardware Reset: Low = device resets and returns to standby state, ready to receive a command. The signal has an internal pull-up resistor and may be left unconnected in the host system if not used. SCK Input Serial Clock CS# Input Chip Select SI / IO0 I/O Serial Input for single bit data commands or IO0 for Dual or Quad commands. SO / IO1 I/O Serial Output for single bit data commands. IO1 for Dual or Quad commands. WP# / IO2 I/O Write Protect when not in Quad mode. IO2 in Quad mode. The signal has an internal pull-up resistor and may be left unconnected in the host system if not used for Quad commands. HOLD# / IO3 I/O Hold (pause) serial transfer in single bit or Dual data commands. IO3 in Quad-I/O mode. The signal has an internal pull-up resistor and may be left unconnected in the host system if not used for Quad commands. VCC Supply Core Power Supply. VIO Supply Versatile I/O Power Supply. VSS Supply Ground. NC Unused Not Connected. No device internal signal is connected to the package connector nor is there any future plan to use the connector for a signal. The connection may safely be used for routing space for a signal on a Printed Circuit Board (PCB). However, any signal connected to an NC must not have voltage levels higher than VIO. RFU Reserved Reserved for Future Use. No device internal signal is currently connected to the package connector but there is potential future use of the connector for a signal. It is recommended to not use RFU connectors for PCB routing channels so that the PCB may take advantage of future enhanced features in compatible footprint devices. Reserved Do Not Use. A device internal signal may be connected to the package connector. The connection may be used by Cypress for test or other purposes and is not intended for connection to any host system signal. Any DNU signal related function will be inactive when the signal is at VIL. The signal has an internal pull-down resistor and may be left unconnected in the host system or may be tied to VSS. Do not use these connections for PCB signal routing channels. Do not connect any host system signal to this connection. DNU Document Number: 002-19099 Rev. *A Page 8 of 140 S25FL128S / S25FL256S 2.2 Address and Data Configuration Traditional SPI single bit wide commands (Single or SIO) send information from the host to the memory only on the SI signal. Data may be sent back to the host serially on the Serial Output (SO) signal. Dual or Quad Output commands send information from the host to the memory only on the SI signal. Data will be returned to the host as a sequence of bit pairs on IO0 and IO1 or four bit (nibble) groups on IO0, IO1, IO2, and IO3. Dual or Quad Input/Output (I/O) commands send information from the host to the memory as bit pairs on IO0 and IO1 or four bit (nibble) groups on IO0, IO1, IO2, and IO3. Data is returned to the host similarly as bit pairs on IO0 and IO1 or four bit (nibble) groups on IO0, IO1, IO2, and IO3. 2.3 RESET# The RESET# input provides a hardware method of resetting the device to standby state, ready for receiving a command. When RESET# is driven to logic low (VIL) for at least a period of tRP, the device: terminates any operation in progress, tristates all outputs, resets the volatile bits in the Configuration Register, resets the volatile bits in the Status Registers, resets the Bank Address Register to zero, loads the Program Buffer with all ones, reloads all internal configuration information necessary to bring the device to standby mode, and resets the internal Control Unit to standby state. RESET# causes the same initialization process as is performed when power comes up and requires tPU time. RESET# may be asserted low at any time. To ensure data integrity any operation that was interrupted by a hardware reset should be reinitiated once the device is ready to accept a command sequence. When RESET# is first asserted Low, the device draws ICC1 (50 MHz value) during tPU. If RESET# continues to be held at VSS the device draws CMOS standby current (ISB). RESET# has an internal pull-up resistor and may be left unconnected in the host system if not used. The RESET# input is not available on all packages options. When not available the RESET# input of the device is tied to the inactive state, inside the package. 2.4 Serial Clock (SCK) This input signal provides the synchronization reference for the SPI interface. Instructions, addresses, or data input are latched on the rising edge of the SCK signal. Data output changes after the falling edge of SCK, in SDR commands, and after every edge in DDR commands. 2.5 Chip Select (CS#) The chip select signal indicates when a command for the device is in process and the other signals are relevant for the memory device. When the CS# signal is at the logic high state, the device is not selected and all input signals are ignored and all output signals are high impedance. Unless an internal Program, Erase or Write Registers (WRR) embedded operation is in progress, the device will be in the Standby Power mode. Driving the CS# input to logic low state enables the device, placing it in the Active Power mode. After Power-up, a falling edge on CS# is required prior to the start of any command. Document Number: 002-19099 Rev. *A Page 9 of 140 S25FL128S / S25FL256S 2.6 Serial Input (SI) / IO0 This input signal is used to transfer data serially into the device. It receives instructions, addresses, and data to be programmed. Values are latched on the rising edge of serial SCK clock signal. SI becomes IO0 - an input and output during Dual and Quad commands for receiving instructions, addresses, and data to be programmed (values latched on rising edge of serial SCK clock signal) as well as shifting out data (on the falling edge of SCK, in SDR commands, and on every edge of SCK, in DDR commands). 2.7 Serial Output (SO) / IO1 This output signal is used to transfer data serially out of the device. Data is shifted out on the falling edge of the serial SCK clock signal. SO becomes IO1 - an input and output during Dual and Quad commands for receiving addresses, and data to be programmed (values latched on rising edge of serial SCK clock signal) as well as shifting out data (on the falling edge of SCK, in SDR commands, and on every edge of SCK, in DDR commands). 2.8 Write Protect (WP#) / IO2 When WP# is driven Low (VIL), during a WRR command and while the Status Register Write Disable (SRWD) bit of the Status Register is set to a 1, it is not possible to write to the Status and Configuration Registers. This prevents any alteration of the Block Protect (BP2, BP1, BP0) and TBPROT bits of the Status Register. As a consequence, all the data bytes in the memory area that are protected by the Block Protect and TBPROT bits, are also hardware protected against data modification if WP# is Low during a WRR command. The WP# function is not available when the Quad mode is enabled (CR[1]=1). The WP# function is replaced by IO2 for input and output during Quad mode for receiving addresses, and data to be programmed (values are latched on rising edge of the SCK signal) as well as shifting out data (on the falling edge of SCK, in SDR commands, and on every edge of SCK, in DDR commands). WP# has an internal pull-up resistor; when unconnected, WP# is at VIH and may be left unconnected in the host system if not used for Quad mode. 2.9 Hold (HOLD#) / IO3 The Hold (HOLD#) signal is used to pause any serial communications with the device without deselecting the device or stopping the serial clock. To enter the Hold condition, the device must be selected by driving the CS# input to the logic low state. It is recommended that the user keep the CS# input low state during the entire duration of the Hold condition. This is to ensure that the state of the interface logic remains unchanged from the moment of entering the Hold condition. If the CS# input is driven to the logic high state while the device is in the Hold condition, the interface logic of the device will be reset. To restart communication with the device, it is necessary to drive HOLD# to the logic high state while driving the CS# signal into the logic low state. This prevents the device from going back into the Hold condition. The Hold condition starts on the falling edge of the Hold (HOLD#) signal, provided that this coincides with SCK being at the logic low state. If the falling edge does not coincide with the SCK signal being at the logic low state, the Hold condition starts whenever the SCK signal reaches the logic low state. Taking the HOLD# signal to the logic low state does not terminate any Write, Program or Erase operation that is currently in progress. During the Hold condition, SO is in high impedance and both the SI and SCK input are Don't Care. The Hold condition ends on the rising edge of the Hold (HOLD#) signal, provided that this coincides with the SCK signal being at the logic low state. If the rising edge does not coincide with the SCK signal being at the logic low state, the Hold condition ends whenever the SCK signal reaches the logic low state. The HOLD# function is not available when the Quad mode is enabled (CR1[1] =1). The Hold function is replaced by IO3 for input and output during Quad mode for receiving addresses, and data to be programmed (values are latched on rising edge of the SCK signal) as well as shifting out data (on the falling edge of SCK, in SDR commands, and on every edge of SCK, in DDR commands). The HOLD# signal has an internal pull-up resistor and may be left unconnected in the host system if not used for Quad mode. Document Number: 002-19099 Rev. *A Page 10 of 140 S25FL128S / S25FL256S Figure 1 HOLD Mode Operation CS# SCK HOLD# Hold Condition Standard Use 2.10 SI_or_IO_(during_input) Valid Input SO_or_IO_(internal) A SO_or_IO_(external) A Don't Care Hold Condition Non-standard Use Valid Input B B Don't Care C B C Valid Input D E D E Core Voltage Supply (VCC) VCC is the voltage source for all device internal logic. It is the single voltage used for all device internal functions including read, program, and erase. The voltage may vary from 2.7V to 3.6V. 2.11 Versatile I/O Power Supply (VIO) The Versatile I/O (VIO) supply is the voltage source for all device input receivers and output drivers and allows the host system to set the voltage levels that the device tolerates on all inputs and drives on outputs (address, control, and IO signals). The VIO range is 1.65V to VCC. VIO cannot be greater than VCC. For example, a VIO of 1.65V - 3.6V allows for I/O at the 1.8V, 2.5V or 3V levels, driving and receiving signals to and from other 1.8V, 2.5V or 3V devices on the same data bus. VIO may be tied to VCC so that interface signals operate at the same voltage as the core of the device. VIO is not available in all package options, when not available the VIO supply is tied to VCC internal to the package. During the rise of power supplies the VIO supply voltage must remain less than or equal to the VCC supply voltage. This supply is not available in all package options. For a backward compatible SO16 footprint, the VIO supply is tied to VCC inside the package; thus, the IO will function at VCC level. 2.12 Supply and Signal Ground (VSS) VSS is the common voltage drain and ground reference for the device core, input signal receivers, and output drivers. 2.13 Not Connected (NC) No device internal signal is connected to the package connector nor is there any future plan to use the connector for a signal. The connection may safely be used for routing space for a signal on a Printed Circuit Board (PCB). However, any signal connected to an NC must not have voltage levels higher than VIO. 2.14 Reserved for Future Use (RFU) No device internal signal is currently connected to the package connector but is there potential future use of the connector. It is recommended to not use RFU connectors for PCB routing channels so that the PCB may take advantage of future enhanced features in compatible footprint devices. 2.15 Do Not Use (DNU) A device internal signal may be connected to the package connector. The connection may be used by Cypress for test or other purposes and is not intended for connection to any host system signal. Any DNU signal related function will be inactive when the signal is at VIL. The signal has an internal pull-down resistor and may be left unconnected in the host system or may be tied to VSS. Do not use these connections for PCB signal routing channels. Do not connect any host system signal to these connections. Document Number: 002-19099 Rev. *A Page 11 of 140 S25FL128S / S25FL256S 2.16 Block Diagrams Figure 2 Bus Master and Memory Devices on the SPI Bus - Single Bit Data Path HOLD# HOLD# WP# WP# SI SO SI SO SCK CS2# CS1# SCK CS2# CS1# FL-S Flash FL-S Flash SPI Bus Master Figure 3 Bus Master and Memory Devices on the SPI Bus - Dual Bit Data Path HOLD# HOLD# WP# WP# IO1 IO1 IO0 IO0 SCK CS2# CS1# SCK CS2# CS1# FL-S Flash FL-S Flash SPI Bus Master Figure 4 Bus Master and Memory Devices on the SPI Bus - Quad Bit Data Path IO3 IO3 IO2 IO1 IO0 SCK CS2# CS1# SPI Bus Master Document Number: 002-19099 Rev. *A IO2 IO1 IO0 SCK CS2# CS1# FL-S Flash FL-S Flash Page 12 of 140 S25FL128S / S25FL256S 3. Signal Protocols 3.1 SPI Clock Modes 3.1.1 Single Data Rate (SDR) The S25FL128S and S25FL256S devices can be driven by an embedded microcontroller (bus master) in either of the two following clocking modes. Mode 0 with Clock Polarity (CPOL) = 0 and, Clock Phase (CPHA) = 0 Mode 3 with CPOL = 1 and, CPHA = 1 For these two modes, input data into the device is always latched in on the rising edge of the SCK signal and the output data is always available from the falling edge of the SCK clock signal. The difference between the two modes is the clock polarity when the bus master is in standby mode and not transferring any data. SCK will stay at logic low state with CPOL = 0, CPHA = 0 SCK will stay at logic high state with CPOL = 1, CPHA = 1 Figure 5 SPI SDR Modes Supported CPOL=0_CPHA=0_SCK CPOL=1_CPHA=1_SCK CS# SI SO MSB MSB Timing diagrams throughout the remainder of the document are generally shown as both mode 0 and 3 by showing SCK as both high and low at the fall of CS#. In some cases a timing diagram may show only mode 0 with SCK low at the fall of CS#. In such a case, mode 3 timing simply means clock is high at the fall of CS# so no SCK rising edge set up or hold time to the falling edge of CS# is needed for mode 3. SCK cycles are measured (counted) from one falling edge of SCK to the next falling edge of SCK. In mode 0 the beginning of the first SCK cycle in a command is measured from the falling edge of CS# to the first falling edge of SCK because SCK is already low at the beginning of a command. 3.1.2 Double Data Rate (DDR) Mode 0 and Mode 3 are also supported for DDR commands. In DDR commands, the instruction bits are always latched on the rising edge of clock, the same as in SDR commands. However, the address and input data that follow the instruction are latched on both the rising and falling edges of SCK. The first address bit is latched on the first rising edge of SCK following the falling edge at the end of the last instruction bit. The first bit of output data is driven on the falling edge at the end of the last access latency (dummy) cycle. SCK cycles are measured (counted) in the same way as in SDR commands, from one falling edge of SCK to the next falling edge of SCK. In mode 0 the beginning of the first SCK cycle in a command is measured from the falling edge of CS# to the first falling edge of SCK because SCK is already low at the beginning of a command. Document Number: 002-19099 Rev. *A Page 13 of 140 S25FL128S / S25FL256S Figure 6 SPI DDR Modes Supported CPOL=0_CPHA=0_SCK CPOL=1_CPHA=1_SCK CS# Transfer_Phase SI Instruction Inst. 7 SO 3.2 Address Inst. 0 A31 A30 Mode A0 M7 M6 Dummy / DLP Read Data M0 DLP7 DLP0 D0 D1 Command Protocol All communication between the host system and S25FL128S and S25FL256S memory devices is in the form of units called commands. All commands begin with an instruction that selects the type of information transfer or device operation to be performed. Commands may also have an address, instruction modifier, latency period, data transfer to the memory, or data transfer from the memory. All instruction, address, and data information is transferred serially between the host system and memory device. All instructions are transferred from host to memory as a single bit serial sequence on the SI signal. Single bit wide commands may provide an address or data sent only on the SI signal. Data may be sent back to the host serially on the SO signal. Dual or Quad Output commands provide an address sent to the memory only on the SI signal. Data will be returned to the host as a sequence of bit pairs on IO0 and IO1 or four bit (nibble) groups on IO0, IO1, IO2, and IO3. Dual or Quad Input/Output (I/O) commands provide an address sent from the host as bit pairs on IO0 and IO1 or, four bit (nibble) groups on IO0, IO1, IO2, and IO3. Data is returned to the host similarly as bit pairs on IO0 and IO1 or, four bit (nibble) groups on IO0, IO1, IO2, and IO3. Commands are structured as follows: Each command begins with CS# going low and ends with CS# returning high. The memory device is selected by the host driving the Chip Select (CS#) signal low throughout a command. The serial clock (SCK) marks the transfer of each bit or group of bits between the host and memory. Each command begins with an eight bit (byte) instruction. The instruction is always presented only as a single bit serial sequence on the Serial Input (SI) signal with one bit transferred to the memory device on each SCK rising edge. The instruction selects the type of information transfer or device operation to be performed. The instruction may be stand alone or may be followed by address bits to select a location within one of several address spaces in the device. The instruction determines the address space used. The address may be either a 24-bit or a 32-bit byte boundary, address. The address transfers occur on SCK rising edge, in SDR commands, or on every SCK edge, in DDR commands. The width of all transfers following the instruction are determined by the instruction sent. Following transfers may continue to be single bit serial on only the SI or Serial Output (SO) signals, they may be done in two bit groups per (dual) transfer on the IO0 and IO1 signals, or they may be done in 4 bit groups per (quad) transfer on the IO0-IO3 signals. Within the dual or quad groups the least significant bit is on IO0. More significant bits are placed in significance order on each higher numbered IO signal. SIngle bits or parallel bit groups are transferred in most to least significant bit order. Some instructions send an instruction modifier called mode bits, following the address, to indicate that the next command will be of the same type with an implied, rather than an explicit, instruction. The next command thus does not provide an instruction byte, only a new address and mode bits. This reduces the time needed to send each command when the same command type is repeated in a sequence of commands. The mode bit transfers occur on SCK rising edge, in SDR commands, or on every SCK edge, in DDR commands. The address or mode bits may be followed by write data to be stored in the memory device or by a read latency period before read data is returned to the host. Write data bit transfers occur on SCK rising edge, in SDR commands, or on every SCK edge, in DDR commands. Document Number: 002-19099 Rev. *A Page 14 of 140 S25FL128S / S25FL256S SCK continues to toggle during any read access latency period. The latency may be zero to several SCK cycles (also referred to as dummy cycles). At the end of the read latency cycles, the first read data bits are driven from the outputs on SCK falling edge at the end of the last read latency cycle. The first read data bits are considered transferred to the host on the following SCK rising edge. Each following transfer occurs on the next SCK rising edge, in SDR commands, or on every SCK edge, in DDR commands. If the command returns read data to the host, the device continues sending data transfers until the host takes the CS# signal high. The CS# signal can be driven high after any transfer in the read data sequence. This will terminate the command. At the end of a command that does not return data, the host drives the CS# input high. The CS# signal must go high after the eighth bit, of a stand alone instruction or, of the last write data byte that is transferred. That is, the CS# signal must be driven high when the number of clock cycles after CS# signal was driven low is an exact multiple of eight cycles. If the CS# signal does not go high exactly at the eight SCK cycle boundary of the instruction or write data, the command is rejected and not executed. All instruction, address, and mode bits are shifted into the device with the Most Significant Bits (MSB) first. The data bits are shifted in and out of the device MSB first. All data is transferred in byte units with the lowest address byte sent first. Following bytes of data are sent in lowest to highest byte address order i.e. the byte address increments. All attempts to read the flash memory array during a program, erase, or a write cycle (embedded operations) are ignored. The embedded operation will continue to execute without any affect. A very limited set of commands are accepted during an embedded operation. These are discussed in the individual command descriptions. Depending on the command, the time for execution varies. A command to read status information from an executing command is available to determine when the command completes execution and whether the command was successful. 3.2.1 Command Sequence Examples Figure 7 Stand Alone Instruction Command CS# SCK SI 7 6 5 4 3 2 1 0 SO Phase Instruction Figure 8 Single Bit Wide Input Command CS# SCK SI 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 SO Phase Document Number: 002-19099 Rev. *A Instruction Input Data Page 15 of 140 S25FL128S / S25FL256S Figure 9 Single Bit Wide Output Command CS# SCK SI 7 6 5 4 3 2 1 0 SO 7 Phase 6 5 Instruction 4 3 2 1 0 7 6 5 Data 1 4 3 2 1 0 Data 2 Figure 10 Single Bit Wide I/O Command without Latency CS# SCK SI 7 6 5 4 3 2 1 0 31 1 0 SO 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Phase Instruction Address Data 1 Data 2 Figure 11 Single Bit Wide I/O Command with Latency CS# SCK SI 7 6 5 4 3 2 1 0 31 1 0 SO 7 6 5 4 3 2 1 0 Phase Instruction Address Dummy Cycles Data 1 Figure 12 Dual Output Command CS# SCK IO0 7 6 5 4 3 2 1 0 31 30 29 0 6 4 2 0 6 4 2 0 IO1 7 5 3 1 7 5 3 1 Phase Instruction Address 6 Dummy Data 1 Data 2 Figure 13 Quad Output Command without Latency CS# SCK IO0 4 0 4 0 4 0 4 0 4 0 4 IO1 5 1 5 1 5 1 5 1 5 1 5 IO2 6 2 6 2 6 2 6 2 6 2 6 IO3 7 3 7 3 7 3 7 3 7 3 7 Phase 7 6 5 4 3 2 Instruction Document Number: 002-19099 Rev. *A 1 0 31 1 Address 0 Data 1 Data 2 Data 3 Data 4 Data 5 ... Page 16 of 140 S25FL128S / S25FL256S Figure 14 Dual I/O Command CS# SCK IO0 7 6 5 4 3 2 1 0 30 2 0 6 4 2 0 6 4 2 0 IO1 31 3 1 7 5 3 1 7 5 3 1 Phase Instruction Address Dummy Data 1 Data 2 Figure 15 Quad I/O Command CS# SCK IO0 7 6 5 4 3 2 1 0 28 4 0 4 4 0 4 0 4 0 4 0 IO1 29 5 1 5 5 1 5 1 5 1 5 1 IO2 30 6 2 6 6 2 6 2 6 2 6 2 IO3 31 7 3 7 7 3 7 3 7 3 7 3 Phase Instruction Address Mode Dummy D1 D2 D3 D4 Figure 16 DDR Fast Read with EHPLC = 00b CS# SCK SI 7 6 5 4 3 2 1 0 3130 0 7 6 5 4 3 2 1 0 SO 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Phase Instruction Address Mode Dummy Data 1 Data 2 Figure 17 DDR Dual I/O Read with EHPLC = 01b and DLP CS# SCK IO0 7 6 5 4 3 2 1 IO1 Phase Instruction 0 30 28 0 6 4 2 0 7 6 5 4 3 2 1 0 6 4 2 0 6 31 29 1 7 5 3 1 7 6 5 4 3 2 1 0 7 5 3 1 7 Address Mode Dum DLP Data 1 Figure 18 DDR Quad I/O Read CS# SCK IO0 0 28 24 2016 12 8 4 0 4 0 7 6 5 4 3 2 1 0 4 0 4 0 IO1 29 25 2117 13 9 5 1 5 1 7 6 5 4 3 2 1 0 5 1 5 1 IO2 30 26 2218 14 10 6 2 6 2 7 6 5 4 3 2 1 0 6 2 6 2 IO3 31 27 2319 15 11 7 3 7 3 7 6 5 4 3 2 1 0 7 3 7 3 Phase 7 6 5 4 3 Instruction 2 1 Address Mode Dummy DLP D1 D2 Additional sequence diagrams, specific to each command, are provided in Section 9., Commands on page 57. Document Number: 002-19099 Rev. *A Page 17 of 140 S25FL128S / S25FL256S 3.3 Interface States This section describes the input and output signal levels as related to the SPI interface behavior. Table 3 Interface States Summary VCC VIO RESET# SCK CS# HOLD# / IO3 WP# / IO2 SO / IO1 SI / IO0 Power-Off < VCC (low) VCC X X X X X Z X Low Power Hardware Data Protection < VCC (cutoff) VCC X X X X X Z X Power-On (Cold) Reset VCC (min) VIO (min) VCC X X X X X Z X Hardware (Warm) Reset VCC (min) VIO (min) VCC HL X X X X Z X Interface Standby VCC (min) VIO (min) VCC HH X HH X X Z X Instruction Cycle VCC (min) VIO (min) VCC HH HT HL HH HV Z HV Hold Cycle VCC (min) VIO (min) VCC HH HV or HT HL HL X X X Single Input Cycle Host to Memory Transfer VCC (min) VIO (min) VCC HH HT HL HH X Z HV Single Latency (Dummy) Cycle VCC (min) VIO (min) VCC HH HT HL HH X Z X Single Output Cycle Memory to Host Transfer VCC (min) VIO (min) VCC HH HT HL HH X MV X Dual Input Cycle Host to Memory Transfer VCC (min) VIO (min) VCC HH HT HL HH X HV HV Dual Latency (Dummy) Cycle VCC (min) VIO (min) VCC HH HT HL HH X X X Dual Output Cycle Memory to Host Transfer VCC (min) VIO (min) VCC HH HT HL HH X MV MV QPP Address Input Cycle Host to Memory Transfer VCC (min) VIO (min) VCC HH HT HL X X X HV Quad Input Cycle Host to Memory Transfer VCC (min) VIO (min) VCC HH HT HL HV HV HV HV Quad Latency (Dummy) Cycle VCC (min) VIO (min) VCC HH HT HL X X X X Quad Output Cycle Memory to Host Transfer VCC (min) VIO (min) VCC HH HT HL MV MV MV MV DDR Single Input Cycle Host to Memory Transfer VCC (min) VIO (min) VCC HH HT HL X X X HV DDR Dual Input Cycle Host to Memory Transfer VCC (min) VIO (min) VCC HH HT HL X X HV HV DDR Quad Input Cycle Host to Memory Transfer VCC (min) VIO (min) VCC HH HT HL HV HV HV HV DDR Latency (Dummy) Cycle VCC (min) VIO (min) VCC HH HT HL MV or Z MV or Z MV or Z MV or Z DDR Single Output Cycle Memory to Host Transfer VCC (min) VIO (min) VCC HH HT HL Z Z MV X DDR Dual Output Cycle Memory to Host Transfer VCC (min) VIO (min) VCC HH HT HL Z Z MV MV DDR Quad Output Cycle Memory to Host Transfer VCC (min) VIO (min) VCC HH HT HL MV MV MV MV Interface State Legend Z = no driver - floating signal HL = Host driving VIL HH = Host driving VIH HV = either HL or HH X = HL or HH or Z Document Number: 002-19099 Rev. *A HT ML MH MV = toggling between HL and HH = Memory driving VIL = Memory driving VIH = either ML or MH Page 18 of 140 S25FL128S / S25FL256S 3.3.1 Power-Off When the core supply voltage is at or below the VCC (low) voltage, the device is considered to be powered off. The device does not react to external signals, and is prevented from performing any program or erase operation. 3.3.2 Low Power Hardware Data Protection When VCC is less than VCC (cut-off) the memory device will ignore commands to ensure that program and erase operations can not start when the core supply voltage is out of the operating range. 3.3.3 Power-On (Cold) Reset When the core voltage supply remains at or below the VCC (low) voltage for tPD time, then rises to VCC (Minimum) the device will begin its Power-On Reset (POR) process. POR continues until the end of tPU. During tPU the device does not react to external input signals nor drive any outputs. Following the end of tPU the device transitions to the Interface Standby state and can accept commands. For additional information on POR see Power-On (Cold) Reset on page 29. 3.3.4 Hardware (Warm) Reset Some of the device package options provide a RESET# input. When RESET# is driven low for tRP time the device starts the hardware reset process. The process continues for tRPH time. Following the end of both tRPH and the reset hold time following the rise of RESET# (tRH) the device transitions to the Interface Standby state and can accept commands. For additional information on hardware reset see POR followed by Hardware Reset on page 29. 3.3.5 Interface Standby When CS# is high the SPI interface is in standby state. Inputs other than RESET# are ignored. The interface waits for the beginning of a new command. The next interface state is Instruction Cycle when CS# goes low to begin a new command. While in interface standby state the memory device draws standby current (ISB) if no embedded algorithm is in progress. If an embedded algorithm is in progress, the related current is drawn until the end of the algorithm when the entire device returns to standby current draw. 3.3.6 Instruction Cycle When the host drives the MSB of an instruction and CS# goes low, on the next rising edge of SCK the device captures the MSB of the instruction that begins the new command. On each following rising edge of SCK the device captures the next lower significance bit of the 8-bit instruction. The host keeps RESET# high, CS# low, HOLD# high, and drives Write Protect (WP#) signal as needed for the instruction. However, WP# is only relevant during instruction cycles of a WRR command and is otherwise ignored. Each instruction selects the address space that is operated on and the transfer format used during the remainder of the command. The transfer format may be Single, Dual output, Quad output, Dual I/O, Quad I/O, DDR Single I/O, DDR Dual I/O, or DDR Quad I/O. The expected next interface state depends on the instruction received. Some commands are stand alone, needing no address or data transfer to or from the memory. The host returns CS# high after the rising edge of SCK for the eighth bit of the instruction in such commands. The next interface state in this case is Interface Standby. 3.3.7 Hold When Quad mode is not enabled (CR[1]=0) the HOLD# / IO3 signal is used as the HOLD# input. The host keeps RESET# high, HOLD# low, SCK may be at a valid level or continue toggling, and CS# is low. When HOLD# is low a command is paused, as though SCK were held low. SI / IO0 and SO / IO1 ignore the input level when acting as inputs and are high impedance when acting as outputs during hold state. Whether these signals are input or output depends on the command and the point in the command sequence when HOLD# is asserted low. When HOLD# returns high the next state is the same state the interface was in just before HOLD# was asserted low. When Quad mode is enabled the HOLD# / IO3 signal is used as IO3. During DDR commands the HOLD# and WP# inputs are ignored. Document Number: 002-19099 Rev. *A Page 19 of 140 S25FL128S / S25FL256S 3.3.8 Single Input Cycle - Host to Memory Transfer Several commands transfer information after the instruction on the single serial input (SI) signal from host to the memory device. The dual output, and quad output commands send address to the memory using only SI but return read data using the I/O signals. The host keeps RESET# high, CS# low, HOLD# high, and drives SI as needed for the command. The memory does not drive the Serial Output (SO) signal. The expected next interface state depends on the instruction. Some instructions continue sending address or data to the memory using additional Single Input Cycles. Others may transition to Single Latency, or directly to Single, Dual, or Quad Output. 3.3.9 Single Latency (Dummy) Cycle Read commands may have zero to several latency cycles during which read data is read from the main flash memory array before transfer to the host. The number of latency cycles are determined by the Latency Code in the configuration register (CR[7:6]). During the latency cycles, the host keeps RESET# high, CS# low, and HOLD# high. The Write Protect (WP#) signal is ignored. The host may drive the SI signal during these cycles or the host may leave SI floating. The memory does not use any data driven on SI / I/O0 or other I/O signals during the latency cycles. In dual or quad read commands, the host must stop driving the I/O signals on the falling edge at the end of the last latency cycle. It is recommended that the host stop driving I/O signals during latency cycles so that there is sufficient time for the host drivers to turn off before the memory begins to drive at the end of the latency cycles. This prevents driver conflict between host and memory when the signal direction changes. The memory does not drive the Serial Output (SO) or I/ O signals during the latency cycles. The next interface state depends on the command structure i.e. the number of latency cycles, and whether the read is single, dual, or quad width. 3.3.10 Single Output Cycle - Memory to Host Transfer Several commands transfer information back to the host on the single Serial Output (SO) signal. The host keeps RESET# high, CS# low, and HOLD# high. The Write Protect (WP#) signal is ignored. The memory ignores the Serial Input (SI) signal. The memory drives SO with data. The next interface state continues to be Single Output Cycle until the host returns CS# to high ending the command. 3.3.11 Dual Input Cycle - Host to Memory Transfer The Read Dual I/O command transfers two address or mode bits to the memory in each cycle. The host keeps RESET# high, CS# low, HOLD# high. The Write Protect (WP#) signal is ignored. The host drives address on SI / IO0 and SO / IO1. The next interface state following the delivery of address and mode bits is a Dual Latency Cycle if there are latency cycles needed or Dual Output Cycle if no latency is required. 3.3.12 Dual Latency (Dummy) Cycle Read commands may have zero to several latency cycles during which read data is read from the main flash memory array before transfer to the host. The number of latency cycles are determined by the Latency Code in the configuration register (CR[7:6]). During the latency cycles, the host keeps RESET# high, CS# low, and HOLD# high. The Write Protect (WP#) signal is ignored. The host may drive the SI / IO0 and SO / IO1 signals during these cycles or the host may leave SI / IO0 and SO / IO1 floating. The memory does not use any data driven on SI / IO0 and SO / IO1 during the latency cycles. The host must stop driving SI / IO0 and SO / IO1 on the falling edge at the end of the last latency cycle. It is recommended that the host stop driving them during all latency cycles so that there is sufficient time for the host drivers to turn off before the memory begins to drive at the end of the latency cycles. This prevents driver conflict between host and memory when the signal direction changes. The memory does not drive the SI / IO0 and SO / IO1 signals during the latency cycles. The next interface state following the last latency cycle is a Dual Output Cycle. 3.3.13 Dual Output Cycle - Memory to Host Transfer The Read Dual Output and Read Dual I/O return data to the host two bits in each cycle. The host keeps RESET# high, CS# low, and HOLD# high. The Write Protect (WP#) signal is ignored. The memory drives data on the SI / IO0 and SO / IO1 signals during the dual output cycles. Document Number: 002-19099 Rev. *A Page 20 of 140 S25FL128S / S25FL256S The next interface state continues to be Dual Output Cycle until the host returns CS# to high ending the command. 3.3.14 QPP or QOR Address Input Cycle The Quad Page Program and Quad Output Read commands send address to the memory only on IO0. The other IO signals are ignored because the device must be in Quad mode for these commands thus the Hold and Write Protect features are not active. The host keeps RESET# high, CS# low, and drives IO0. For QPP the next interface state following the delivery of address is the Quad Input Cycle. For QOR the next interface state following address is a Quad Latency Cycle if there are latency cycles needed or Quad Output Cycle if no latency is required. 3.3.15 Quad Input Cycle - Host to Memory Transfer The Quad I/O Read command transfers four address or mode bits to the memory in each cycle. The Quad Page Program command transfers four data bits to the memory in each cycle. The host keeps RESET# high, CS# low, and drives the IO signals. For Quad I/O Read the next interface state following the delivery of address and mode bits is a Quad Latency Cycle if there are latency cycles needed or Quad Output Cycle if no latency is required. For Quad Page Program the host returns CS# high following the delivery of data to be programmed and the interface returns to standby state. 3.3.16 Quad Latency (Dummy) Cycle Read commands may have zero to several latency cycles during which read data is read from the main flash memory array before transfer to the host. The number of latency cycles are determined by the Latency Code in the configuration register (CR[7:6]). During the latency cycles, the host keeps RESET# high, CS# low. The host may drive the IO signals during these cycles or the host may leave the IO floating. The memory does not use any data driven on IO during the latency cycles. The host must stop driving the IO signals on the falling edge at the end of the last latency cycle. It is recommended that the host stop driving them during all latency cycles so that there is sufficient time for the host drivers to turn off before the memory begins to drive at the end of the latency cycles. This prevents driver conflict between host and memory when the signal direction changes. The memory does not drive the IO signals during the latency cycles. The next interface state following the last latency cycle is a Quad Output Cycle. 3.3.17 Quad Output Cycle - Memory to Host Transfer The Quad Output Read and Quad I/O Read return data to the host four bits in each cycle. The host keeps RESET# high, and CS# low. The memory drives data on IO0-IO3 signals during the Quad output cycles. The next interface state continues to be Quad Output Cycle until the host returns CS# to high ending the command. 3.3.18 DDR Single Input Cycle - Host to Memory Transfer The DDR Fast Read command sends address, and mode bits to the memory only on the IO0 signal. One bit is transferred on the rising edge of SCK and one bit on the falling edge in each cycle. The host keeps RESET# high, and CS# low. The other IO signals are ignored by the memory. The next interface state following the delivery of address and mode bits is a DDR Latency Cycle. 3.3.19 DDR Dual Input Cycle - Host to Memory Transfer The DDR Dual I/O Read command sends address, and mode bits to the memory only on the IO0 and IO1 signals. Two bits are transferred on the rising edge of SCK and two bits on the falling edge in each cycle. The host keeps RESET# high, and CS# low. The IO2 and IO3 signals are ignored by the memory. The next interface state following the delivery of address and mode bits is a DDR Latency Cycle. Document Number: 002-19099 Rev. *A Page 21 of 140 S25FL128S / S25FL256S 3.3.20 DDR Quad Input Cycle - Host to Memory Transfer The DDR Quad I/O Read command sends address, and mode bits to the memory on all the IO signals. Four bits are transferred on the rising edge of SCK and four bits on the falling edge in each cycle. The host keeps RESET# high, and CS# low. The next interface state following the delivery of address and mode bits is a DDR Latency Cycle. 3.3.21 DDR Latency Cycle DDR Read commands may have one to several latency cycles during which read data is read from the main flash memory array before transfer to the host. The number of latency cycles are determined by the Latency Code in the configuration register (CR[7:6]). During the latency cycles, the host keeps RESET# high and CS# low. The host may not drive the IO signals during these cycles. So that there is sufficient time for the host drivers to turn off before the memory begins to drive. This prevents driver conflict between host and memory when the signal direction changes. The memory has an option to drive all the IO signals with a Data Learning Pattern (DLP) during the last 4 latency cycles. The DLP option should not be enabled when there are fewer than five latency cycles so that there is at least one cycle of high impedance for turn around of the IO signals before the memory begins driving the DLP. When there are more than 4 cycles of latency the memory does not drive the IO signals until the last four cycles of latency. The next interface state following the last latency cycle is a DDR Single, Dual, or Quad Output Cycle, depending on the instruction. 3.3.22 DDR Single Output Cycle - Memory to Host Transfer The DDR Fast Read command returns bits to the host only on the SO / IO1 signal. One bit is transferred on the rising edge of SCK and one bit on the falling edge in each cycle. The host keeps RESET# high, and CS# low. The other IO signals are not driven by the memory. The next interface state continues to be DDR Single Output Cycle until the host returns CS# to high ending the command. 3.3.23 DDR Dual Output Cycle - Memory to Host Transfer The DDR Dual I/O Read command returns bits to the host only on the IO0 and IO1 signals. Two bits are transferred on the rising edge of SCK and two bits on the falling edge in each cycle. The host keeps RESET# high, and CS# low. The IO2 and IO3 signals are not driven by the memory. The next interface state continues to be DDR Dual Output Cycle until the host returns CS# to high ending the command. 3.3.24 DDR Quad Output Cycle - Memory to Host Transfer The DDR Quad I/O Read command returns bits to the host on all the IO signals. Four bits are transferred on the rising edge of SCK and four bits on the falling edge in each cycle. The host keeps RESET# high, and CS# low. The next interface state continues to be DDR Quad Output Cycle until the host returns CS# to high ending the command. 3.4 Configuration Register Effects on the Interface The configuration register bits 7 and 6 (CR1[7:6]) select the latency code for all read commands. The latency code selects the number of mode bit and latency cycles for each type of instruction. The configuration register bit 1 (CR1[1]) selects whether Quad mode is enabled to ignore HOLD# and WP# and allow Quad Page Program, Quad Output Read, and Quad I/O Read commands. Quad mode must also be selected to allow Read DDR Quad I/O commands. 3.5 Data Protection Some basic protection against unintended changes to stored data are provided and controlled purely by the hardware design. These are described below. Other software managed protection methods are discussed in the software section (page 39) of this document. Document Number: 002-19099 Rev. *A Page 22 of 140 S25FL128S / S25FL256S 3.5.1 Power-Up When the core supply voltage is at or below the VCC (low) voltage, the device is considered to be powered off. The device does not react to external signals, and is prevented from performing any program or erase operation. Program and erase operations continue to be prevented during the Power-on Reset (POR) because no command is accepted until the exit from POR to the Interface Standby state. 3.5.2 Low Power When VCC is less than VCC (cut-off) the memory device will ignore commands to ensure that program and erase operations can not start when the core supply voltage is out of the operating range. 3.5.3 Clock Pulse Count The device verifies that all program, erase, and Write Registers (WRR) commands consist of a clock pulse count that is a multiple of eight before executing them. A command not having a multiple of 8 clock pulse count is ignored and no error status is set for the command. Document Number: 002-19099 Rev. *A Page 23 of 140 S25FL128S / S25FL256S 4. Electrical Specifications 4.1 Absolute Maximum Ratings Table 4 Absolute Maximum Ratings Storage Temperature Plastic Packages -65C to +150C Ambient Temperature with Power Applied -65C to +125C VCC -0.5V to +4.0V VIO (Note 1) -0.5V to +4.0V Input voltage with respect to Ground (VSS) (Note 2) -0.5V to +(VIO + 0.5V) Output Short Circuit Current (Note 3) 100 mA Notes: 1. VIO must always be less than or equal VCC + 200 mV. 2. See Input Signal Overshoot on page 25 for allowed maximums during signal transition. 3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second. 4.2 4. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability. Thermal Resistance Table 5 Thermal Resistance Parameter Theta JA 4.3 Description FAB024 Unit Thermal resistance (junction to ambient) 36 C/W Operating Ranges Operating ranges define those limits between which the functionality of the device is guaranteed. 4.3.1 Power Supply Voltages Some package options provide access to a separate input and output buffer power supply called VIO. Packages which do not provide the separate VIO connection, internally connect the device VIO to VCC. For these packages the references to VIO are then also references to VCC. 4.3.2 VCC 2.7V to 3.6V VIO 1.65V to VCC +200 mV Temperature Ranges Parameter Symbol Device Ambient Temperature TA Military (E) Document Number: 002-19099 Rev. *A Spec Min Max -55 +125 Unit C Page 24 of 140 S25FL128S / S25FL256S 4.3.3 Input Signal Overshoot During DC conditions, input or I/O signals should remain equal to or between VSS and VIO. During voltage transitions, inputs or I/Os may overshoot VSS to -2.0V or overshoot to VIO +2.0V, for periods up to 20 ns. Figure 19 Maximum Negative Overshoot Waveform 20 ns 20 ns VIL - 2.0V 20 ns Figure 20 Maximum Positive Overshoot Waveform 20 ns VIO + 2.0V VIH 20 ns 20 ns 4.4 Power-Up and Power-Down The device must not be selected at power-up or power-down (that is, CS# must follow the voltage applied on VCC) until VCC reaches the correct value as follows: VCC (min) at power-up, and then for a further delay of tPU VSS at power-down A simple pull-up resistor (generally of the order of 100 k) on Chip Select (CS#) can usually be used to insure safe and proper power-up and power-down. The device ignores all instructions until a time delay of tPU has elapsed after the moment that VCC rises above the minimum VCC threshold. See Figure 21. However, correct operation of the device is not guaranteed if VCC returns below VCC (min) during tPU. No command should be sent to the device until the end of tPU. After power-up (tPU), the device is in Standby mode (not Deep Power Down mode), draws CMOS standby current (ISB), and the WEL bit is reset. During power-down or voltage drops below VCC (cut-off), the voltage must drop below VCC (low) for a period of tPD for the part to initialize correctly on power-up. See Figure 22. If during a voltage drop the VCC stays above VCC (cut-off) the part will stay initialized and will work correctly when VCC is again above VCC (min). In the event Power-on Reset (POR) did not complete correctly after power up, the assertion of the RESET# signal or receiving a software reset command (RESET) will restart the POR process. Normal precautions must be taken for supply rail decoupling to stabilize the VCC supply at the device. Each device in a system should have the VCC rail decoupled by a suitable capacitor close to the package supply connection (this capacitor is generally of the order of 0.1 f). Table 6 Power-Up / Power-Down Voltage and Timing Symbol VCC (min) VCC (cut-off) Parameter Min Max Unit VCC (Minimum Operation Voltage) 2.7 V VCC (Cut 0ff Where Re-initialization is Needed) 2.4 V Document Number: 002-19099 Rev. *A Page 25 of 140 S25FL128S / S25FL256S Table 6 Power-Up / Power-Down Voltage and Timing Symbol VCC (low) Parameter Min VCC (Low Voltage for Initialization to Occur) VCC (Low Voltage for Initialization to Occur at Embedded) tPU VCC (min) to Read Operation tPD VCC (low) Time Max 1.6 2.3 V 300 15.0 Unit s s Figure 21 Power-Up VCC VCC(max) VCC(min) tPU Full Device Access Time Figure 22 Power-Down and Voltage Drop VCC VCC(max) No Device Access Allowed VCC(min) tPU VCC(cut-off) Device Access Allowed VCC(low) tPD Time Document Number: 002-19099 Rev. *A Page 26 of 140 S25FL128S / S25FL256S 4.5 DC Characteristics Applicable within operating ranges. Table 7 DC Characteristics Symbol Parameter VIL Input Low Voltage Min Typ (1) -0.5 VIH Input High Voltage VOL Output Low Voltage IOL = 1.6 mA, VCC = VCC min VOH Output High Voltage IOH = -0.1 mA ILI Input Leakage Current VCC = VCC Max, VIN = VIH or VIL ILO Output Leakage Current VCC = VCC Max, VIN = VIH or VIL 0.7 x VIO Max Unit 0.2 x VIO V VIO+0.4 V 0.15 x VIO V 2 A 2 A 0.85 x VIO V 22 35 50 61 75 90 ICC1 Active Power Supply Current (READ) Serial SDR@50 MHz Serial SDR@133 MHz Quad SDR@80 MHz Quad SDR@104 MHz Quad DDR@66 MHz Quad DDR@80 MHz Outputs unconnected during read data return (2) ICC2 Active Power Supply Current (Page Program) CS# = VIO 100 mA ICC3 Active Power Supply Current (WRR) CS# = VIO 100 mA ICC4 Active Power Supply Current (SE) CS# = VIO 100 mA ICC5 Active Power Supply Current (BE) CS# = VIO 100 mA ISB Standby Current RESET#, CS# = VIO; SI, SCK = VIO or VSS 300 A Notes: 1. Typical values are at TAI = 25C and VCC = VIO = 3V. 4.5.1 Test Conditions 115 mA 2. Output switching current is not included. Active Power and Standby Power Modes The device is enabled and in the Active Power mode when Chip Select (CS#) is Low. When CS# is high, the device is disabled, but may still be in an Active Power mode until all program, erase, and write operations have completed. The device then goes into the Standby Power mode, and power consumption drops to ISB. Document Number: 002-19099 Rev. *A Page 27 of 140 S25FL128S / S25FL256S 5. 5.1 Timing Specifications Key to Switching Waveforms Figure 23 Waveform Element Meanings Input Valid at logic high or low High Impedance Valid at logic high or low High Impedance Any change permitted Logic high Logic low Symbol Output Changing, state unknown Logic high Logic low Figure 24 Input, Output, and Timing Reference Levels Input Levels Output Levels VIO + 0.4V 0.7 x VIO 0.85 x VIO Timing Reference Level 0.5 x VIO 0.2 x VIO 0.15 x VIO - 0.5V 5.2 AC Test Conditions Figure 25 Test Setup Device Under Test CL Table 8 AC Measurement Conditions Symbol Parameter Load Capacitance CL Min Max 30 pF 15 (4) Input Rise and Fall Times Unit 2.4 ns Input Pulse Voltage 0.2 x VIO to 0.8 VIO V Input Timing Ref Voltage 0.5 VIO V Output Timing Ref Voltage 0.5 VIO V Notes: 1. Output High-Z is defined as the point where data is no longer driven. 2. Input slew rate: 1.5 V/ns. 3. AC characteristics tables assume clock and data signals have the same slew rate (slope). 4. DDR Operation. Document Number: 002-19099 Rev. *A Page 28 of 140 S25FL128S / S25FL256S 5.2.1 Capacitance Characteristics Table 9 Capacitance Parameter Test Conditions Max Unit CIN Input Capacitance (applies to SCK, CS#, RESET#) 1 MHz Min 8 pF COUT Output Capacitance (applies to All I/O) 1 MHz 8 pF Note: 1. For more information on capacitance, please consult the IBIS models. 5.3 5.3.1 Reset Power-On (Cold) Reset The device executes a Power-On Reset (POR) process until a time delay of tPU has elapsed after the moment that VCC rises above the minimum VCC threshold. See Figure 21 on page 26, Table 6 on page 25, and Table 10 on page 30. The device must not be selected (CS# to go high with VIO) during power-up (tPU), i.e. no commands may be sent to the device until the end of tPU. RESET# is ignored during POR. If RESET# is low during POR and remains low through and beyond the end of tPU, CS# must remain high until tRH after RESET# returns high. RESET# must return high for greater than tRS before returning low to initiate a hardware reset. Figure 26 Reset Low at the End of POR VCC VIO tPU RESET# If RESET# is low at tPU end tRH CS# CS# must be high at tPU end Figure 27 Reset High at the End of POR VCC VIO tPU RESET# If RESET# is high at tPU end tPU CS# CS# may stay high or go low at tPU end Figure 28 POR followed by Hardware Reset VCC VIO tPU tRS RESET# tPU CS# Document Number: 002-19099 Rev. *A Page 29 of 140 S25FL128S / S25FL256S 5.3.2 Hardware (Warm) Reset When the RESET# input transitions from VIH to VIL the device will reset register states in the same manner as power-on reset but, does not go through the full reset process that is performed during POR. The hardware reset process requires a period of tRPH to complete. If the POR process did not complete correctly for any reason during power-up (tPU), RESET# going low will initiate the full POR process instead of the hardware reset process and will require tPU to complete the POR process. The RESET# input provides a hardware method of resetting the flash memory device to standby state. RESET# must be high for tRS following tPU or tRPH, before going low again to initiate a hardware reset. When RESET# is driven low for at least a minimum period of time (tRP), the device terminates any operation in progress, tri-states all outputs, and ignores all read/write commands for the duration of tRPH. The device resets the interface to standby state. If CS# is low at the time RESET# is asserted, CS# must return high during tRPH before it can be asserted low again after tRH. Hardware Reset is only offered in 16-lead SOIC and BGA packages. Figure 29 Hardware Reset tRP RESET# Any prior reset tRH tRH tRPH tRS tRPH CS# Table 10 Hardware Reset Parameters Parameter Description Limit Time Unit tRS Reset Setup -- Prior Reset end and RESET# high before RESET# low Min 50 ns tRPH Reset Pulse Hold - RESET# low to CS# low Min 35 s tRP RESET# Pulse Width Min 200 ns tRH Reset Hold - RESET# high before CS# low Min 50 ns Notes: 1. RESET# Low is optional and ignored during Power-up (tPU). If Reset# is asserted during the end of tPU, the device will remain in the reset state and tRH will determine when CS# may go Low. Document Number: 002-19099 Rev. *A 2. Sum of tRP and tRH must be equal to or greater than tRPH. Page 30 of 140 S25FL128S / S25FL256S 5.4 SDR AC Characteristics Table 11 AC Characteristics (Single Die Package, VIO = VCC 2.7V to 3.6V) Symbol Max Unit FSCK, R SCK Clock Frequency for READ and 4READ instructions DC 50 MHz FSCK, C SCK Clock Frequency for single commands as shown in Table 44 on page 59 (4) DC 133 MHz FSCK, C SCK Clock Frequency for the following dual and quad commands: DOR, 4DOR, QOR, 4QOR, DIOR, 4DIOR, QIOR, 4QIOR DC 104 MHz SCK Clock Frequency for the QPP, 4QPP commands DC 80 MHz 1/ FSCK FSCK, QPP PSCK Parameter SCK Clock Period Min tWH, tCH Clock High Time (5) 45% PSCK tWL, tCL Clock Low Time (5) tCRT, tCLCH tCFT, tCHCL Typ ns 45% PSCK ns Clock Rise Time (slew rate) 0.1 V/ns Clock Fall Time (slew rate) 0.1 V/ns tCS CS# High Time (Read Instructions) CS# High Time (Program/Erase) 10 50 ns tCSS CS# Active Setup Time (relative to SCK) 3 tCSH CS# Active Hold Time (relative to SCK) 3 tSU Data in Setup Time 2 tHD Data in Hold Time 2 tV Output Hold Time ns ns ns 8.0 (2) 7.65 (3) 6.5 (4) Clock Low to Output Valid tHO ns 3000 (6) ns 2 0 ns tDIS Output Disable Time tWPS WP# Setup Time 20 (1) 8 ns ns tWPH WP# Hold Time 100 (1) ns 3 ns tHLCH HOLD# Active Setup Time (relative to SCK) tCHHH HOLD# Active Hold Time (relative to SCK) 3 ns tHHCH HOLD# Non Active Setup Time (relative to SCK) 3 ns HOLD# Non Active Hold Time (relative to SCK) 3 tCHHL ns tHZ HOLD# enable to Output Invalid 8 ns tLZ HOLD# disable to Output Valid 8 ns Notes: 1. Only applicable as a constraint for WRR instruction when SRWD is set to a 1. 2. Full VCC range (2.7 - 3.6V) and CL = 30 pF. 3. Regulated VCC range (3.0 - 3.6V) and CL = 30 pF. Document Number: 002-19099 Rev. *A 4. Regulated VCC range (3.0 - 3.6V) and CL = 15 pF. 5. 10% duty cycle is supported for frequencies 50 MHz. 6. Maximum value only applies during Program/Erase Suspend/Resume commands. Page 31 of 140 S25FL128S / S25FL256S Table 12 AC Characteristics (Single Die Package, VIO 1.65V to 2.7V, VCC 2.7V to 3.6V) Symbol Max Unit FSCK, R SCK Clock Frequency for READ, 4READ instructions DC 50 MHz FSCK, C SCK Clock Frequency for all others (3) DC 66 MHz 1/ FSCK PSCK Parameter Min SCK Clock Period tWH, tCH Clock High Time (4) 45% PSCK tWL, tCL Clock Low Time (4) Typ ns 45% PSCK ns tCRT, tCLCH Clock Rise Time (slew rate) 0.1 V/ns tCFT, tCHCL Clock Fall Time (slew rate) 0.1 V/ns tCS CS# High Time (Read Instructions) CS# High Time (Program/Erase) 10 50 ns tCSS CS# Active Setup Time (relative to SCK) 10 tCSH CS# Active Hold Time (relative to SCK) 3 tSU Data in Setup Time 5 ns tHD Data in Hold Time 4 ns tV ns 3000 (5) ns 14.5 (2) 12.0 (3) Clock Low to Output Valid tHO Output Hold Time 2 tDIS Output Disable Time 0 ns ns 14 ns tWPS WP# Setup Time 20 (1) ns tWPH WP# Hold Time 100 (1) ns tHLCH HOLD# Active Setup Time (relative to SCK) 5 ns tCHHH HOLD# Active Hold Time (relative to SCK) 5 ns tHHCH HOLD# Non Active Setup Time (relative to SCK) 5 ns tCHHL HOLD# Non Active Hold Time (relative to SCK) 5 ns tHZ HOLD# enable to Output Invalid 14 ns tLZ HOLD# disable to Output Valid 14 ns Notes: 1. Only applicable as a constraint for WRR instruction when SRWD is set to a 1. 2. CL = 30 pF. 3. CL = 15 pF. 5.4.1 4. 10% duty cycle is supported for frequencies 50 MHz. 5. Maximum value only applies during Program/Erase Suspend/Resume commands. Clock Timing Figure 30 Clock Timing PSCK tCH tCL VIH min VIO / 2 VIL max tCRT Document Number: 002-19099 Rev. *A tCFT Page 32 of 140 S25FL128S / S25FL256S 5.4.2 Input / Output Timing Figure 31 SPI Single Bit Input Timing tCS CS# tCSH tCSH tCSS tCSS SCK tSU tHD SI MSB IN LSB IN SO Figure 32 SPI Single Bit Output Timing tCS CS# SCK SI tLZ SO tHO tV tDIS MSB OUT LSB OUT Figure 33 SPI SDR MIO Timing tCS CS# tCSS tCSH tCSS SCK tSU tHD IO MSB IN Document Number: 002-19099 Rev. *A tLZ LSB IN . MSB OUT tHO . tV tDIS LSB OUT Page 33 of 140 S25FL128S / S25FL256S Figure 34 Hold Timing CS# SCK tHLCH tHHCH tCHHL tHLCH tCHHH tCHHL tHHCH tCHHH HOLD# Hold Condition Standard Use Hold Condition Non-standard Use SI_or_IO_(during_input) tHZ SO_or_IO_(during_output) A tLZ B tHZ B tLZ C D E Figure 35 WP# Input Timing CS# tWPS tWPH WP# SCK SI 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 SO Phase Document Number: 002-19099 Rev. *A WRR Instruction Input Data Page 34 of 140 S25FL128S / S25FL256S 5.5 DDR AC Characteristics Table 13 AC Characteristics -- DDR Operation Symbol Parameter 66 MHz Min Typ 80 MHz Max Min Typ Max Unit FSCK, R SCK Clock Frequency for DDR READ instruction DC 66 DC 80 MHz PSCK, R SCK Clock Period for DDR READ instruction 15 12.5 ns tWH, tCH Clock High Time 45% PSCK 45% PSCK ns tWL, tCL Clock Low Time 45% PSCK 45% PSCK ns tCS CS# High Time (Read Instructions) 10 10 ns tCSS CS# Active Setup Time (relative to SCK) 3 3 ns tCSH CS# Active Hold Time (relative to SCK) 3 tSU IO in Setup Time 2 tHD IO in Hold Time 2 tV tHO Output Hold Time Output Disable Time tLZ Clock to Output Low Impedance 3000 (2) ns 6.5 (1) ns 8 ns 8 ns 600 ps ns 6.5 (1) 1.5 1.5 ns 8 0 8 First Output to last Output data valid time 0 600 Notes: 1. Regulated VCC range (3.0 - 3.6V) and CL =15 pF. 5.5.1 ns 1.5 1.5 Clock Low to Output Valid tDIS tO_SKEW 3 3000 (2) 2. Maximum value only applies during Program/Erase Suspend/Resume commands. DDR Input Timing Figure 36 SPI DDR Input Timing tCS CS# tCSH tCSS tCSH tCSS SCK tHD tSU tHD tSU SI_or_IO MSB IN LSB IN SO Document Number: 002-19099 Rev. *A Page 35 of 140 S25FL128S / S25FL256S 5.5.2 DDR Output Timing Figure 37 SPI DDR Output Timing tCS CS# SCK SI tLZ SO_or_IO tV tHO tV tDIS MSB LSB Figure 38 SPI DDR Data Valid Window PSCK tCL tCH SCK tV tV tO_SKEW tOTT Slow D1 IO0 Slow D2 IO1 IO2 IO3 IO_valid Notes: 1. tCLH is the shorter duration of tCL or tCH. 2. tO_SKEW is the maximum difference (delta) between the minimum and maximum tV (output valid) across all IO signals. 3. tOTT is the maximum Output Transition Time from one valid data value to the next valid data value on each IO. 4. tOTT is dependent on system level considerations including: a. Memory device output impedance (drive strength). b. System level parasitics on the IOs (primarily bus capacitance). c. Host memory controller input vIH and vIL levels at which 0 to 1 and 1 to 0 transitions are recognized. d. As an example, assuming that the above considerations result a memory output slew rate of 2V/ns and a 3V transition (from 1 to 0 or 0 to 1) is required by the host, the tOTT would be: tOTT = 3V/(2V/ns) = 1.5 ns Document Number: 002-19099 Rev. *A Fast D1 Fast D2 D1 Valid D2 Valid tDV tDV e. tOTT is not a specification tested by Cypress, it is system dependent and must be derived by the system designer based on the above considerations. 5. The minimum data valid window (tDV) can be calculated as follows: a. As an example, assuming: i. 80 MHz clock frequency = 12.5 ns clock period ii. DDR operations are specified to have a duty cycle of 45% or higher iii. tCLH = 0.45*PSCK = 0.45x12.5 ns = 5.625 ns iv. tO_SKEW = 600 ps v. tOTT = 1.5 ns b. tDV = tCLH - tO_SKEW - tOTT c. tDV = 5.625 ns - 600 ps - 1.5 ns = 3.525 ns Page 36 of 140 S25FL128S / S25FL256S 6. Physical Interface Table 14 Model Specific Connections Versatile I/O or RFU -- Some device models bond this connector to the device I/O power supply, other models bond the device I/ O supply to Vcc within the package leaving this package connector unconnected. VIO / RFU RESET# or RFU -- Some device models bond this connector to the device RESET# signal, other models bond the RESET# signal to Vcc within the package leaving this package connector unconnected. RESET# / RFU Note: Refer to Table 2, Signal List on page 8 for signal descriptions. 6.1 FAB024 24-Ball BGA Package 6.1.1 Connection Diagram Figure 39 24-Ball BGA, 5 x 5 Ball Footprint (FAB024), Top View 1 2 3 4 5 NC NC RESET#/ RFU NC DNU SCK VSS VCC NC DNU CS# RFU WP#/IO2 NC DNU SO/IO1 NC NC A B C D SI/IO0 HOLD#/IO3 NC E NC VIO/RFU NC Note: Signal connections are in the same relative positions as FAC024 BGA, allowing a single PCB footprint to use either package. Document Number: 002-19099 Rev. *A Page 37 of 140 S25FL128S / S25FL256S 6.1.2 Physical Diagram FAB024 -- 24-Ball BGA (8 x 6 mm) Package NOTES: DIMENSIONS SYMBOL NOM. MAX. A MIN. - - 1.20 A1 0.20 - - 8.00 BSC D 1. DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS. 3. BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020. e REPRESENTS THE SOLDER BALL GRID PITCH. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. E 6.00 BSC 4. D1 4.00 BSC 5. E1 4.00 BSC MD 5 ME 5 N 24 b 0.35 0.40 SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME. 6 DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C. 0.45 7 "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE eE 1.00 BSC eD 1.00 BSC POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. SD 0.00 BSC WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" OR "SE" = 0. SE 0.00 BSC WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2. 002-15534 Rev. ** 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS. 9. A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK, METALLIZED MARK INDENTATION OR OTHER MEANS. 6.1.3 Special Handling Instructions for FBGA Packages Flash memory devices in BGA packages may be damaged if exposed to ultrasonic cleaning methods. The package and/or data integrity may be compromised if the package body is exposed to temperatures above 150C for prolonged periods of time. Document Number: 002-19099 Rev. *A Page 38 of 140 S25FL128S / S25FL256S Software Interface This section discusses the features and behaviors most relevant to host system software that interacts with S25FL128S and S25FL256S memory devices. 7. Address Space Maps 7.1 Overview 7.1.1 Extended Address The S25FL128S and S25FL256S devices support 32-bit addresses to enable higher density devices than allowed by previous generation (legacy) SPI devices that supported only 24-bit addresses. A 24-bit byte resolution address can access only 16 Mbytes (128 Mbits) of maximum density. A 32-bit byte resolution address allows direct addressing of up to a 4 Gbytes (32 Gbits) of address space. Legacy commands continue to support 24-bit addresses for backward software compatibility. Extended 32-bit addresses are enabled in three ways: Bank address register -- a software (command) loadable internal register that supplies the high order bits of address when legacy 24-bit addresses are in use. Extended address mode -- a bank address register bit that changes all legacy commands to expect 32 bits of address supplied from the host system. New commands -- that perform both legacy and new functions, which expect 32-bit address. The default condition at power-up and after reset, is the Bank address register loaded with zeros and the extended address mode set for 24-bit addresses. This enables legacy software compatible access to the first 128 Mbits of a device. The S25FL128S device supports the extended address features in the same way but in essence ignores bits 31 to 24 of any address because the main flash array only needs 24 bits of address. This enables simple migration from the 128-Mb density to higher density devices without changing the address handling aspects of software. 7.1.2 Multiple Address Spaces Many commands operate on the main flash memory array. Some commands operate on address spaces separate from the main flash array. Each separate address space uses the full 32-bit address but may only define a small portion of the available address space. 7.2 Flash Memory Array The main flash array is divided into erase units called sectors. The sectors are organized either as a hybrid combination of 4-kB and 64-kB sectors, or as uniform 256-kbyte sectors. The sector organization depends on the device model selected, see Ordering Information on page 138. Table 15 S25FL256S Sector and Memory Address Map, Bottom 4-kbyte Sectors Sector Size (kbyte) Sector Count 4 32 64 510 Document Number: 002-19099 Rev. *A Sector Range Address Range (Byte Address) SA00 00000000h-00000FFFh : : SA31 0001F000h-0001FFFFh -- SA32 00020000h-0002FFFFh Sector Ending Address : : SA541 01FF0000h-01FFFFFFh Notes Sector Starting Address Page 39 of 140 S25FL128S / S25FL256S Table 16 S25FL256S Sector and Memory Address Map, Top 4-kbyte Sectors Sector Size (kbyte) Sector Count 64 510 4 32 Sector Range Address Range (Byte Address) SA00 0000000h-000FFFFh : : SA509 01FD0000h-01FDFFFFh SA510 01FE0000h-01FE0FFFh : : SA541 01FFF000h-01FFFFFFh Notes Sector Starting Address -- Sector Ending Address Table 17 S25FL256S Sector and Memory Address Map, Uniform 256-kbyte Sectors Sector Size (kbyte) 256 Sector Count 128 Sector Range Address Range (8-bit) Notes SA00 0000000h-003FFFFh Sector Starting Address : : -- SA127 1FC0000h-1FFFFFFh Sector Ending Address Table 18 S25FL128S Sector and Memory Address Map, Bottom 4-kbyte Sectors Sector Size (kbyte) Sector Count 4 64 32 254 Sector Range Address Range (Byte Address) SA00 00000000h-00000FFFh : : SA31 0001F000h-0001FFFFh SA32 00020000h-0002FFFFh : : SA285 00FF0000h-00FFFFFFh Notes Sector Starting Address -- Sector Ending Address Table 19 S25FL128S Sector and Memory Address Map, Top 4-kbyte Sectors Sector Size (kbyte) Sector Count 64 254 4 32 Sector Range Address Range (Byte Address) SA00 0000000h-000FFFFh : : SA253 00FD0000h-00FDFFFFh SA254 00FE0000h-00FE0FFFh : : SA285 00FFF000h-00FFFFFFh Notes Sector Starting Address -- Sector Ending Address Table 20 S25FL128S Sector and Memory Address Map, Uniform 256-kbyte Sectors Sector Size (kbyte) Sector Count 256 64 Sector Range Address Range (Byte Address) Notes SA00 0000000h-003FFFFh Sector Starting Address : : -- SA63 0FC0000h-0FFFFFFh Sector Ending Address Note: These are condensed tables that use a couple of sectors as references. There are address ranges that are not explicitly listed. All 256 kB sectors have the pattern XXX0000h-XXXFFFFh. Document Number: 002-19099 Rev. *A Page 40 of 140 S25FL128S / S25FL256S 7.3 ID-CFI Address Space The RDID command (9Fh) reads information from a separate flash memory address space for device identification (ID) and Common Flash Interface (CFI) information. See Device ID and Common Flash Interface (ID-CFI) Address Map on page 121 for the tables defining the contents of the ID-CFI address space. The ID-CFI address space is programmed by Cypress and read-only for the host system. 7.4 OTP Address Space Each S25FL128S and S25FL256S memory device has a 1024-byte One Time Program (OTP) address space that is separate from the main flash array. The OTP area is divided into 32, individually lockable, 32-byte aligned and length regions. In the 32-byte region starting at address zero: The 16 lowest address bytes are programmed by Cypress with a 128-bit random number. Only Cypress is able to program these bytes. The next 4 higher address bytes (OTP Lock Bytes) are used to provide one bit per OTP region to permanently protect each region from programming. The bytes are erased when shipped from Cypress. After an OTP region is programmed, it can be locked to prevent further programming, by programming the related protection bit in the OTP Lock Bytes. The next higher 12 bytes of the lowest address region are Reserved for Future Use (RFU). The bits in these RFU bytes may be programmed by the host system but it must be understood that a future device may use those bits for protection of a larger OTP space. The bytes are erased when shipped from Cypress. The remaining regions are erased when shipped from Cypress, and are available for programming of additional permanent data. Refer to Figure 40, OTP Address Space on page 41 for a pictorial representation of the OTP memory space. The OTP memory space is intended for increased system security. OTP values, such as the random number programmed by Cypress, can be used to "mate" a flash component with the system CPU/ASIC to prevent device substitution. The configuration register FREEZE (CR1[0]) bit protects the entire OTP memory space from programming when set to 1. This allows trusted boot code to control programming of OTP regions then set the FREEZE bit to prevent further OTP memory space programming during the remainder of normal power-on system operation. Figure 40 OTP Address Space 32-byte OTP Region 31 32-byte OTP Region 30 32-byte OTP Region 29 . . . When programmed to `0' each lock bit protects its related 32-byte region from any further programming 32-byte OTP Region 3 32-byte OTP Region 2 32-byte OTP Region 1 32-byte OTP Region 0 ... Lock Bits 31 to 0 Contents of Region 0 { Reserved Byte 1F Document Number: 002-19099 Rev. *A Lock Bytes Byte 10 16-byte Random Number Byte 0 Page 41 of 140 S25FL128S / S25FL256S Table 21 OTP Address Map Region Byte Address Range (Hex) Contents 000 Least Significant Byte of Cypress Programmed Random Number ... ... 00F Most Significant Byte of Cypress Programmed Random Number 010 to 013 Region Locking Bits Byte 10 [bit 0] locks region 0 from programming when = 0 ... Byte 13 [bit 7] locks region 31 from programming when = 0 Region 0 Initial Delivery State (Hex) Cypress Programmed Random Number All bytes = FF 014 to 01F Reserved for Future Use (RFU) All bytes = FF Region 1 020 to 03F Available for User Programming All bytes = FF Region 2 040 to 05F Available for User Programming All bytes = FF ... ... Available for User Programming All bytes = FF Region 31 3E0 to 3FF Available for User Programming All bytes = FF 7.5 Registers Registers are small groups of memory cells used to configure how the S25FL-S memory device operates or to report the status of device operations. The registers are accessed by specific commands. The commands (and hexadecimal instruction codes) used for each register are noted in each register description. The individual register bits may be volatile, non-volatile, or One Time Programmable (OTP). The type for each bit is noted in each register description. The default state shown for each bit refers to the state after power-on reset, hardware reset, or software reset if the bit is volatile. If the bit is non-volatile or OTP, the default state is the value of the bit when the device is shipped from Cypress. Non-volatile bits have the same cycling (erase and program) endurance as the main flash array. Table 22 Register Descriptions Type Bit Location Status Register 1 Register SR1[7:0] Abbreviation Volatile 7:0 Configuration Register 1 CR1[7:0] Volatile 7:0 Status Register 2 SR2[7:0] RFU 7:0 AutoBoot Register ABRD[31:0] Non-volatile 31:0 Bank Address Register BRAC[7:0] Volatile 7:0 ECC Status Register ECCSR[7:0] Volatile 7:0 ASP Register ASPR[15:1] OTP 15:1 ASP Register ASPR[0] Password Register PASS[63:0] PPB Lock Register PPBL[7:1] RFU 0 Non-volatile OTP 63:0 Volatile 7:1 0 7:0 PPB Lock Register PPBL[0] Volatile Read Only PPB Access Register PPBAR[7:0] Non-volatile DYB Access Register DYBAR[7:0] Volatile 7:0 SPI DDR Data Learning Registers NVDLR[7:0] Non-volatile 7:0 SPI DDR Data Learning Registers VDLR[7:0] Volatile 7:0 Document Number: 002-19099 Rev. *A Page 42 of 140 S25FL128S / S25FL256S 7.5.1 Status Register 1 (SR1) Related Commands: Read Status Register (RDSR1 05h), Write Registers (WRR 01h), Write Enable (WREN 06h), Write Disable (WRDI 04h), Clear Status Register (CLSR 30h). Table 23 Status Register 1 (SR1) Bits Field Name Function Type Default State Description 7 SRWD Status Register Write Disable Non-Volatile 0 1 = Locks state of SRWD, BP, and configuration register bits when WP# is low by ignoring WRR command 0 = No protection, even when WP# is low 6 P_ERR Programming Error Occurred Volatile, Read only 0 1 = Error occurred. 0 = No Error 5 E_ERR Erase Error Occurred Volatile, Read only 0 1 = Error occurred 0 = No Error 4 BP2 3 BP1 Block Protection Volatile if CR1[3]=1, NonVolatile if CR1[3]=0 2 BP0 1 if CR1[3]=1, 0 when shipped from Cypress Protects selected range of sectors (Block) from Program or Erase 1 WEL Write Enable Latch Volatile 0 1 = Device accepts Write Registers (WRR), program or erase commands 0 = Device ignores Write Registers (WRR), program or erase commands This bit is not affected by WRR, only WREN and WRDI commands affect this bit 0 WIP Write in Progress Volatile, Read only 0 1 = Device Busy, a Write Registers (WRR), program, erase or other operation is in progress 0 = Ready Device is in standby mode and can accept commands The Status Register contains both status and control bits: Status Register Write Disable (SRWD) SR1[7]: Places the device in the Hardware Protected mode when this bit is set to 1 and the WP# input is driven low. In this mode, the SRWD, BP2, BP1, and BP0 bits of the Status Register become read-only bits and the Write Registers (WRR) command is no longer accepted for execution. If WP# is high the SRWD bit and BP bits may be changed by the WRR command. If SRWD is 0, WP# has no effect and the SRWD bit and BP bits may be changed by the WRR command. The SRWD bit has the same non-volatile endurance as the main flash array. Program Error (P_ERR) SR1[6]: The Program Error Bit is used as a program operation success or failure indication. When the Program Error bit is set to a 1 it indicates that there was an error in the last program operation. This bit will also be set when the user attempts to program within a protected main memory sector or locked OTP region. When the Program Error bit is set to a 1 this bit can be reset to 0 with the Clear Status Register (CLSR) command. This is a read-only bit and is not affected by the WRR command. Erase Error (E_ERR) SR1[5]: The Erase Error Bit is used as an Erase operation success or failure indication. When the Erase Error bit is set to a 1 it indicates that there was an error in the last erase operation. This bit will also be set when the user attempts to erase an individual protected main memory sector. The Bulk Erase command will not set E_ERR if a protected sector is found during the command execution. When the Erase Error bit is set to a 1 this bit can be reset to 0 with the Clear Status Register (CLSR) command. This is a read-only bit and is not affected by the WRR command. Block Protection (BP2, BP1, BP0) SR1[4:2]: These bits define the main flash array area to be software-protected against program and erase commands. The BP bits are either volatile or non-volatile, depending on the state of the BP non-volatile bit (BPNV) in the configuration register. When one or more of the BP bits is set to 1, the relevant memory area is protected against program and erase. The Bulk Erase (BE) command can be executed only when the BP bits are cleared to 0's. See Block Protection on page 52 for a description of how the BP bit values select the memory array area protected. The BP bits have the same non-volatile endurance as the main flash array. Write Enable Latch (WEL) SR1[1]: The WEL bit must be set to 1 to enable program, write, or erase operations as a means to provide protection against inadvertent changes to memory or register values. The Write Enable (WREN) command execution sets the Write Enable Latch to a 1 to allow any program, erase, or write commands to execute afterwards. The Write Disable (WRDI) command can be used to set the Write Enable Latch to a 0 to prevent all program, erase, and write commands from execution. The WEL bit is cleared to 0 at the end of any successful program, write, or erase operation. Following a failed operation the WEL bit may remain set and should be cleared with a WRDI command following a CLSR command. After a power down/power up sequence, hardware reset, or software reset, the Write Enable Latch is set to a 0 The WRR command does not affect this bit. Document Number: 002-19099 Rev. *A Page 43 of 140 S25FL128S / S25FL256S Write In Progress (WIP) SR1[0]: Indicates whether the device is performing a program, write, erase operation, or any other operation, during which a new operation command will be ignored. When the bit is set to a 1 the device is busy performing an operation. While WIP is 1, only Read Status (RDSR1 or RDSR2), Erase Suspend (ERSP), Program Suspend (PGSP), Clear Status Register (CLSR), and Software Reset (RESET) commands may be accepted. ERSP and PGSP will only be accepted if memory array erase or program operations are in progress. The status register E_ERR and P_ERR bits are updated while WIP = 1. When P_ERR or E_ERR bits are set to one, the WIP bit will remain set to one indicating the device remains busy and unable to receive new operation commands. A Clear Status Register (CLSR) command must be received to return the device to standby mode. When the WIP bit is cleared to 0 no operation is in progress. This is a read-only bit. 7.5.2 Configuration Register 1 (CR1) Related Commands: Read Configuration Register (RDCR 35h), Write Registers (WRR 01h). The Configuration Register bits can be changed using the WRR command with sixteen input cycles. The configuration register controls certain interface and data protection functions. Table 24 Configuration Register 1(CR1) Bits Field Name 7 LC1 6 LC0 5 Default State Function Type Latency Code Non-Volatile TBPROT Configures Start of Block Protection OTP 0 4 RFU RFU OTP 0 3 BPNV Configures BP2-0 in Status Register OTP 0 1 = Volatile 0 = Non-Volatile 2 TBPARM Configures Parameter Sectors location OTP 0 1 = 4-kB physical sectors at top, (high address) 0 = 4-kB physical sectors at bottom (Low address) RFU in uniform sector devices 1 QUAD Puts the device into Quad I/O operation Non-Volatile 0 1 = Quad 0 = Dual or Serial FREEZE Lock current state of BP20 bits in Status Register, TBPROT and TBPARM in Configuration Register, and OTP regions Volatile 0 1 = Block Protection and OTP locked 0 = Block Protection and OTP un-locked 0 0 0 Description Selects number of initial read latency cycles See Latency Code Tables 1 = BP starts at bottom (Low address) 0 = BP starts at top (High address) Reserved for Future Use Latency Code (LC) CR1[7:6]: The Latency Code selects the number of mode and dummy cycles between the end of address and the start of read data output for all read commands. Some read commands send mode bits following the address to indicate that the next command will be of the same type with an implied, rather than an explicit, instruction. The next command thus does not provide an instruction byte, only a new address and mode bits. This reduces the time needed to send each command when the same command type is repeated in a sequence of commands. Dummy cycles provide additional latency that is needed to complete the initial read access of the flash array before data can be returned to the host system. Some read commands require additional latency cycles as the SCK frequency is increased. The following latency code tables provide different latency settings that are configured by Cypress. The High Performance versus the Enhanced High Performance settings are selected by the ordering part number. Where mode or latency (dummy) cycles are shown in the tables as a dash, that read command is not supported at the frequency shown. Read is supported only up to 50 MHz but the same latency value is assigned in each latency code and the command may be used when the device is operated at 50 MHz with any latency code setting. Similarly, only the Fast Read command is supported up to 133 MHz but the same 10b latency code is used for Fast Read up to 133 MHz and for the other dual and quad read commands up to 104 MHz. It is not necessary to change the latency code from a higher to a lower frequency when operating at lower frequencies where a particular command is supported. The latency code values for a higher frequency can be used for accesses at lower frequencies. Document Number: 002-19099 Rev. *A Page 44 of 140 S25FL128S / S25FL256S The High Performance settings provide latency options that are the same or faster than alternate source SPI memories. These settings provide mode bits only for the Quad I/O Read command. The Enhanced High Performance settings similarly provide latency options the same or faster than additional alternate source SPI memories and adds mode bits for the Dual I/O Read, DDR Fast Read, and DDR Dual I/O Read commands. Read DDR Data Learning Pattern (DLP) bits may be placed within the dummy cycles immediately before the start of read data, if there are 5 or more dummy cycles. See Read Memory Array Commands on page 77 for more information on the DLP. Table 25 Latency Codes for SDR High Performance Freq. (MHz) LC Read Fast Read Read Dual Out Read Quad Out Dual I/O Read (03h, 13h) (0Bh, 0Ch) (3Bh, 3Ch) (6Bh, 6Ch) (BBh, BCh) Quad I/O Read (EBh, ECh) Mode Dummy Mode Dummy Mode Dummy Mode Dummy Mode Dummy Mode Dummy 50 11 0 0 0 0 0 0 0 0 0 4 2 1 80 00 - - 0 8 0 8 0 8 0 4 2 4 90 01 - - 0 8 0 8 0 8 0 5 2 4 104 10 - - 0 8 0 8 0 8 0 6 2 5 133 10 - - 0 8 - - - - - - - - Table 26 Latency Codes for DDR High Performance Freq. (MHz) LC DDR Fast Read DDR Dual I/O Read (0Dh, 0Eh) (BDh, BEh) Read DDR Quad I/O (EDh, EEh) Mode Dummy Mode Dummy Mode Dummy 50 11 0 4 0 4 1 3 66 00 0 5 0 6 1 6 66 01 0 6 0 7 1 7 66 10 0 7 0 8 1 8 Table 27 Latency Codes for SDR Enhanced High Performance Read Freq. (MHz) LC Fast Read (03h, 13h) Read Dual Out (0Bh, 0Ch) Read Quad Out (3Bh, 3Ch) (6Bh, 6Ch) Dual I/O Read Quad I/O Read (BBh, BCh) (EBh, ECh) Mode Dummy Mode Dummy Mode Dummy Mode Dummy Mode Dummy Mode Dummy 50 11 0 0 0 0 0 0 0 0 4 0 2 1 80 00 - - 0 8 0 8 0 8 4 0 2 4 90 01 - - 0 8 0 8 0 8 4 1 2 4 104 10 - - 0 8 0 8 0 8 4 2 2 5 133 10 - - 0 8 - - - - - - - - Table 28 Latency Codes for DDR Enhanced High Performance Freq. (MHz) LC DDR Fast Read DDR Dual I/O Read (0Dh, 0Eh) (BDh, BEh) Read DDR Quad I/O (EDh, EEh) Mode Dummy Mode Dummy Mode Dummy 50 11 4 1 2 2 1 3 66 00 4 2 2 4 1 6 66 01 4 4 2 5 1 7 66 10 4 5 2 6 1 8 80 00 4 2 2 4 1 6 Document Number: 002-19099 Rev. *A Page 45 of 140 S25FL128S / S25FL256S Table 28 Latency Codes for DDR Enhanced High Performance (Continued) Freq. (MHz) DDR Fast Read DDR Dual I/O Read (0Dh, 0Eh) (BDh, BEh) LC Read DDR Quad I/O (EDh, EEh) Mode Dummy Mode Dummy Mode Dummy 80 01 4 4 2 5 1 7 80 10 4 5 2 6 1 8 Note: 1. When using DDR I/O commands with the Data Learning Pattern (DLP) enabled, a Latency Code that provides 5 or more dummy cycles should be selected to allow 1 cycle of additional time for the host to stop driving before the memory starts driving the 4 cycle DLP. It is recommended to use LC 10 for DDR Fast Read, LC 01 for DDR Dual IO Read, and LC 00 for DDR Quad IO Read, if the Data Learning Pattern (DLP) for DDR is used. Top or Bottom Protection (TBPROT) CR1[5]: This bit defines the operation of the Block Protection bits BP2, BP1, and BP0 in the Status Register. As described in the status register section, the BP2-0 bits allow the user to optionally protect a portion of the array, ranging from 1/64, 1/4, 1/2, etc., up to the entire array. When TBPROT is set to a 0 the Block Protection is defined to start from the top (maximum address) of the array. When TBPROT is set to a 1 the Block Protection is defined to start from the bottom (zero address) of the array. The TBPROT bit is OTP and set to a 0 when shipped from Cypress. If TBPROT is programmed to 1, an attempt to change it back to 0 will fail and set the Program Error bit (P_ERR in SR1[6]). The desired state of TBPROT must be selected during the initial configuration of the device during system manufacture; before the first program or erase operation on the main flash array. TBPROT must not be programmed after programming or erasing is done in the main flash array. CR1[4]: Reserved for Future Use Block Protection Non-Volatile (BPNV) CR1[3]: The BPNV bit defines whether or not the BP2-0 bits in the Status Register are volatile or non-volatile. The BPNV bit is OTP and cleared to a0 with the BP bits cleared to 000 when shipped from Cypress. When BPNV is set to a 0 the BP2-0 bits in the Status Register are non-volatile. When BPNV is set to a 1 the BP2-0 bits in the Status Register are volatile and will be reset to binary 111 after POR, hardware reset, or command reset. If BPNV is programmed to 1, an attempt to change it back to 0 will fail and set the Program Error bit (P_ERR in SR1[6]). TBPARM CR1[2]: TBPARM defines the logical location of the parameter block. The parameter block consists of thirty-two 4-kB small sectors (SMS), which replace two 64-kB sectors. When TBPARM is set to a 1 the parameter block is in the top of the memory array address space. When TBPARM is set to a 0 the parameter block is at the Bottom of the array. TBPARM is OTP and set to a 0 when it ships from Cypress. If TBPARM is programmed to 1, an attempt to change it back to 0 will fail and set the Program Error bit (P_ERR in SR1[6]). The desired state of TBPARM must be selected during the initial configuration of the device during system manufacture; before the first program or erase operation on the main flash array. TBPARM must not be programmed after programming or erasing is done in the main flash array. TBPROT can be set or cleared independent of the TBPARM bit. Therefore, the user can elect to store parameter information from the bottom of the array and protect boot code starting at the top of the array, and vice versa. Or the user can select to store and protect the parameter information starting from the top or bottom together. When the memory array is logically configured as uniform 256-kB sectors, the TBPARM bit is Reserved for Future Use (RFU) and has no effect because all sectors are uniform size. Quad Data Width (QUAD) CR1[1]: When set to 1, this bit switches the data width of the device to 4 bit - Quad mode. That is, WP# becomes IO2 and HOLD# becomes IO3. The WP# and HOLD# inputs are not monitored for their normal functions and are internally set to high (inactive). The commands for Serial, Dual Output, and Dual I/O Read still function normally but, there is no need to drive WP# and Hold# inputs for those commands when switching between commands using different data path widths. The QUAD bit must be set to one when using Read Quad Out, Quad I/O Read, Read DDR Quad I/O, and Quad Page Program commands. The QUAD bit is non-volatile. Freeze Protection (FREEZE) CR1[0]: The Freeze Bit, when set to 1, locks the current state of the BP2-0 bits in Status Register, the TBPROT and TBPARM bits in the Configuration Register, and the OTP address space. This prevents writing, programming, or erasing these areas. As long as the FREEZE bit remains cleared to logic 0 the other bits of the Configuration Register, including FREEZE, are writable, and the OTP address space is programmable. Once the FREEZE bit has been written to a logic 1 it can only be cleared to a logic 0 by a power-off to power-on cycle or a hardware reset. Software reset will not affect the state of the FREEZE bit. The FREEZE bit is volatile and the default state of FREEZE after power-on is 0. The FREEZE bit can be set in parallel with updating other values in CR1 by a single WRR command. Document Number: 002-19099 Rev. *A Page 46 of 140 S25FL128S / S25FL256S 7.5.3 Status Register 2 (SR2) Related Commands: Read Status Register 2 (RDSR2 07h). Table 29 Status Register 2 (SR2) Bits Field Name Function 7 RFU Reserved Type Default State 0 Reserved for Future Use Description 6 RFU Reserved 0 Reserved for Future Use 5 RFU Reserved 0 Reserved for Future Use 4 RFU Reserved 0 Reserved for Future Use 3 RFU Reserved 0 Reserved for Future Use 2 RFU Reserved 0 Reserved for Future Use 1 ES Erase Suspend Volatile, Read only 0 1 = In erase suspend mode 0 = Not in erase suspend mode 0 PS Program Suspend Volatile, Read only 0 1 = In program suspend mode 0 = Not in program suspend mode Erase Suspend (ES) SR2[1]: The Erase Suspend bit is used to determine when the device is in Erase Suspend mode. This is a status bit that cannot be written. When Erase Suspend bit is set to 1, the device is in erase suspend mode. When Erase Suspend bit is cleared to 0, the device is not in erase suspend mode. Refer to Erase Suspend and Resume Commands (75h) (7Ah) for details about the Erase Suspend/Resume commands. Program Suspend (PS) SR2[0]: The Program Suspend bit is used to determine when the device is in Program Suspend mode. This is a status bit that cannot be written. When Program Suspend bit is set to 1, the device is in program suspend mode. When the Program Suspend bit is cleared to 0, the device is not in program suspend mode. Refer to Program Suspend (PGSP 85h) and Resume (PGRS 8Ah) on page 101 for details. 7.5.4 AutoBoot Register Related Commands: AutoBoot Read (ABRD 14h) and AutoBoot Write (ABWR 15h). The AutoBoot Register provides a means to automatically read boot code as part of the power-on reset, hardware reset, or software reset process. Table 30 AutoBoot Register Bits Field Name Function Type Default State Description 31 to 9 ABSA AutoBoot Start Address Non-Volatile 000000h 512 byte boundary address for the start of boot code access 8 to 1 ABSD AutoBoot Start Delay Non-Volatile 00h Number of initial delay cycles between CS# going low and the first bit of boot code being transferred 0 ABE AutoBoot Enable Non-Volatile 0 7.5.5 1 = AutoBoot is enabled 0 = AutoBoot is not enabled Bank Address Register Related Commands: Bank Register Access (BRAC B9h), Write Register (WRR 01h), Bank Register Read (BRRD 16h) and Bank Register Write (BRWR 17h). The Bank Address register supplies additional high order bits of the main flash array byte boundary address for legacy commands that supply only the low order 24 bits of address. The Bank Address is used as the high bits of address (above A23) for all 3-byte address commands when EXTADD=0. The Bank Address is not used when EXTADD = 1 and traditional 3-byte address commands are instead required to provide all four bytes of address. Document Number: 002-19099 Rev. *A Page 47 of 140 S25FL128S / S25FL256S Table 31 Bank Address Register (BAR) Bits Field Name Function Type Default State 7 EXTADD Extended Address Enable Volatile 0b 6 to 1 RFU Reserved Volatile 00000b 0 BA24 Bank Address Volatile 0 Description 1 = 4-byte (32-bits) addressing required from command. 0 = 3-byte (24-bits) addressing from command + Bank Address Reserved for Future Use A24 for 256-Mbit device, RFU for lower density device Extended Address (EXTADD) BAR[7]: EXTADD controls the address field size for legacy SPI commands. By default (power up reset, hardware reset, and software reset), it is cleared to 0 for 3 bytes (24 bits) of address. When set to 1, the legacy commands will require 4 bytes (32 bits) for the address field. This is a volatile bit. 7.5.6 ECC Status Register (ECCSR) Related Commands: ECC Read (ECCRD 18h). ECCSR does not have user programmable non-volatile bits. All defined bits are volatile read only status. The default state of these bits are set by hardware. See Section 9.5.1.1, Automatic ECC on page 94. The status of ECC in each ECC unit is provided by the 8-bit ECC Status Register (ECCSR). The ECC Register Read command is written followed by an ECC unit address. The contents of the status register then indicates, for the selected ECC unit, whether there is an error in the ECC unit eight bit error correction code, the ECC unit of 16 Bytes of data, or that ECC is disabled for that ECC unit. Table 32 ECC Status Register (ECCSR) Bits Field Name Function 7 to 3 RFU Reserved 2 EECC Error in ECC 1 EECCD 0 ECCDI Type Default State Description 0 Reserved for Future Use Volatile, Read only 0 1 = Single Bit Error found in the ECC unit eight bit error correction code 0 = No error. Error in ECC unit data Volatile, Read only 0 1 = Single Bit Error corrected in ECC unit data. 0 = No error. ECC Disabled Volatile, Read only 0 1 = ECC is disabled in the selected ECC unit. 0 = ECC is enabled in the selected ECC unit. ECCSR[2] = 1 indicates an error was corrected in the ECC. ECCSR[1] = 1 indicates an error was corrected in the ECC unit data. ECCSR[0] = 1 indicates the ECC is disabled. The default state of "0" for all these bits indicates no failures and ECC is enabled. ECCSR[7:3] are reserved. These have undefined high or low values that can change from one ECC status read to another. These bits should be treated as "don't care" and ignored by any software reading status. 7.5.7 ASP Register (ASPR) Related Commands: ASP Read (ASPRD 2Bh) and ASP Program (ASPP 2Fh). The ASP register is a 16-bit OTP memory location used to permanently configure the behavior of Advanced Sector Protection (ASP) features. Table 33 ASP Register (ASPR) Field Name Function 15 to 9 RFU Reserved OTP 1 8 RFU Reserved OTP (Note 1) Reserved for Future Use 7 RFU Reserved OTP (Note 1) Reserved for Future Use 6 RFU Reserved OTP 1 Reserved for Future Use 5 RFU Reserved OTP (Note 1) Reserved for Future Use 4 RFU Reserved OTP (Note 1) Reserved for Future Use 3 RFU Reserved OTP (Note 1) PWDMLB Password Protection Mode Lock Bit 2 Document Number: 002-19099 Rev. *A Type Default State Bits OTP 1 Description Reserved for Future Use Reserved for Future Use 0 = Password Protection Mode permanently enabled. 1 = Password Protection Mode not permanently enabled. Page 48 of 140 S25FL128S / S25FL256S Table 33 ASP Register (ASPR) (Continued) Bits Field Name Function Type Default State 1 PSTMLB Persistent Protection Mode Lock Bit OTP 1 0 = Persistent Protection Mode permanently enabled. 1 = Persistent Protection Mode not permanently enabled. 0 RFU Reserved OTP 1 Reserved for Future Use Description Note: 1. Default value depends on ordering part number, see Initial Delivery State on page 137. Reserved for Future Use (RFU) ASPR[15:3, 0]. Password Protection Mode Lock Bit (PWDMLB) ASPR[2]: When programmed to 0, the Password Protection Mode is permanently selected. Persistent Protection Mode Lock Bit (PSTMLB) ASPR[1]: When programmed to 0, the Persistent Protection Mode is permanently selected. PWDMLB and PSTMLB are mutually exclusive, only one may be programmed to zero. 7.5.8 Password Register (PASS) Related Commands: Password Read (PASSRD E7h) and Password Program (PASSP E8h). Table 34 Password Register (PASS) Bits 63 to 0 7.5.9 Field Name PWD Function Type Hidden Password Default State OTP Description FFFFFFFF-FFFFFFFFh Non-volatile OTP storage of 64 bit password. The password is no longer readable after the password protection mode is selected by programming ASP register bit 2 to zero. PPB Lock Register (PPBL) Related Commands: PPB Lock Read (PLBRD A7h, PLBWR A6h) Table 35 PPB Lock Register (PPBL) Bits Field Name Function Type Default State 7 to 1 RFU Reserved Volatile 00h 0 PPBLOCK Protect PPB Array Volatile Persistent Protection Mode = 1 Password Protection Mode = 0 7.5.10 Description Reserved for Future Use 0 = PPB array protected until next power cycle or hardware reset 1 = PPB array may be programmed or erased. PPB Access Register (PPBAR) Related Commands: PPB Read (PPBRD E2h) Table 36 PPB Access Register (PPBAR) Bits 7 to 0 Field Name PPB Function Read or Program per sector PPB Document Number: 002-19099 Rev. *A Type Non-volatile Default State Description FFh 00h = PPB for the sector addressed by the PPBRD or PPBP command is programmed to 0, protecting that sector from program or erase operations. FFh = PPB for the sector addressed by the PPBRD or PPBP command is erased to 1, not protecting that sector from program or erase operations. Page 49 of 140 S25FL128S / S25FL256S 7.5.11 DYB Access Register (DYBAR) Related Commands: DYB Read (DYBRD E0h) and DYB Program (DYBP E1h). Table 37 DYB Access Register (DYBAR) Bits 7 to 0 7.5.12 Field Name DYB Function Type Read or Write per sector DYB Volatile Default State Description FFh 00h = DYB for the sector addressed by the DYBRD or DYBP command is cleared to 0, protecting that sector from program or erase operations. FFh = DYB for the sector addressed by the DYBRD or DYBP command is set to 1, not protecting that sector from program or erase operations. SPI DDR Data Learning Registers Related Commands: Program NVDLR (PNVDLR 43h), Write VDLR (WVDLR 4Ah), Data Learning Pattern Read (DLPRD 41h). The Data Learning Pattern (DLP) resides in an 8-bit Non-Volatile Data Learning Register (NVDLR) as well as an 8-bit Volatile Data Learning Register (VDLR). When shipped from Cypress, the NVDLR value is 00h. Once programmed, the NVDLR cannot be reprogrammed or erased; a copy of the data pattern in the NVDLR will also be written to the VDLR. The VDLR can be written to at any time, but on reset or power cycles the data pattern will revert back to what is in the NVDLR. During the learning phase described in the SPI DDR modes, the DLP will come from the VDLR. Each IO will output the same DLP value for every clock edge. For example, if the DLP is 34h (or binary 00110100) then during the first clock edge all IO's will output 0; subsequently, the 2nd clock edge all I/O's will output 0, the 3rd will output 1, etc. When the VDLR value is 00h, no preamble data pattern is presented during the dummy phase in the DDR commands. Table 38 Non-Volatile Data Learning Register (NVDLR) Bits Field Name Function Type Default State Description 7 to 0 NVDLP Non-Volatile Data Learning Pattern OTP 00h OTP value that may be transferred to the host during DDR read command latency (dummy) cycles to provide a training pattern to help the host more accurately center the data capture point in the received data bits. Table 39 Volatile Data Learning Register (NVDLR) Bits Field Name Function Type Default State 7 to 0 VDLP Volatile Data Learning Pattern Volatile Takes the value of NVDLR during POR or Reset Document Number: 002-19099 Rev. *A Description Volatile copy of the NVDLP used to enable and deliver the Data Learning Pattern (DLP) to the outputs. The VDLP may be changed by the host during system operation. Page 50 of 140 S25FL128S / S25FL256S 8. 8.1 Data Protection Secure Silicon Region (OTP) The device has a 1024-byte One Time Program (OTP) address space that is separate from the main flash array. The OTP area is divided into 32, individually lockable, 32-byte aligned and length regions. The OTP memory space is intended for increased system security. OTP values can "mate" a flash component with the system CPU/ ASIC to prevent device substitution. See OTP Address Space on page 41, One Time Program Array Commands on page 108, and OTP Read (OTPR 4Bh) on page 108. 8.1.1 Reading OTP Memory Space The OTP Read command uses the same protocol as Fast Read. OTP Read operations outside the valid 1-kB OTP address range will yield indeterminate data. 8.1.2 Programming OTP Memory Space The protocol of the OTP programming command is the same as Page Program. The OTP Program command can be issued multiple times to any given OTP address, but this address space can never be erased. Automatic ECC is programmed on the first programming operation to each 16-byte region. Programming within a 16-byte region more than once disables the ECC. It is recommended to program each 16-byte portion of each 32-byte region once so that ECC remains enabled to provide the best data integrity. The valid address range for OTP Program is depicted in Figure 40, OTP Address Space on page 41. OTP Program operations outside the valid OTP address range will be ignored and the WEL in SR1 will remain high (set to 1). OTP Program operations while FREEZE = 1 will fail with P_ERR in SR1 set to 1. 8.1.3 Cypress Programmed Random Number Cypress standard practice is to program the low order 16 bytes of the OTP memory space (locations 0x0 to 0xF) with a 128-bit random number using the Linear Congruential Random Number Method. The seed value for the algorithm is a random number concatenated with the day and time of tester insertion. 8.1.4 Lock Bytes The LSB of each Lock byte protects the lowest address region related to the byte, the MSB protects the highest address region related to the byte. The next higher address byte similarly protects the next higher 8 regions. The LSB bit of the lowest address Lock Byte protects the higher address 16 bytes of the lowest address region. In other words, the LSB of location 0x10 protects all the Lock Bytes and RFU bytes in the lowest address region from further programming. See Section 7.4, OTP Address Space on page 41. 8.2 Write Enable Command The Write Enable (WREN) command must be written prior to any command that modifies non-volatile data. The WREN command sets the Write Enable Latch (WEL) bit. The WEL bit is cleared to 0 (disables writes) during power-up, hardware reset, or after the device completes the following commands: - Reset - Page Program (PP) - Sector Erase (SE) - Bulk Erase (BE) - Write Disable (WRDI) - Write Registers (WRR) - Quad-input Page Programming (QPP) Document Number: 002-19099 Rev. *A Page 51 of 140 S25FL128S / S25FL256S - OTP Byte Programming (OTPP) 8.3 Block Protection The Block Protect bits (Status Register bits BP2, BP1, BP0) in combination with the Configuration Register TBPROT bit can be used to protect an address range of the main flash array from program and erase operations. The size of the range is determined by the value of the BP bits and the upper or lower starting point of the range is selected by the TBPROT bit of the configuration register. Table 40 Upper Array Start of Protection (TBPROT = 0) Status Register Content Protected Fraction of Memory Array Protected Memory (kbytes) FL128S 128 Mb FL256S 256 Mb BP2 BP1 BP0 0 0 0 None 0 0 0 0 1 Upper 64th 256 512 0 1 0 Upper 32nd 512 1024 0 1 1 Upper 16th 1024 2048 1 0 0 Upper 8th 2048 4096 1 0 1 Upper 4th 4096 8192 1 1 0 Upper Half 8192 16384 1 1 1 All Sectors 16384 32768 Table 41 Lower Array Start of Protection (TBPROT = 1) Status Register Content Protected Fraction of Memory Array Protected Memory (kbytes) FL128S 128 Mb FL256S 256 Mb BP2 BP1 BP0 0 0 0 None 0 0 0 0 1 Lower 64th 256 512 0 1 0 Lower 32nd 512 1024 0 1 1 Lower 16th 1024 2048 1 0 0 Lower 8th 2048 4096 1 0 1 Lower 4th 4096 8192 1 1 0 Lower Half 8192 16384 1 1 1 All Sectors 16384 32768 When Block Protection is enabled (i.e., any BP2-0 are set to 1), Advanced Sector Protection (ASP) can still be used to protect sectors not protected by the Block Protection scheme. In the case that both ASP and Block Protection are used on the same sector the logical OR of ASP and Block Protection related to the sector is used. Recommendation: ASP and Block Protection should not be used concurrently. Use one or the other, but not both. 8.3.1 Freeze Bit Bit 0 of the Configuration Register is the FREEZE bit. The FREEZE bit locks the BP2-0 bits in Status Register 1 and the TBPROT bit in the Configuration Register to their value at the time the FREEZE bit is set to 1. Once the FREEZE bit has been written to a logic 1 it cannot be cleared to a logic 0 until a power-on-reset is executed. As long as the FREEZE bit is cleared to logic 0 the status register BP bits and the TBPROT bit of the Configuration Register are writable. The FREEZE bit also protects the entire OTP memory space from programming when set to 1. Any attempt to change the BP bits with the WRR command while FREEZE = 1 is ignored and no error status is set. Document Number: 002-19099 Rev. *A Page 52 of 140 S25FL128S / S25FL256S 8.3.2 Write Protect Signal The Write Protect (WP#) input in combination with the Status Register Write Disable (SRWD) bit provide hardware input signal controlled protection. When WP# is Low and SRWD is set to 1 the Status and Configuration register is protected from alteration. This prevents disabling or changing the protection defined by the Block Protect bits. 8.4 Advanced Sector Protection Advanced Sector Protection (ASP) is the name used for a set of independent hardware and software methods used to disable or enable programming or erase operations, individually, in any or all sectors. An overview of these methods is shown in Figure 41, Advanced Sector Protection Overview on page 53. Block Protection and ASP protection settings for each sector are logically OR'd to define the protection for each sector, i.e. if either mechanism is protecting a sector the sector cannot be programmed or erased. Refer to Block Protection on page 52 for full details of the BP2-0 bits. Figure 41 Advanced Sector Protection Overview ASP Register One Time Programmable Password Method Persistent Method (ASPR[2]=0) 6) Password Method requires a password to set PPB Lock to `1' to enable program or erase of PPB bits (ASPR[1]=0) 7) Persistent Method only allows PPB Lock to be cleared to `0' to prevent program or erase of PPB bits. Power off or hardware reset required to set PPB Lock to `1' 64 -bit Password (One Time Protect) 4) PPB Lock bit is volatile and defaults to `1' (persistent mode), or `0' (password mode) upon reset PBB Lock Bit `0' = PPBs locked Memory Array `1'=PPBs unlocked Persistent Protection Bits Bit (PPB) Dynamic Protection Bits Bit (DYB) Sector 0 PPB 0 Sector 1 PPB 1 DYB 1 Sector 2 PPB 2 DYB 2 DYB 0 Sector N -2 PPB N -2 DYB N -2 Sector N -1 PPB N -1 DYB N -1 Sector N PPB N DYB N 1) N = Highest Address Sector, a sector is protected if its PPB ='0' or its DYB = `0' 2) PPB are programmed individually but erased as a group 5) PPB Lock = `0' locks all PPBs to their current state 3) DYB are volatile bits Every main flash array sector has a non-volatile (PPB) and a volatile (DYB) protection bit associated with it. When either bit is 0, the sector is protected from program and erase operations. The PPB bits are protected from program and erase when the PPB Lock bit is 0. There are two methods for managing the state of the PPB Lock bit, Persistent Protection and Password Protection. The Persistent Protection method sets the PPB Lock bit to 1 during POR, or Hardware Reset so that the PPB bits are unprotected by a device reset. There is a command to clear the PPB Lock bit to 0 to protect the PPB. There is no command in the Persistent Protection method to set the PPB Lock bit to 1, therefore the PPB Lock bit will remain at 0 until the next power-off or hardware reset. The Persistent Protection method allows boot code the option of changing sector protection by programming or erasing the PPB, then protecting the PPB from further change for the remainder of normal system operation by clearing the PPB Lock bit to 0. This is sometimes called Boot-code controlled sector protection. Document Number: 002-19099 Rev. *A Page 53 of 140 S25FL128S / S25FL256S The Password method clears the PPB Lock bit to 0 during POR, or Hardware Reset to protect the PPB. A 64-bit password may be permanently programmed and hidden for the password method. A command can be used to provide a password for comparison with the hidden password. If the password matches, the PPB Lock bit is set to 1 to unprotect the PPB. A command can be used to clear the PPB Lock bit to 0. This method requires use of a password to control PPB protection. The selection of the PPB Lock bit management method is made by programming OTP bits in the ASP Register so as to permanently select the method used. 8.4.1 ASP Register The ASP register is used to permanently configure the behavior of Advanced Sector Protection (ASP) features. See Table 33, ASP Register (ASPR) on page 48. As shipped from the factory, all devices default ASP to the Persistent Protection mode, with all sectors unprotected, when power is applied. The device programmer or host system must then choose which sector protection method to use. Programming either of the, one-time programmable, Protection Mode Lock Bits, locks the part permanently in the selected mode: ASPR[2:1] = 11 = No ASP mode selected, Persistent Protection Mode is the default. ASPR[2:1] = 10 = Persistent Protection Mode permanently selected. ASPR[2:1] = 01 = Password Protection Mode permanently selected. ASPR[2:1] = 00 = Illegal condition, attempting to program both bits to zero results in a programming failure. ASP register programming rules: If the password mode is chosen, the password must be programmed prior to setting the Protection Mode Lock Bits. Once the Protection Mode is selected, the Protection Mode Lock Bits are permanently protected from programming and no further changes to the ASP register is allowed. The programming time of the ASP Register is the same as the typical page programming time. The system can determine the status of the ASP register programming operation by reading the WIP bit in the Status Register. See Status Register 1 (SR1) on page 43 for information on WIP. After selecting a sector protection method, each sector can operate in each of the following states: Dynamically Locked -- A sector is protected and can be changed by a simple command. Persistently Locked -- A sector is protected and cannot be changed if its PPB Bit is 0. Unlocked -- The sector is unprotected and can be changed by a simple command. 8.4.2 Persistent Protection Bits The Persistent Protection Bits (PPB) are located in a separate nonvolatile flash array. One of the PPB bits is related to each sector. When a PPB is 0, its related sector is protected from program and erase operations. The PPB are programmed individually but must be erased as a group, similar to the way individual words may be programmed in the main array but an entire sector must be erased at the same time. The PPB have the same program and erase endurance as the main flash memory array. Preprogramming and verification prior to erasure are handled by the device. Programming a PPB bit requires the typical page programming time. Erasing all the PPBs requires typical sector erase time. During PPB bit programming and PPB bit erasing, status is available by reading the Status register. Reading of a PPB bit requires the initial access time of the device. Notes: Each PPB is individually programmed to 0 and all are erased to 1 in parallel. If the PPB Lock bit is 0, the PPB Program or PPB Erase command does not execute and fails without programming or erasing the PPB. The state of the PPB for a given sector can be verified by using the PPB Read command. Document Number: 002-19099 Rev. *A Page 54 of 140 S25FL128S / S25FL256S 8.4.3 Dynamic Protection Bits Dynamic Protection Bits are volatile and unique for each sector and can be individually modified. DYB only control the protection for sectors that have their PPB set to 1. By issuing the DYB Write command, a DYB is cleared to 0 or set to 1, thus placing each sector in the protected or unprotected state respectively. This feature allows software to easily protect sectors against inadvertent changes, yet does not prevent the easy removal of protection when changes are needed. The DYBs can be set or cleared as often as needed as they are volatile bits. 8.4.4 PPB Lock Bit (PPBL[0]) The PPB Lock Bit is a volatile bit for protecting all PPB bits. When cleared to 0, it locks all PPBs and when set to 1, it allows the PPBs to be changed. The PLBWR command is used to clear the PPB Lock bit to 0. The PPB Lock Bit must be cleared to 0 only after all the PPBs are configured to the desired settings. In Persistent Protection mode, the PPB Lock is set to 1 during POR or a hardware reset. When cleared to 0, no software command sequence can set the PPB Lock bit to 1, only another hardware reset or power-up can set the PPB Lock bit. In the Password Protection mode, the PPB Lock bit is cleared to 0 during POR or a hardware reset. The PPB Lock bit can only be set to 1 by the Password Unlock command. 8.4.5 Sector Protection States Summary Each sector can be in one of the following protection states: Unlocked -- The sector is unprotected and protection can be changed by a simple command. The protection state defaults to unprotected after a power cycle, software reset, or hardware reset. Dynamically Locked -- A sector is protected and protection can be changed by a simple command. The protection state is not saved across a power cycle or reset. Persistently Locked -- A sector is protected and protection can only be changed if the PPB Lock Bit is set to 1. The protection state is non-volatile and saved across a power cycle or reset. Changing the protection state requires programming and or erase of the PPB bits Table 42 Sector Protection States Protection Bit Values Sector State PPB Lock PPB DYB 1 1 1 Unprotected - PPB and DYB are changeable 1 1 0 Protected - PPB and DYB are changeable 1 0 1 Protected - PPB and DYB are changeable 1 0 0 Protected - PPB and DYB are changeable 0 1 1 Unprotected - PPB not changeable, DYB is changeable 0 1 0 Protected - PPB not changeable, DYB is changeable 0 0 1 Protected - PPB not changeable, DYB is changeable 0 0 0 Protected - PPB not changeable, DYB is changeable 8.4.6 Persistent Protection Mode The Persistent Protection method sets the PPB Lock bit to 1 during POR or Hardware Reset so that the PPB bits are unprotected by a device hardware reset. Software reset does not affect the PPB Lock bit. The PLBWR command can clear the PPB Lock bit to 0 to protect the PPB. There is no command to set the PPB Lock bit therefore the PPB Lock bit will remain at 0 until the next power-off or hardware reset. 8.4.7 Password Protection Mode Password Protection Mode allows an even higher level of security than the Persistent Sector Protection Mode, by requiring a 64-bit password for unlocking the PPB Lock bit. In addition to this password requirement, after power up and hardware reset, the PPB Lock Document Number: 002-19099 Rev. *A Page 55 of 140 S25FL128S / S25FL256S bit is cleared to 0 to ensure protection at power-up. Successful execution of the Password Unlock command by entering the entire password clears the PPB Lock bit, allowing for sector PPB modifications. Password Protection Notes: Once the Password is programmed and verified, the Password Mode (ASPR[2]=0) must be set in order to prevent reading the password. The Password Program Command is only capable of programming `0's. Programming a 1 after a cell is programmed as a 0 results in the cell left as a 0 with no programming error set. The password is all 1's when shipped from Cypress. It is located in its own memory space and is accessible through the use of the Password Program and Password Read commands. All 64-bit password combinations are valid as a password. The Password Mode, once programmed, prevents reading the 64-bit password and further password programming. All further program and read commands to the password region are disabled and these commands are ignored. There is no means to verify what the password is after the Password Mode Lock Bit is selected. Password verification is only allowed before selecting the Password Protection mode. The Protection Mode Lock Bits are not erasable. The exact password must be entered in order for the unlocking function to occur. If the password unlock command provided password does not match the hidden internal password, the unlock operation fails in the same manner as a programming operation on a protected sector. The P_ERR bit is set to one and the WIP Bit remains set. In this case it is a failure to change the state of the PPB Lock bit because it is still protected by the lack of a valid password. The Password Unlock command cannot be accepted any faster than once every 100 s 20 s. This makes it take an unreasonably long time (58 million years) for a hacker to run through all the 64-bit combinations in an attempt to correctly match a password. The Read Status Register 1 command may be used to read the WIP bit to determine when the device has completed the password unlock command or is ready to accept a new password command. When a valid password is provided the password unlock command does not insert the 100 s delay before returning the WIP bit to zero. If the password is lost after selecting the Password Mode, there is no way to set the PPB Lock bit. ECC status may only be read from sectors that are readable. In read protection mode the addresses are forced to the boot sector address. ECC status is shown in that sector while read protection mode is active. Document Number: 002-19099 Rev. *A Page 56 of 140 S25FL128S / S25FL256S 9. Commands All communication between the host system and S25FL128S and S25FL256S memory devices is in the form of units called commands. All commands begin with an instruction that selects the type of information transfer or device operation to be performed. Commands may also have an address, instruction modifier, latency period, data transfer to the memory, or data transfer from the memory. All instruction, address, and data information is transferred serially between the host system and memory device. All instructions are transferred from host to memory as a single bit serial sequence on the SI signal. Single bit wide commands may provide an address or data sent only on the SI signal. Data may be sent back to the host serially on SO signal. Dual or Quad Output commands provide an address sent to the memory only on the SI signal. Data will be returned to the host as a sequence of bit pairs on IO0 and IO1 or four bit (nibble) groups on IO0, IO1, IO2, and IO3. Dual or Quad Input/Output (I/O) commands provide an address sent from the host as bit pairs on IO0 and IO1 or, four bit (nibble) groups on IO0, IO1, IO2, and IO3. Data is returned to the host similarly as bit pairs on IO0 and IO1 or, four bit (nibble) groups on IO0, IO1, IO2, and IO3. Commands are structured as follows: Each command begins with an eight bit (byte) instruction. The instruction may be stand alone or may be followed by address bits to select a location within one of several address spaces in the device. The address may be either a 24-bit or 32-bit byte boundary address. The Serial Peripheral Interface with Multiple IO provides the option for each transfer of address and data information to be done one, two, or four bits in parallel. This enables a trade off between the number of signal connections (IO bus width) and the speed of information transfer. If the host system can support a two or four bit wide IO bus the memory performance can be increased by using the instructions that provide parallel two bit (dual) or parallel four bit (quad) transfers. The width of all transfers following the instruction are determined by the instruction sent. All sIngle bits or parallel bit groups are transferred in most to least significant bit order. Some instructions send instruction modifier (mode) bits following the address to indicate that the next command will be of the same type with an implied, rather than an explicit, instruction. The next command thus does not provide an instruction byte, only a new address and mode bits. This reduces the time needed to send each command when the same command type is repeated in a sequence of commands. The address or mode bits may be followed by write data to be stored in the memory device or by a read latency period before read data is returned to the host. Read latency may be zero to several SCK cycles (also referred to as dummy cycles). All instruction, address, mode, and data information is transferred in byte granularity. Addresses are shifted into the device with the most significant byte first. All data is transferred with the lowest address byte sent first. Following bytes of data are sent in lowest to highest byte address order i.e. the byte address increments. All attempts to read the flash memory array during a program, erase, or a write cycle (embedded operations) are ignored. The embedded operation will continue to execute without any affect. A very limited set of commands are accepted during an embedded operation. These are discussed in the individual command descriptions. While a program, erase, or write operation is in progress, it is recommended to check that the Write-In Progress (WIP) bit is 0 before issuing most commands to the device, to ensure the new command can be accepted. Depending on the command, the time for execution varies. A command to read status information from an executing command is available to determine when the command completes execution and whether the command was successful. Although host software in some cases is used to directly control the SPI interface signals, the hardware interfaces of the host system and the memory device generally handle the details of signal relationships and timing. For this reason, signal relationships and timing are not covered in detail within this software interface focused section of the document. Instead, the focus is on the logical sequence of bits transferred in each command rather than the signal timing and relationships. Following are some general signal relationship descriptions to keep in mind. For additional information on the bit level format and signal timing relationships of commands, see Command Protocol on page 14. Document Number: 002-19099 Rev. *A Page 57 of 140 S25FL128S / S25FL256S - The host always controls the Chip Select (CS#), Serial Clock (SCK), and Serial Input (SI) - SI for single bit wide transfers. The memory drives Serial Output (SO) for single bit read transfers. The host and memory alternately drive the IO0-IO3 signals during Dual and Quad transfers. - All commands begin with the host selecting the memory by driving CS# low before the first rising edge of SCK. CS# is kept low throughout a command and when CS# is returned high the command ends. Generally, CS# remains low for 8bit transfer multiples to transfer byte granularity information. Some commands will not be accepted if CS# is returned high not at an 8-bit boundary. 9.1 9.1.1 Command Set Summary Extended Addressing To accommodate addressing above 128 Mb, there are three options: 1. New instructions are provided with 4-byte address, used to access up to 32 Gb of memory. Instruction Name Description Code (Hex) 4FAST_READ Read Fast (4-byte Address) 0C 4READ Read (4-byte Address) 13 4DOR Read Dual Out (4-byte Address) 3C 4QOR Read Quad Out (4-byte Address) 6C 4DIOR Dual I/O Read (4-byte Address) BC EC 4QIOR Quad I/O Read (4-byte Address) 4DDRFR Read DDR Fast (4-byte Address) 0E 4DDRDIOR DDR Dual I/O Read (4-byte Address) BE 4DDRQIOR DDR Quad I/O Read (4-byte Address) EE 12 4PP Page Program (4-byte Address) 4QPP Quad Page Program (4-byte Address) 34 4P4E Parameter 4-kB Erase (4-byte Address) 21 4SE Erase 64/256 kB (4-byte Address) DC 2. For backward compatibility to the 3-byte address instructions, the standard instructions can be used in conjunction with the EXTADD Bit in the Bank Address Register (BAR[7]). By default BAR[7] is cleared to 0 (following power up and hardware reset), to enable 3-byte (24-bit) addressing. When set to 1, the legacy commands are changed to require 4 bytes (32 bits) for the address field. The following instructions can be used in conjunction with EXTADD bit to switch from 3 bytes to 4 bytes of address field. Instruction Name Description Code (Hex) READ Read (3-byte Address) 03 FAST_READ Read Fast (3-byte Address) 0B DOR Read Dual Out (3-byte Address) 3B QOR Read Quad Out (3-byte Address) 6B DIOR Dual I/O Read (3-byte Address) BB QIOR Quad I/O Read (3-byte Address) EB DDRFR Read DDR Fast (3-byte Address) 0D DDRDIOR DDR Dual I/O Read (3-byte Address) BD DDRQIOR DDR Quad I/O Read (3-byte Address) ED PP Page Program (3-byte Address) 02 QPP Quad Page Program (3-byte Address) 32 P4E Parameter 4-kB Erase (3-byte Address) 20 SE Erase 64 / 256 kB (3-byte Address) D8 Document Number: 002-19099 Rev. *A Page 58 of 140 S25FL128S / S25FL256S 3. For backward compatibility to the 3-byte addressing, the standard instructions can be used in conjunction with the Bank Address Register: a. The Bank Address Register is used to switch between 128-Mbit (16-Mbyte) banks of memory, The standard 3-byte address selects an address within the bank selected by the Bank Address Register. i. The host system writes the Bank Address Register to access beyond the first 128 Mbits of memory. ii. This applies to read, erase, and program commands. b. The Bank Register provides the high order (4th) byte of address, which is used to address the available memory at addresses greater than 16 Mbytes. c. Bank Register bits are volatile. i. On power up, the default is Bank0 (the lowest address 16 Mbytes). d. For Read, the device will continuously transfer out data until the end of the array. i. There is no bank to bank delay. ii. The Bank Address Register is not updated. iii. The Bank Address Register value is used only for the initial address of an access. Table 43 Bank Address Map Bank Address Register Bits Bank Memory Array Address Range (Hex) Bit 1 Bit 0 0 0 0 00000000 00FFFFFF 0 1 1 01000000 01FFFFFF Table 44 S25FL128S and S25FL256S Command Set (sorted by function) Function Command Name READ_ID (REMS) Read Device Identification Command Description Instruction Value (Hex) Maximum Frequency (MHz) Read Electronic Manufacturer Signature 90 133 RDID Read ID (JEDEC Manufacturer ID and JEDEC CFI) 9F 133 RES Read Electronic Signature AB 50 Document Number: 002-19099 Rev. *A Page 59 of 140 S25FL128S / S25FL256S Table 44 S25FL128S and S25FL256S Command Set (sorted by function) (Continued) Function Command Name Program Flash Array Maximum Frequency (MHz) 05 133 Read Status Register-1 RDSR2 Read Status Register-2 07 133 RDCR Read Configuration Register-1 35 133 WRR Write Register (Status-1, Configuration-1) 01 133 WRDI Write Disable 04 133 133 WREN Write Enable 06 CLSR Clear Status Register-1 - Erase/Prog. Fail Reset 30 133 ECC Read (4-byte address) 18 133 ABRD AutoBoot Register Read 14 133 (QUAD=0) 104 (QUAD=1) ABWR AutoBoot Register Write 15 133 BRRD Bank Register Read 16 133 BRWR Bank Register Write 17 133 BRAC Bank Register Access (Legacy Command formerly used for Deep Power Down) B9 133 DLPRD Read Flash Array Instruction Value (Hex) RDSR1 ECCRD Register Access Command Description Data Learning Pattern Read 41 133 PNVDLR Program NV Data Learning Register 43 133 WVDLR 133 Write Volatile Data Learning Register 4A READ Read (3- or 4-byte address) 03 50 4READ Read (4-byte address) 13 50 FAST_READ Fast Read (3- or 4-byte address) 0B 133 4FAST_READ Fast Read (4-byte address) 0C 133 DDRFR DDR Fast Read (3- or 4-byte address) 0D 80 4DDRFR DDR Fast Read (4-byte address) 0E 80 DOR Read Dual Out (3- or 4-byte address) 3B 104 4DOR Read Dual Out (4-byte address) 3C 104 QOR Read Quad Out (3- or 4-byte address) 6B 104 4QOR Read Quad Out (4-byte address) 6C 104 DIOR Dual I/O Read (3- or 4-byte address) BB 104 4DIOR Dual I/O Read (4-byte address) BC 104 DDRDIOR DDR Dual I/O Read (3- or 4-byte address) BD 80 4DDRDIOR DDR Dual I/O Read (4-byte address) BE 80 QIOR Quad I/O Read (3- or 4-byte address) EB 104 4QIOR 104 Quad I/O Read (4-byte address) EC DDRQIOR DDR Quad I/O Read (3- or 4-byte address) ED 80 4DDRQIOR DDR Quad I/O Read (4-byte address) EE 80 PP Page Program (3- or 4-byte address) 02 133 133 4PP Page Program (4-byte address) 12 QPP Quad Page Program (3- or 4-byte address) 32 80 QPP Quad Page Program - Alternate instruction (3- or 4-byte address) 38 80 4QPP Quad Page Program (4-byte address) 34 80 PGSP Program Suspend 85 133 PGRS Program Resume 8A 133 Document Number: 002-19099 Rev. *A Page 60 of 140 S25FL128S / S25FL256S Table 44 S25FL128S and S25FL256S Command Set (sorted by function) (Continued) Function Command Name Erase Flash Array One Time Program Array Advanced Sector Protection Reserved for Future Use 9.1.2 P4E Parameter 4-kB, sector Erase (3- or 4-byte address) 4P4E Instruction Value (Hex) Maximum Frequency (MHz) 20 133 Parameter 4-kB, sector Erase (4-byte address) 21 133 BE Bulk Erase 60 133 BE Bulk Erase (alternate command) C7 133 SE Erase 64 kB or 256 kB (3- or 4-byte address) D8 133 4SE Erase 64 kB or 256 kB (4-byte address) DC 133 ERSP Erase Suspend 75 133 ERRS Erase Resume 7A 133 OTPP OTP Program 42 133 OTPR OTP Read 4B 133 DYBRD DYB Read E0 133 DYBWR DYB Write E1 133 PPBRD PPB Read E2 133 PPBP PPB Program E3 133 PPBE PPB Erase E4 133 ASPRD ASP Read 2B 133 ASP Program 2F 133 ASPP Reset Command Description PLBRD PPB Lock Bit Read A7 133 PLBWR PPB Lock Bit Write A6 133 PASSRD Password Read E7 133 PASSP Password Program E8 133 PASSU Password Unlock E9 133 RESET Software Reset F0 133 MBR Mode Bit Reset FF 133 MPM Reserved for Multi-I/O-High Perf Mode (MPM) A3 133 RFU Reserved-18 Reserved 18 RFU Reserved-E5 Reserved E5 RFU Reserved-E6 Reserved E6 Read Device Identification There are multiple commands to read information about the device manufacturer, device type, and device features. SPI memories from different vendors have used different commands and formats for reading information about the memories. The S25FL128S and S25FL256S devices support the three most common device information commands. 9.1.3 Register Read or Write There are multiple registers for reporting embedded operation status or controlling device configuration options. There are commands for reading or writing these registers. Registers contain both volatile and non-volatile bits. Non-volatile bits in registers are automatically erased and programmed as a single (write) operation. Document Number: 002-19099 Rev. *A Page 61 of 140 S25FL128S / S25FL256S 9.1.3.1 Monitoring Operation Status The host system can determine when a write, program, erase, suspend or other embedded operation is complete by monitoring the Write in Progress (WIP) bit in the Status Register. The Read from Status Register-1 command provides the state of the WIP bit. The program error (P_ERR) and erase error (E_ERR) bits in the status register indicate whether the most recent program or erase command has not completed successfully. When P_ERR or E_ERR bits are set to one, the WIP bit will remain set to one indicating the device remains busy. Under this condition, only the CLSR, WRDI, RDSR1, RDSR2, and software RESET commands are valid commands. A Clear Status Register (CLSR) followed by a Write Disable (WRDI) command must be sent to return the device to standby state. CLSR clears the WIP, P_ERR, and E_ERR bits. WRDI clears the WEL bit. Alternatively, Hardware Reset, or Software Reset (RESET) may be used to return the device to standby state. 9.1.3.2 Configuration There are commands to read, write, and protect registers that control interface path width, interface timing, interface address length, and some aspects of data protection. 9.1.4 Read Flash Array Data may be read from the memory starting at any byte boundary. Data bytes are sequentially read from incrementally higher byte addresses until the host ends the data transfer by driving CS# input High. If the byte address reaches the maximum address of the memory array, the read will continue at address zero of the array. There are several different read commands to specify different access latency and data path widths. Double Data Rate (DDR) commands also define the address and data bit relationship to both SCK edges: The Read command provides a single address bit per SCK rising edge on the SI signal with read data returning a single bit per SCK falling edge on the SO signal. This command has zero latency between the address and the returning data but is limited to a maximum SCK rate of 50 MHz. Other read commands have a latency period between the address and returning data but can operate at higher SCK frequencies. The latency depends on the configuration register latency code. The Fast Read command provides a single address bit per SCK rising edge on the SI signal with read data returning a single bit per SCK falling edge on the SO signal and may operate up to 133 MHz. Dual or Quad Output read commands provide address a single bit per SCK rising edge on the SI / IO0 signal with read data returning two bits, or four bits of data per SCK falling edge on the IO0-IO3 signals. Dual or Quad I/O Read commands provide address two bits or four bits per SCK rising edge with read data returning two bits, or four bits of data per SCK falling edge on the IO0-IO3 signals. Fast (Single), Dual, or Quad Double Data Rate read commands provide address one bit, two bits or four bits per every SCK edge with read data returning one bit, two bits, or four bits of data per every SCK edge on the IO0-IO3 signals. Double Data Rate (DDR) operation is only supported for core and I/O voltages of 3 to 3.6V. 9.1.5 Program Flash Array Programming data requires two commands: Write Enable (WREN), and Page Program (PP or QPP). The Page Program command accepts from 1 byte up to 256 or 512 consecutive bytes of data (page) to be programmed in one operation. Programming means that bits can either be left at 1, or programmed from 1 to 0. Changing bits from 0 to 1 requires an erase operation. 9.1.6 Erase Flash Array The Sector Erase (SE) and Bulk Erase (BE) commands set all the bits in a sector or the entire memory array to 1. A bit needs to be first erased to 1 before programming can change it to a 0. While bits can be individually programmed from a 1 to 0, erasing bits from 0 to 1 must be done on a sector-wide (SE) or array-wide (BE) level. 9.1.7 OTP, Block Protection, and Advanced Sector Protection There are commands to read and program a separate One TIme Programmable (OTP) array for permanent data such as a serial number. There are commands to control a contiguous group (block) of flash memory array sectors that are protected from program Document Number: 002-19099 Rev. *A Page 62 of 140 S25FL128S / S25FL256S and erase operations. There are commands to control which individual flash memory array sectors are protected from program and erase operations. 9.1.8 Reset There is a command to reset to the default conditions present after power on to the device. There is a command to reset (exit from) the Enhanced Performance Read Modes. 9.1.9 Reserved Some instructions are reserved for future use. In this generation of the S25FL128S and S25FL256S some of these command instructions may be unused and not affect device operation, some may have undefined results. Some commands are reserved to ensure that a legacy or alternate source device command is allowed without affect. This allows legacy software to issue some commands that are not relevant for the current generation S25FL128S and S25FL256S devices with the assurance these commands do not cause some unexpected action. Some commands are reserved for use in special versions of the FL-S not addressed by this document or for a future generation. This allows new host memory controller designs to plan the flexibility to issue these command instructions. The command format is defined if known at the time this document revision is published. Document Number: 002-19099 Rev. *A Page 63 of 140 S25FL128S / S25FL256S 9.2 9.2.1 Identification Commands Read Identification - REMS (Read_ID or REMS 90h) The READ_ID command identifies the Device Manufacturer ID and the Device ID. The command is also referred to as Read Electronic Manufacturer and device Signature (REMS). READ-ID (REMS) is only supported for backward compatibility and should not be used for new software designs. New software designs should instead make use of the RDID command. The command is initiated by shifting on SI the instruction code "90h" followed by a 24-bit address of 00000h. Following this, the Manufacturer ID and the Device ID are shifted out on SO starting at the falling edge of SCK after address. The Manufacturer ID and the Device ID are always shifted out with the MSB first. If the 24-bit address is set to 000001h, then the Device ID is read out first followed by the Manufacturer ID. The Manufacturer ID and Device ID output data toggles between address 000000H and 000001H until terminated by a low to high transition on CS# input. The maximum clock frequency for the READ_ID command is 133 MHz. Figure 42 READ_ID Command Sequence CS# 0 1 2 3 4 5 6 7 8 9 28 10 29 30 31 SCK Instruction SI ADD (1) 23 22 21 90h 3 2 1 0 MSB High Impedance SO CS # 32 33 34 35 36 37 38 39 40 41 42 43 0 7 6 5 44 45 46 47 2 1 SCK SI Device ID Manufacture ID SO 7 6 5 4 3 2 1 MSB 4 3 0 MSB Table 45 Read_ID Values Device Manufacturer ID (hex) Device ID (hex) S25FL128S 01 17 S25FL256S 01 18 Document Number: 002-19099 Rev. *A Page 64 of 140 S25FL128S / S25FL256S 9.2.2 Read Identification (RDID 9Fh) The Read Identification (RDID) command provides read access to manufacturer identification, device identification, and Common Flash Interface (CFI) information. The manufacturer identification is assigned by JEDEC. The CFI structure is defined by JEDEC standard. The device identification and CFI values are assigned by Cypress. The JEDEC Common Flash Interface (CFI) specification defines a device information structure, which allows a vendor-specified software flash management program (driver) to be used for entire families of flash devices. Software support can then be deviceindependent, JEDEC manufacturer ID independent, forward and backward-compatible for the specified flash device families. System vendors can standardize their flash drivers for long-term software compatibility by using the CFI values to configure a family driver from the CFI information of the device in use. Any RDID command issued while a program, erase, or write cycle is in progress is ignored and has no effect on execution of the program, erase, or write cycle that is in progress. The RDID instruction is shifted on SI. After the last bit of the RDID instruction is shifted into the device, a byte of manufacturer identification, two bytes of device identification, extended device identification, and CFI information will be shifted sequentially out on SO. As a whole this information is referred to as ID-CFI. See ID-CFI Address Space on page 41 for the detail description of the IDCFI contents. Continued shifting of output beyond the end of the defined ID-CFI address space will provide undefined data. The RDID command sequence is terminated by driving CS# to the logic high state anytime during data output. The maximum clock frequency for the RDID command is 133 MHz. Figure 43 Read Identification (RDID) Command Sequence C S# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 655 652 653 654 SCK Instruction SI Extended Device Information Manufacturer / Device Identification High Impedance SO 9.2.3 0 1 2 20 21 22 23 24 25 26 644 645 646 1 647 Read Electronic Signature (RES) (ABh) The RES command is used to read a single byte Electronic Signature from SO. RES is only supported for backward compatibility and should not be used for new software designs. New software designs should instead make use of the RDID command. The RES instruction is shifted in followed by three dummy bytes onto SI. After the last bit of the three dummy bytes are shifted into the device, a byte of Electronic Signature will be shifted out of SO. Each bit is shifted out by the falling edge of SCK. The maximum clock frequency for the RES command is 50 MHz. The Electronic Signature can be read repeatedly by applying multiples of eight clock cycles. Document Number: 002-19099 Rev. *A Page 65 of 140 S25FL128S / S25FL256S The RES command sequence is terminated by driving CS# to the logic high state anytime during data output. Figure 44 Read Electronic Signature (RES) Command Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 2 1 0 32 33 34 7 6 5 35 36 37 38 39 1 0 SCK 3 Dummy Bytes Instruction 23 22 21 SI 3 MSB Electonic ID High Impedance SO 4 3 2 MSB Table 46 RES Values 9.3 Device Device ID (hex) S25FL128S 17 S25FL256S 18 Register Access Commands 9.3.1 Read Status Register-1 (RDSR1 05h) The Read Status Register-1 (RDSR1) command allows the Status Register-1 contents to be read from SO. The Status Register-1 contents may be read at any time, even while a program, erase, or write operation is in progress. It is possible to read the Status Register-1 continuously by providing multiples of eight clock cycles. The status is updated for each eight cycle read. The maximum clock frequency for the RDSR1 (05h) command is 133 MHz. Figure 45 Read Status Register-1 (RDSR1) Command Sequence CS # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 7 6 18 19 20 21 22 23 SCK Instruction SI Status Register-1 Out High Impedance SO 7 6 5 4 MSB 9.3.2 3 2 Status Register-1 Out 1 MSB 5 4 3 2 1 0 7 MSB Read Status Register-2 (RDSR2 07h) The Read Status Register (RDSR2) command allows the Status Register-2 contents to be read from SO. The Status Register-2 contents may be read at any time, even while a program, erase, or write operation is in progress. It is possible to read the Status Register-2 continuously by providing multiples of eight clock cycles. The status is updated for each eight cycle read. The maximum clock frequency for the RDSR2 command is 133 MHz. Document Number: 002-19099 Rev. *A Page 66 of 140 S25FL128S / S25FL256S Figure 46 Read Status Register-2 (RDSR2) Command CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 7 6 18 19 20 21 22 23 SCK Instruction SI 7 6 5 4 3 2 1 0 Status Register-2 Out High Impedance 7 SO 6 5 4 3 2 Status Register-2 Out 1 0 MSB 9.3.3 5 4 3 2 1 7 0 MSB MSB Read Configuration Register (RDCR 35h) The Read Configuration Register (RDCR) command allows the Configuration Register contents to be read from SO. It is possible to read the Configuration Register continuously by providing multiples of eight clock cycles. The Configuration Register contents may be read at any time, even while a program, erase, or write operation is in progress. Figure 47 Read Configuration Register (RDCR) Command Sequence CS# SCK SI 7 6 5 4 3 2 1 0 SO 7 Phase 9.3.4 6 Instruction 5 4 3 2 1 0 7 Register Read 6 5 4 3 2 1 0 Repeat Register Read Bank Register Read (BRRD 16h) The Read the Bank Register (BRRD) command allows the Bank address Register contents to be read from SO. The instruction is first shifted in from SI. Then the 8-bit Bank Register is shifted out on SO. It is possible to read the Bank Register continuously by providing multiples of eight clock cycles. The maximum operating clock frequency for the BRRD command is 133 MHz. Figure 48 Read Bank Register (BRRD) Command CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 2 1 0 7 6 18 19 20 21 22 23 1 0 SCK Instruction SI 7 6 5 4 3 2 1 0 MSB Bank Register Out Bank Register Out High Impedance SO 7 6 MSB 9.3.5 5 4 3 MSB 5 4 3 2 7 MSB Bank Register Write (BRWR 17h) The Bank Register Write (BRWR) command is used to write address bits above A23, into the Bank Address Register (BAR). The command is also used to write the Extended address control bit (EXTADD) that is also in BAR[7]. BAR provides the high order addresses needed by devices having more than 128 Mbits (16 Mbytes), when using 3-byte address commands without extended Document Number: 002-19099 Rev. *A Page 67 of 140 S25FL128S / S25FL256S addressing enabled (BAR[7] EXTADD = 0). Because this command is part of the addressing method and is not changing data in the flash memory, this command does not require the WREN command to precede it. The BRWR instruction is entered, followed by the data byte on SI. The Bank Register is one data byte in length. The BRWR command has no effect on the P_ERR, E_ERR or WIP bits of the Status and Configuration Registers. Any bank address bit reserved for the future should always be written as a 0. Figure 49 Bank Register Write (BRWR) Command CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCK Instruction SI 7 6 5 4 3 Bank Register In 2 1 MSB SO 9.3.6 0 7 6 5 4 3 2 1 0 MSB High Impedance Bank Register Access (BRAC B9h) The Bank Register Read and Write commands provide full access to the Bank Address Register (BAR) but they are both commands that are not present in legacy SPI memory devices. Host system SPI memory controller interfaces may not be able to easily support such new commands. The Bank Register Access (BRAC) command uses the same command code and format as the Deep Power Down (DPD) command that is available in legacy SPI memories. The FL-S family does not support a DPD feature but assigns this legacy command code to the BRAC command to enable write access to the Bank Address Register for legacy systems that are able to send the legacy DPD (B9h) command. When the BRAC command is sent, the FL-S family device will then interpret an immediately following Write Register (WRR) command as a write to the lower address bits of the BAR. A WREN command is not used between the BRAC and WRR commands. Only the lower two bits of the first data byte following the WRR command code are used to load BAR[1:0]. The upper bits of that byte and the content of the optional WRR command second data byte are ignored. Following the WRR command the access to BAR is closed and the device interface returns to the standby state. The combined BRAC followed by WRR command sequence has no affect on the value of the ExtAdd bit (BAR[7]). Commands other than WRR may immediately follow BRAC and execute normally. However, any command other than WRR, or any other sequence in which CS# goes low and returns high, following a BRAC command, will close the access to BAR and return to the normal interpretation of a WRR command as a write to Status Register-1 and the Configuration Register. Document Number: 002-19099 Rev. *A Page 68 of 140 S25FL128S / S25FL256S The BRAC + WRR sequence is allowed only when the device is in standby, program suspend, or erase suspend states. This command sequence is illegal when the device is performing an embedded algorithm or when the program (P_ERR) or erase (E_ERR) status bits are set to 1. Figure 50 BRAC (B9h) Command Sequence CS# 0 1 2 3 4 5 6 7 SCK Instruction SI 7 6 5 4 3 2 1 0 MSB High Impedance SO 9.3.7 Write Registers (WRR 01h) The Write Registers (WRR) command allows new values to be written to both the Status Register-1 and Configuration Register. Before the Write Registers (WRR) command can be accepted by the device, a Write Enable (WREN) command must be received. After the Write Enable (WREN) command has been decoded successfully, the device will set the Write Enable Latch (WEL) in the Status Register to enable any write operations. The Write Registers (WRR) command is entered by shifting the instruction and the data bytes on SI. The Status Register is one data byte in length. The Write Registers (WRR) command will set the P_ERR or E_ERR bits if there is a failure in the WRR operation. Any Status or Configuration Register bit reserved for the future must be written as a 0. CS# must be driven to the logic high state after the eighth or sixteenth bit of data has been latched. If not, the Write Registers (WRR) command is not executed. If CS# is driven high after the eighth cycle then only the Status Register-1 is written; otherwise, after the sixteenth cycle both the Status and Configuration Registers are written. When the configuration register QUAD bit CR[1] is 1, only the WRR command format with 16 data bits may be used. As soon as CS# is driven to the logic high state, the self-timed Write Registers (WRR) operation is initiated. While the Write Registers (WRR) operation is in progress, the Status Register may still be read to check the value of the Write-In Progress (WIP) bit. The Write-In Progress (WIP) bit is a 1 during the self-timed Write Registers (WRR) operation, and is a 0 when it is completed. When Document Number: 002-19099 Rev. *A Page 69 of 140 S25FL128S / S25FL256S the Write Registers (WRR) operation is completed, the Write Enable Latch (WEL) is set to a 0. The WRR command must be executed under continuous power. The maximum clock frequency for the WRR command is 133 MHz. Figure 51 Write Registers (WRR) Command Sequence - 8 data bits CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCK Instruction Status Register In SI 7 6 5 4 3 2 1 0 MSB High Impedance SO Figure 52 Write Registers (WRR) Command Sequence - 16 data bits CS # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 SCK Instruction Status Register In 7 SI MSB SO 6 5 4 3 2 Configuration Register In 1 0 7 6 5 4 3 2 1 0 MSB High Impedance The Write Registers (WRR) command allows the user to change the values of the Block Protect (BP2, BP1, and BP0) bits to define the size of the area that is to be treated as read-only. The Write Registers (WRR) command also allows the user to set the Status Register Write Disable (SRWD) bit to a 1 or a 0. The Status Register Write Disable (SRWD) bit and Write Protect (WP#) signal allow the BP bits to be hardware protected. When the Status Register Write Disable (SRWD) bit of the Status Register is a 0 (its initial delivery state), it is possible to write to the Status Register provided that the Write Enable Latch (WEL) bit has previously been set by a Write Enable (WREN) command, regardless of the whether Write Protect (WP#) signal is driven to the logic high or logic low state. When the Status Register Write Disable (SRWD) bit of the Status Register is set to a 1, two cases need to be considered, depending on the state of Write Protect (WP#): If Write Protect (WP#) signal is driven to the logic high state, it is possible to write to the Status and Configuration Registers provided that the Write Enable Latch (WEL) bit has previously been set to a 1 by initiating a Write Enable (WREN) command. If Write Protect (WP#) signal is driven to the logic low state, it is not possible to write to the Status and Configuration Registers even if the Write Enable Latch (WEL) bit has previously been set to a 1 by a Write Enable (WREN) command. Attempts to write to the Status and Configuration Registers are rejected, and are not accepted for execution. As a consequence, all the data bytes in the memory area that are protected by the Block Protect (BP2, BP1, BP0) bits of the Status Register, are also hardware protected by WP#. Document Number: 002-19099 Rev. *A Page 70 of 140 S25FL128S / S25FL256S The WP# hardware protection can be provided: by setting the Status Register Write Disable (SRWD) bit after driving Write Protect (WP#) signal to the logic low state; or by driving Write Protect (WP#) signal to the logic low state after setting the Status Register Write Disable (SRWD) bit to a 1. The only way to release the hardware protection is to pull the Write Protect (WP#) signal to the logic high state. If WP# is permanently tied high, hardware protection of the BP bits can never be activated. Table 47 Block Protection Modes WP# SRWD Bit 1 1 1 0 0 0 0 1 Mode Memory Content Write Protection of Registers Protected Area Status and Configuration Registers are Writable (if WREN command has set the WEL bit). The values in the SRWD, Software Protected BP2, BP1, and BP0 bits and those in the Configuration Register can be changed Hardware Protected Status and Configuration Registers are Hardware Write Protected. The values in the SRWD, BP2, BP1, and BP0 bits and those in the Configuration Register cannot be changed Notes: 1. The Status Register originally shows 00h when the device is first shipped from Cypress to the customer. Unprotected Area Protected against Page Program, Quad Input Program, Sector Erase, and Bulk Erase Ready to accept Page Program, Quad Input Program and Sector Erase commands Protected against Page Program, Sector Erase, and Bulk Erase Ready to accept Page Program or Erase commands 2. Hardware protection is disabled when Quad Mode is enabled (QUAD bit = 1 in Configuration Register). WP# becomes IO2; therefore, it cannot be utilized. The WRR command has an alternate function of loading the Bank Address Register if the command immediately follows a BRAC command. See Bank Register Access (BRAC B9h) on page 68. 9.3.8 Write Enable (WREN 06h) The Write Enable (WREN) command sets the Write Enable Latch (WEL) bit of the Status Register 1 (SR1[1]) to a 1. The Write Enable Latch (WEL) bit must be set to a 1 by issuing the Write Enable (WREN) command to enable write, program and erase commands. CS# must be driven into the logic high state after the eighth bit of the instruction byte has been latched in on SI. Without CS# being driven to the logic high state after the eighth bit of the instruction byte has been latched in on SI, the write enable operation will not be executed. Figure 53 Write Enable (WREN) Command Sequence CS# 0 1 2 3 4 5 6 7 SCK Instruction SI 9.3.9 Write Disable (WRDI 04h) The Write Disable (WRDI) command sets the Write Enable Latch (WEL) bit of the Status Register-1 (SR1[1]) to a 0. The Write Enable Latch (WEL) bit may be set to a 0 by issuing the Write Disable (WRDI) command to disable Page Program (PP), Sector Erase (SE), Bulk Erase (BE), Write Registers (WRR), OTP Program (OTPP), and other commands, that require WEL be set Document Number: 002-19099 Rev. *A Page 71 of 140 S25FL128S / S25FL256S to 1 for execution. The WRDI command can be used by the user to protect memory areas against inadvertent writes that can possibly corrupt the contents of the memory. The WRDI command is ignored during an embedded operation while WIP bit =1. CS# must be driven into the logic high state after the eighth bit of the instruction byte has been latched in on SI. Without CS# being driven to the logic high state after the eighth bit of the instruction byte has been latched in on SI, the write disable operation will not be executed. Figure 54 Write Disable (WRDI) Command Sequence CS# 0 1 2 3 4 5 6 7 SCK Instruction SI 9.3.10 Clear Status Register (CLSR 30h) The Clear Status Register command resets bit SR1[5] (Erase Fail Flag) and bit SR1[6] (Program Fail Flag). It is not necessary to set the WEL bit before the Clear SR command is executed. The Clear SR command will be accepted even when the device remains busy with WIP set to 1, as the device does remain busy when either error bit is set. The WEL bit will be unchanged after this command is executed. Figure 55 Clear Status Register (CLSR) Command Sequence CS# 0 1 2 3 4 5 6 7 SCK Instruction SI 9.3.11 ECC Status Register Read (ECCRD 18h) To read the ECC Status Register, the command is followed by the ECC unit (32 bit) address, the five least significant bits (LSB) of address must be set to zero. This is followed by eight dummy cycles. Then the 8-bit contents of the ECC Register, for the ECC unit selected, are shifted out on SO 16 times, once for each byte in the ECC Unit. If CS# remains low the next ECC unit status is sent Document Number: 002-19099 Rev. *A Page 72 of 140 S25FL128S / S25FL256S through SO 16 times, once for each byte in the ECC Unit, this continues until CS# goes high. The maximum operating clock frequency for the ECC READ command is 133 MHz. See Section 9.5.1.1, Automatic ECC on page 94 for details on ECC unit. Figure 56 ECC Status Register Read Command Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 SCK 32-Bit Address Instruction SI 7 6 5 4 3 2 1 0 31 30 29 3 Dummy Byte 2 1 0 7 6 5 4 3 2 1 0 DATA OUT 1 SO High Impedance 7 6 5 4 3 2 DATA OUT 2 1 MSB 9.3.12 0 7 MSB AutoBoot SPI devices normally require 32 or more cycles of command and address shifting to initiate a read command. And, in order to read boot code from an SPI device, the host memory controller or processor must supply the read command from a hardwired state machine or from some host processor internal ROM code. Parallel NOR devices need only an initial address, supplied in parallel in a single cycle, and initial access time to start reading boot code. The AutoBoot feature allows the host memory controller to take boot code from an S25FL128S and S25FL256S device immediately after the end of reset, without having to send a read command. This saves 32 or more cycles and simplifies the logic needed to initiate the reading of boot code. As part of the power up reset, hardware reset, or command reset process the AutoBoot feature automatically starts a read access from a pre-specified address. At the time the reset process is completed, the device is ready to deliver code from the starting address. The host memory controller only needs to drive CS# signal from high to low and begin toggling the SCK signal. The S25FL128S and S25FL256S device will delay code output for a pre-specified number of clock cycles before code streams out. - The Auto Boot Start Delay (ABSD) field of the AutoBoot register specifies the initial delay if any is needed by the host. - The host cannot send commands during this time. If ABSD = 0, the maximum SCK frequency is 50 MHz. - If ABSD > 0, the maximum SCK frequency is 133 MHz if the QUAD bit CR1[1] is 0 or 104 MHz if the QUAD bit is set to 1. The starting address of the boot code is selected by the value programmed into the AutoBoot Start Address (ABSA) field of the AutoBoot Register which specifies a 512-byte boundary aligned location; the default address is 00000000h. - Data will continuously shift out until CS# returns high. At any point after the first data byte is transferred, when CS# returns high, the SPI device will reset to standard SPI mode; able to accept normal command operations. - A minimum of one byte must be transferred. - AutoBoot mode will not initiate again until another power cycle or a reset occurs. An AutoBoot Enable bit (ABE) is set to enable the AutoBoot feature. The AutoBoot register bits are non-volatile and provide: The starting address (512-byte boundary), set by the AutoBoot Start Address (ABSA). The size of the ABSA field is 23 bits for devices up to 32-Gbit. The number of initial delay cycles, set by the AutoBoot Start Delay (ABSD) 8-bit count value. The AutoBoot Enable. Document Number: 002-19099 Rev. *A Page 73 of 140 S25FL128S / S25FL256S If the configuration register QUAD bit CR1[1] is set to 1, the boot code will be provided 4 bits per cycle in the same manner as a Read Quad Out command. If the QUAD bit is 0 the code is delivered serially in the same manner as a Read command. Figure 57 AutoBoot Sequence (CR1[1]=0) CS# 0 - - - - - - n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 SCK Wait State tWS Don't Care or High Impedance SI DATA OUT 1 High Impedance SO 7 6 5 4 3 2 DATA OUT 2 1 0 MSB 7 MSB Figure 58 AutoBoot Sequence (CR1[1]=1) CS# 0 - - - - - - n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 SCK Wait State tWS IO0 High Impedance 4 0 4 0 4 0 4 0 4 DATA OUT 1 High Impedance IO1 IO2 IO3 High Impedance High Impedance 5 1 5 1 5 1 5 1 5 6 2 6 2 6 2 6 2 6 7 3 7 3 7 3 7 3 7 MSB 9.3.13 AutoBoot Register Read (ABRD 14h) The AutoBoot Register Read command is shifted into SI. Then the 32-bit AutoBoot Register is shifted out on SO, least significant byte first, most significant bit of each byte first. It is possible to read the AutoBoot Register continuously by providing multiples of 32 Document Number: 002-19099 Rev. *A Page 74 of 140 S25FL128S / S25FL256S clock cycles. If the QUAD bit CR1[1] is cleared to 0, the maximum operating clock frequency for ABRD command is 133 MHz. If the QUAD bit CR1[1] is set to 1, the maximum operating clock frequency for ABRD command is 104 MHz. Figure 59 AutoBoot Register Read (ABRD) Command CS# 0 1 2 3 4 5 6 7 8 9 10 11 37 38 39 40 SCK Instruction SI 7 6 5 4 3 2 1 0 MSB AutoBoot Register High Impedance 7 SO 6 5 4 26 25 7 24 MSB 9.3.14 MSB AutoBoot Register Write (ABWR 15h) Before the ABWR command can be accepted, a Write Enable (WREN) command must be issued and decoded by the device, which sets the Write Enable Latch (WEL) in the Status Register to enable any write operations. The ABWR command is entered by shifting the instruction and the data bytes on SI, least significant byte first, most significant bit of each byte first. The ABWR data is 32 bits in length. The ABWR command has status reported in Status Register-1 as both an erase and a programming operation. An E_ERR or a P_ERR may be set depending on whether the erase or programming phase of updating the register fails. CS# must be driven to the logic high state after the 32nd bit of data has been latched. If not, the ABWR command is not executed. As soon as CS# is driven to the logic high state, the self-timed ABWR operation is initiated. While the ABWR operation is in progress, Status Register-1 may be read to check the value of the Write-In Progress (WIP) bit. The Write-In Progress (WIP) bit is a 1 during the self-timed ABWR operation, and is a 0. when it is completed. When the ABWR cycle is completed, the Write Enable Latch (WEL) is set to a 0. The maximum clock frequency for the ABWR command is 133 MHz. Figure 60 AutoBoot Register Write (ABWR) Command CS# 0 1 2 3 4 5 6 7 8 9 10 36 37 38 39 SCK Instruction SI 7 6 5 4 3 AutoBoot Register 2 9.3.15 0 7 6 5 27 26 25 24 MSB MSB SO 1 High Impedance Program NVDLR (PNVDLR 43h) Before the Program NVDLR (PNVDLR) command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device. After the Write Enable (WREN) command has been decoded successfully, the device will set the Write Enable Latch (WEL) to enable the PNVDLR operation. The PNVDLR command is entered by shifting the instruction and the data byte on SI. Document Number: 002-19099 Rev. *A Page 75 of 140 S25FL128S / S25FL256S CS# must be driven to the logic high state after the eighth (8th) bit of data has been latched. If not, the PNVDLR command is not executed. As soon as CS# is driven to the logic high state, the self-timed PNVDLR operation is initiated. While the PNVDLR operation is in progress, the Status Register may be read to check the value of the Write-In Progress (WIP) bit. The Write-In Progress (WIP) bit is a 1 during the self-timed PNVDLR cycle, and is a 0. when it is completed. The PNVDLR operation can report a program error in the P_ERR bit of the status register. When the PNVDLR operation is completed, the Write Enable Latch (WEL) is set to a 0 The maximum clock frequency for the PNVDLR command is 133 MHz. Figure 61 Program NVDLR (PNVDLR) Command Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 12 11 13 14 15 SCK I nstruction SI 7 6 5 4 3 D ata Learning P attern 2 1 0 7 MSB 5 4 3 2 1 0 H igh Im pedance SO 9.3.16 6 MSB Write VDLR (WVDLR 4Ah) Before the Write VDLR (WVDLR) command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device. After the Write Enable (WREN) command has been decoded successfully, the device will set the Write Enable Latch (WEL) to enable WVDLR operation. The WVDLR command is entered by shifting the instruction and the data byte on SI. CS# must be driven to the logic high state after the eighth (8th) bit of data has been latched. If not, the WVDLR command is not executed. As soon as CS# is driven to the logic high state, the WVDLR operation is initiated with no delays. The maximum clock frequency for the PNVDLR command is 133 MHz. Figure 62 Write VDLR (WVDLR) Command Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SCK Instruction SI 7 6 5 4 3 Data Learning Pattern 2 9.3.17 0 7 6 5 4 3 2 1 0 MSB MSB SO 1 High Impedance Data Learning Pattern Read (DLPRD 41h) The instruction is shifted on SI, then the 8-bit DLP is shifted out on SO. It is possible to read the DLP continuously by providing multiples of eight clock cycles. The maximum operating clock frequency for the DLPRD command is 133 MHz. Document Number: 002-19099 Rev. *A Page 76 of 140 S25FL128S / S25FL256S Figure 63 DLP Read (DLPRD) Command Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 SCK Instruction SI 7 6 5 4 3 Data Learning Pattern 2 1 Data Learning Pattern 0 MSB SO High Impedance 7 6 MSB 9.4 5 4 3 2 1 0 7 6 5 4 3 2 1 0 MSB Read Memory Array Commands Read commands for the main flash array provide many options for prior generation SPI compatibility or enhanced performance SPI: Some commands transfer address or data on each rising edge of SCK. These are called Single Data Rate commands (SDR). Some SDR commands transfer address one bit per rising edge of SCK and return data 1, 2, or 4 bits of data per rising edge of SCK. These are called Read or Fast Read for 1-bit data; Dual Output Read for 2-bit data, and Quad Output for 4-bit data. Some SDR commands transfer both address and data 2 or 4 bits per rising edge of SCK. These are called Dual I/O for 2 bit and Quad I/O for 4 bit. Some commands transfer address and data on both the rising edge and falling edge of SCK. These are called Double Data Rate (DDR) commands. There are DDR commands for 1, 2, or 4 bits of address or data per SCK edge. These are called Fast DDR for 1-bit, Dual I/ O DDR for 2-bit, and Quad I/O DDR for 4-bit per edge transfer. All of these commands begin with an instruction code that is transferred one bit per SCK rising edge. The instruction is followed by either a 3- or 4-byte address transferred at SDR or DDR. Commands transferring address or data 2 or 4 bits per clock edge are called Multiple I/O (MIO) commands. For FL-S devices at 256 Mbits or higher density, the traditional SPI 3-byte addresses are unable to directly address all locations in the memory array. These device have a bank address register that is used with 3-byte address commands to supply the high order address bits beyond the address from the host system. The default bank address is zero. Commands are provided to load and read the bank address register. These devices may also be configured to take a 4-byte address from the host system with the traditional 3-byte address commands. The 4-byte address mode for traditional commands is activated by setting the External Address (EXTADD) bit in the bank address register to 1. In the FL128S, higher order address bits above A23 in the 4-byte address commands, commands using Extended Address mode, and the Bank Address Register are not relevant and are ignored because the flash array is only 128 Mbits in size. The Quad I/O commands provide a performance improvement option controlled by mode bits that are sent following the address bits. The mode bits indicate whether the command following the end of the current read will be another read of the same type, without an instruction at the beginning of the read. These mode bits give the option to eliminate the instruction cycles when doing a series of Quad I/O read accesses. A device ordering option provides an enhanced high performance option by adding a similar mode bit scheme to the DDR Fast Read, Dual I/O, and Dual I/O DDR commands, in addition to the Quad I/O command. Document Number: 002-19099 Rev. *A Page 77 of 140 S25FL128S / S25FL256S Some commands require delay cycles following the address or mode bits to allow time to access the memory array. The delay cycles are traditionally called dummy cycles. The dummy cycles are ignored by the memory thus any data provided by the host during these cycles is "don't care" and the host may also leave the SI signal at high impedance during the dummy cycles. When MIO commands are used the host must stop driving the IO signals (outputs are high impedance) before the end of last dummy cycle. When DDR commands are used the host must not drive the I/O signals during any dummy cycle. The number of dummy cycles varies with the SCK frequency or performance option selected via the Configuration Register 1 (CR1) Latency Code (LC). Dummy cycles are measured from SCK falling edge to next SCK falling edge. SPI outputs are traditionally driven to a new value on the falling edge of each SCK. Zero dummy cycles means the returning data is driven by the memory on the same falling edge of SCK that the host stops driving address or mode bits. The DDR commands may optionally have an 8-edge Data Learning Pattern (DLP) driven by the memory, on all data outputs, in the dummy cycles immediately before the start of data. The DLP can help the host memory controller determine the phase shift from SCK to data edges so that the memory controller can capture data at the center of the data eye. When using SDR I/O commands at higher SCK frequencies (>50 MHz), an LC that provides 1 or more dummy cycles should be selected to allow additional time for the host to stop driving before the memory starts driving data, to minimize I/O driver conflict. When using DDR I/O commands with the DLP enabled, an LC that provides 5 or more dummy cycles should be selected to allow 1 cycle of additional time for the host to stop driving before the memory starts driving the 4 cycle DLP. Each read command ends when CS# is returned High at any point during data return. CS# must not be returned High during the mode or dummy cycles before data returns as this may cause mode bits to be captured incorrectly; making it indeterminate as to whether the device remains in enhanced high performance read mode. 9.4.1 Read (Read 03h or 4READ 13h) The instruction 03h (ExtAdd=0) is followed by a 3-byte address (A23-A0) or 03h (ExtAdd=1) is followed by a 4-byte address (A31-A0) or 13h is followed by a 4-byte address (A31-A0) Then the memory contents, at the address given, are shifted out on SO. The maximum operating clock frequency for the READ command is 50 MHz. The address can start at any byte location of the memory array. The address is automatically incremented to the next higher address in sequential order after each byte of data is shifted out. The entire memory can therefore be read out with one single read instruction and address 000000h provided. When the highest address is reached, the address counter will wrap around and roll back to 000000h, allowing the read sequence to be continued indefinitely. Figure 64 Read Command Sequence (3-byte Address, 03h [ExtAdd=0]) CS # 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 2 1 0 33 34 35 36 37 38 39 SCK Instruction 24-Bit Address 23 22 21 SI 3 DATA OUT 1 SO High Impedance 7 MSB Document Number: 002-19099 Rev. *A 6 5 4 3 2 DATA OUT 2 1 0 7 MSB Page 78 of 140 S25FL128S / S25FL256S Figure 65 Read Command Sequence (4-byte Address, 13h or 03h [ExtAdd=1]) CS# 0 1 2 3 4 5 6 7 8 9 10 36 37 38 39 2 1 0 40 41 42 7 6 5 43 44 45 46 47 1 0 SCK 32-Bit Address Instruction 31 30 29 SI 3 DATA OUT 1 SO High Impedance MSB 9.4.2 4 3 2 DATA OUT 2 7 MSB Fast Read (FAST_READ 0Bh or 4FAST_READ 0Ch) The instruction 0Bh (ExtAdd=0) is followed by a 3-byte address (A23-A0) or 0Bh (ExtAdd=1) is followed by a 4-byte address (A31-A0) or 0Ch is followed by a 4-byte address (A31-A0) The address is followed by zero or eight dummy cycles depending on the latency code set in the Configuration Register. The dummy cycles allow the device internal circuits additional time for accessing the initial address location. During the dummy cycles the data value on SO is "don't care" and may be high impedance. Then the memory contents, at the address given, are shifted out on SO. The maximum operating clock frequency for FAST READ command is 133 MHz. The address can start at any byte location of the memory array. The address is automatically incremented to the next higher address in sequential order after each byte of data is shifted out. The entire memory can therefore be read out with one single read instruction and address 000000h provided. When the highest address is reached, the address counter will wrap around and roll back to 000000h, allowing the read sequence to be continued indefinitely. Document Number: 002-19099 Rev. *A Page 79 of 140 S25FL128S / S25FL256S Figure 66 Fast Read (FAST_READ) Command Sequence (3-byte Address, 0Bh [ExtAdd=0, LC=10b]) CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SCK 24-Bit Address Instruction SI 23 22 21 Dummy Byte 3 2 1 0 7 6 5 4 3 2 1 0 DATA OUT 1 High Impedance SO 7 6 5 4 3 DATA OUT 2 2 1 7 0 MSB MSB Figure 67 Fast Read Command Sequence (4-byte Address, 0Ch or 0B [ExtAdd=1], LC=10b) CS # 0 1 2 3 4 5 6 7 8 9 10 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 SCK 32-Bit Address Instruction SI 31 30 29 3 Dummy Byte 2 1 0 7 6 5 4 3 2 1 0 DATA OUT 1 High Impedance SO 7 6 5 4 3 2 DATA OUT 2 1 MSB 7 0 MSB Figure 68 Fast Read Command Sequence (4-byte Address, 0Ch or 0B [ExtAdd=1], LC=11b) CS# 0 1 2 3 4 5 6 7 8 38 39 40 41 42 43 44 45 46 47 48 49 SCK Instruction SI 7 6 5 4 3 32 Bit Address 2 1 0 31 1 SO 9.4.3 Data 1 Data 2 0 7 6 5 4 3 2 1 0 7 6 Dual Output Read (DOR 3Bh or 4DOR 3Ch) The instruction 3Bh (ExtAdd=0) is followed by a 3-byte address (A23-A0) or 3Bh (ExtAdd=1) is followed by a 4-byte address (A31-A0) or 3Ch is followed by a 4-byte address (A31-A0) Then the memory contents, at the address given, is shifted out two bits at a time through IO0 (SI) and IO1 (SO). Two bits are shifted out at the SCK frequency by the falling edge of the SCK signal. The maximum operating clock frequency for the Dual Output Read command is 104 MHz. For Dual Output Read commands, there are zero or eight dummy cycles required after the last address bit is shifted into SI before data begins shifting out of IO0 and IO1. This latency period (i.e., dummy cycles) allows the device's internal circuitry enough time to read from the initial address. During the dummy cycles, the data value on SI is a "don't care" and may be high impedance. The number of dummy cycles is determined by the frequency of SCK (refer to Table 27, Latency Codes for SDR Enhanced High Performance on page 45). The address can start at any byte location of the memory array. The address is automatically incremented to the next higher address in sequential order after each byte of data is shifted out. The entire memory can therefore be read out with one single read Document Number: 002-19099 Rev. *A Page 80 of 140 S25FL128S / S25FL256S instruction and address 000000h provided. When the highest address is reached, the address counter will wrap around and roll back to 000000h, allowing the read sequence to be continued indefinitely. Figure 69 Dual Output Read Command Sequence (3-byte Address, 3Bh [ExtAdd=0], LC=10b) CS# SCK IO0 7 6 5 4 3 2 1 0 23 22 21 0 IO1 Phase Instruction Address 6 4 2 0 6 4 2 0 7 5 3 1 7 5 3 1 8 Dummy Cycles Data 1 Data 2 Figure 70 Dual Output Read Command Sequence (4-byte Address, 3Ch or 3Bh [ExtAdd=1, LC=10b]) CS# SCK IO0 7 6 5 4 3 2 1 0 31 30 29 0 IO1 Phase Instruction Address 6 4 2 0 6 4 2 0 7 5 3 1 7 5 3 1 8 Dummy Cycles Data 1 Data 2 Figure 71 Dual Output Read Command Sequence (4-byte Address, 3Ch or 3Bh [ExtAdd=1, LC=11b]) CS# SCK IO0 7 6 5 4 3 2 1 0 31 30 29 0 IO1 Phase 9.4.4 Instruction Address 6 4 2 0 6 4 2 0 7 5 3 1 7 5 3 1 Data 1 Data 2 Quad Output Read (QOR 6Bh or 4QOR 6Ch) The instruction 6Bh (ExtAdd=0) is followed by a 3-byte address (A23-A0) or 6Bh (ExtAdd=1) is followed by a 4-byte address (A31-A0) or 6Ch is followed by a 4-byte address (A31-A0) Then the memory contents, at the address given, is shifted out four bits at a time through IO0-IO3. Each nibble (4 bits) is shifted out at the SCK frequency by the falling edge of the SCK signal. The maximum operating clock frequency for Quad Output Read command is 104 MHz. For Quad Output Read Mode, there may be dummy cycles required after the last address bit is shifted into SI before data begins shifting out of IO0-IO3. This latency period (i.e., dummy cycles) allows the device's internal circuitry enough time to set up for the initial address. During the dummy cycles, the data value on IO0-IO3 is a "don't care" and may be high impedance. The number of dummy cycles is determined by the frequency of SCK (refer to Table 27, Latency Codes for SDR Enhanced High Performance on page 45). Document Number: 002-19099 Rev. *A Page 81 of 140 S25FL128S / S25FL256S The address can start at any byte location of the memory array. The address is automatically incremented to the next higher address in sequential order after each byte of data is shifted out. The entire memory can therefore be read out with one single read instruction and address 000000h provided. When the highest address is reached, the address counter will wrap around and roll back to 000000h, allowing the read sequence to be continued indefinitely. The QUAD bit of Configuration Register must be set (CR Bit1=1) to enable the Quad mode capability. Figure 72 Quad Output Read Command Sequence (3-byte Address, 6Bh [ExtAdd=0, LC=01b]) CS# 0 1 2 3 4 5 6 7 8 30 31 32 33 34 35 36 37 38 39 40 41 42 43 SCK Instruction Data 1 Data 2 4 0 4 0 IO1 5 1 5 1 IO2 6 2 6 2 IO3 7 3 7 3 IO0 7 6 5 4 3 24 Bit Address 2 1 0 23 1 8 Dummy Cycles 0 Figure 73 Quad Output Read Command Sequence (4-byte Address, 6Ch or 6Bh [ExtAdd=1, LC=01b]) CS# 0 1 2 3 4 5 6 7 8 38 39 40 41 42 43 44 45 46 47 48 49 50 51 SCK Instruction Data 1 Data 2 4 0 4 0 IO1 5 1 5 1 IO2 6 2 6 2 IO3 7 3 7 3 IO0 7 6 5 4 3 32 Bit Address 2 1 0 31 1 8 Dummy Cycles 0 Figure 74 Quad Output Read Command Sequence (4-byte Address, 6Ch or 6Bh [ExtAdd=1], LC=11b) CS# 0 1 2 3 4 5 6 7 8 38 39 40 41 42 43 44 45 46 47 SCK Instruction Data 1 Data 2 Data 3 Data 3 4 0 4 0 4 0 4 0 IO1 5 1 5 1 5 1 5 1 IO2 6 2 6 2 6 2 6 2 IO3 7 3 7 3 7 3 7 3 IO0 7 6 5 4 Document Number: 002-19099 Rev. *A 3 32 Bit Address 2 1 0 31 1 0 Page 82 of 140 S25FL128S / S25FL256S 9.4.5 Dual I/O Read (DIOR BBh or 4DIOR BCh) The instruction BBh (ExtAdd=0) is followed by a 3-byte address (A23-A0) or BBh (ExtAdd=1) is followed by a 4-byte address (A31-A0) or BCh is followed by a 4-byte address (A31-A0) The Dual I/O Read commands improve throughput with two I/O signals -- IO0 (SI) and IO1 (SO). It is similar to the Dual Output Read command but takes input of the address two bits per SCK rising edge. In some applications, the reduced address input time might allow for code execution in place (XIP) i.e. directly from the memory device. The maximum operating clock frequency for Dual I/O Read is 104 MHz. For the Dual I/O Read command, there is a latency required after the last address bits are shifted into SI and SO before data begins shifting out of IO0 and IO1. There are different ordering part numbers that select the latency code table used for this command, either the High Performance LC (HPLC) table or the Enhanced High Performance LC (EHPLC) table. The HPLC table does not provide cycles for mode bits so each Dual I/O Read command starts with the 8 bit instruction, followed by address, followed by a latency period. This latency period (dummy cycles) allows the device internal circuitry enough time to access data at the initial address. During the dummy cycles, the data value on SI and SO are "don't care" and may be high impedance. The number of dummy cycles is determined by the frequency of SCK (Table 27, Latency Codes for SDR Enhanced High Performance on page 45). The number of dummy cycles is set by the LC bits in the Configuration Register (CR1). The EHPLC table does provide cycles for mode bits so a series of Dual I/O Read commands may eliminate the 8-bit instruction after the first Dual I/O Read command sends a mode bit pattern of Axh that indicates the following command will also be a Dual I/O Read command. The first Dual I/O Read command in a series starts with the 8-bit instruction, followed by address, followed by four cycles of mode bits, followed by a latency period. If the mode bit pattern is Axh the next command is assumed to be an additional Dual I/O Read command that does not provide instruction bits. That command starts with address, followed by mode bits, followed by latency. The Enhanced High Performance feature removes the need for the instruction sequence and greatly improves code execution (XIP). The upper nibble (bits 7-4) of the Mode bits control the length of the next Dual I/O Read command through the inclusion or exclusion of the first byte instruction code. The lower nibble (bits 3-0) of the Mode bits are "don't care" ("x") and may be high impedance. If the Mode bits equal Axh, then the device remains in Dual I/O Enhanced High Performance Read Mode and the next address can be entered (after CS# is raised high and then asserted low) without the BBh or BCh instruction, as shown in Figure 78; thus, eliminating eight cycles for the command sequence. The following sequence will release the device from Dual I/O Enhanced High Performance Read mode; after which, the device can accept standard SPI commands: During the Dual I/O Enhanced High Performance Command Sequence, if the Mode bits are any value other than Axh, then the next time CS# is raised high the device will be released from Dual I/O Read Enhanced High Performance Read mode. During any operation, if CS# toggles high to low to high for eight cycles (or less) and data input (IO0 and IO1) are not set for a valid instruction sequence, then the device will be released from Dual I/O Enhanced High Performance Read mode. Note that the four mode bit cycles are part of the device's internal circuitry latency time to access the initial address after the last address cycle that is clocked into IO0 (SI) and IO1 (SO). It is important that the I/O signals be set to high-impedance at or before the falling edge of the first data out clock. At higher clock speeds the time available to turn off the host outputs before the memory device begins to drive (bus turn around) is diminished. It is allowed and may be helpful in preventing I/O signal contention, for the host system to turn off the I/O signal outputs (make them high impedance) during the last two "don't care" mode cycles or during any dummy cycles. Following the latency period the memory content, at the address given, is shifted out two bits at a time through IO0 (SI) and IO1 (SO). Two bits are shifted out at the SCK frequency at the falling edge of SCK signal. The address can start at any byte location of the memory array. The address is automatically incremented to the next higher address in sequential order after each byte of data is shifted out. The entire memory can therefore be read out with one single read instruction and address 000000h provided. When the highest address is reached, the address counter will wrap around and roll back to 000000h, allowing the read sequence to be continued indefinitely. Document Number: 002-19099 Rev. *A Page 83 of 140 S25FL128S / S25FL256S CS# should not be driven high during mode or dummy bits as this may make the mode bits indeterminate. Figure 75 Dual I/O Read Command Sequence (3-byte Address, BBh [ExtAdd=0], HPLC=00b) CS# SCK IO0 7 6 5 4 3 2 1 0 IO1 Phase 22 20 18 0 6 4 2 0 6 4 2 0 23 21 19 7 5 3 1 7 5 3 1 Instruction 1 Address 4 Dummy Data 1 Data 2 Figure 76 Dual I/O Read Command Sequence (4-byte Address, BBh [ExtAdd=1], HPLC=10b) CS# SCK IO0 7 6 5 4 3 2 1 0 IO1 Phase 30 28 26 0 6 4 2 0 6 4 2 0 31 29 27 7 5 3 1 7 5 3 1 Instruction 1 Address 6 Dummy Data 1 Data 2 Figure 77 Dual I/O Read Command Sequence (4-byte Address, BCh or BBh [ExtAdd=1], EHPLC=10b) CS# 0 1 2 3 4 5 6 7 8 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 SCK 8 cycles Instruction IO0 7 6 5 4 3 16 cycles 32 Bit Address 2 1 IO1 0 4 cycles Mode 30 2 0 6 4 31 3 1 7 5 2 cycles Dummy 2 0 3 1 4 cycles Data 1 Data 2 6 4 2 0 6 4 2 7 5 3 1 7 5 3 Figure 78 Continuous Dual I/O Read Command Sequence (4-byte Address, BCh or BBh [ExtAdd=1], EHPLC=10b) CS# 0 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 SCK 4 cycles Data N IO0 IO1 6 7 4 5 2 3 16 cycles 32 Bit Address 0 1 Document Number: 002-19099 Rev. *A 30 31 2 3 4 cycles Mode 0 1 6 7 4 5 2 cycles Dummy 2 0 3 1 4 cycles Data 1 4 cycles Data 2 6 4 2 0 6 4 2 0 7 5 3 1 7 5 3 1 Page 84 of 140 S25FL128S / S25FL256S 9.4.6 Quad I/O Read (QIOR EBh or 4QIOR ECh) The instruction EBh (ExtAdd=0) is followed by a 3-byte address (A23-A0) or EBh (ExtAdd=1) is followed by a 4-byte address (A31-A0) or ECh is followed by a 4-byte address (A31-A0) The Quad I/O Read command improves throughput with four I/O signals -- IO0-IO3. It is similar to the Quad Output Read command but allows input of the address bits four bits per serial SCK clock. In some applications, the reduced instruction overhead might allow for code execution (XIP) directly from S25FL128S and S25FL256S devices. The QUAD bit of the Configuration Register must be set (CR Bit1=1) to enable the Quad capability of S25FL128S and S25FL256S devices. The maximum operating clock frequency for Quad I/O Read is 104 MHz. For the Quad I/O Read command, there is a latency required after the mode bits (described below) before data begins shifting out of IO0-IO3. This latency period (i.e., dummy cycles) allows the device's internal circuitry enough time to access data at the initial address. During latency cycles, the data value on IO0-IO3 are "don't care" and may be high impedance. The number of dummy cycles is determined by the frequency of SCK and the latency code table (refer to Table 27, Latency Codes for SDR Enhanced High Performance on page 45). There are different ordering part numbers that select the latency code table used for this command, either the High Performance LC (HPLC) table or the Enhanced High Performance LC (EHPLC) table. The number of dummy cycles is set by the LC bits in the Configuration Register (CR1). However, both latency code tables use the same latency values for the Quad I/O Read command. Following the latency period, the memory contents at the address given, is shifted out four bits at a time through IO0-IO3. Each nibble (4 bits) is shifted out at the SCK frequency by the falling edge of the SCK signal. The address can start at any byte location of the memory array. The address is automatically incremented to the next higher address in sequential order after each byte of data is shifted out. The entire memory can therefore be read out with one single read instruction and address 000000h provided. When the highest address is reached, the address counter will wrap around and roll back to 000000h, allowing the read sequence to be continued indefinitely. Address jumps can be done without the need for additional Quad I/O Read instructions. This is controlled through the setting of the Mode bits (after the address sequence, as shown in Figure 79 on page 86 or Figure 81 on page 86). This added feature removes the need for the instruction sequence and greatly improves code execution (XIP). The upper nibble (bits 7-4) of the Mode bits control the length of the next Quad I/O instruction through the inclusion or exclusion of the first byte instruction code. The lower nibble (bits 3-0) of the Mode bits are "don't care" ("x"). If the Mode bits equal Axh, then the device remains in Quad I/O High Performance Read Mode and the next address can be entered (after CS# is raised high and then asserted low) without requiring the EBh or ECh instruction, as shown in Figure 80 on page 86 or Figure 82 on page 87; thus, eliminating eight cycles for the command sequence. The following sequence will release the device from Quad I/O High Performance Read mode; after which, the device can accept standard SPI commands: During the Quad I/O Read Command Sequence, if the Mode bits are any value other than Axh, then the next time CS# is raised high the device will be released from Quad I/O High Performance Read mode. During any operation, if CS# toggles high to low to high for eight cycles (or less) and data input (IO0-IO3) are not set for a valid instruction sequence, then the device will be released from Quad I/O High Performance Read mode. Note that the two mode bit clock cycles and additional wait states (i.e., dummy cycles) allow the device's internal circuitry latency time to access the initial address after the last address cycle that is clocked into IO0-IO3. It is important that the IO0-IO3 signals be set to high-impedance at or before the falling edge of the first data out clock. At higher clock speeds the time available to turn off the host outputs before the memory device begins to drive (bus turn around) is diminished. It is allowed and may be helpful in preventing IO0-IO3 signal contention, for the host system to turn off the IO0-IO3 signal outputs (make them high impedance) during the last "don't care" mode cycle or during any dummy cycles. CS# should not be driven high during mode or dummy bits as this may make the mode bits indeterminate. Document Number: 002-19099 Rev. *A Page 85 of 140 S25FL128S / S25FL256S Figure 79 Quad I/O Read Command Sequence (3-byte Address, EBh [ExtAdd=0], LC=00b) CS# 0 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19 20 21 22 23 SCK 8 cycles Instruction IO0 7 6 5 4 3 6 cycles 24 Bit Address 2 1 0 2 cycles Mode 20 4 0 4 IO1 21 5 1 5 IO2 22 6 2 6 IO3 23 7 3 7 4 cycles Dummy 0 1 2 3 2 cycles Data 1 Data 2 4 0 4 0 5 1 5 1 6 2 6 1 7 3 7 1 Figure 80 Continuous Quad I/O Read Command Sequence (3-byte Address), LC=00b CS# 0 4 5 6 7 8 9 10 11 12 13 14 SCK 2 cycles Data N 2 cycles Data N+1 6 cycles 24 Bit Address 2 cycles Mode IO0 4 0 4 0 20 4 0 4 IO1 5 1 5 1 21 5 1 5 IO2 6 2 6 2 22 6 2 6 IO3 7 3 7 3 23 7 3 7 4 cycles Dummy 0 1 2 3 2 cycles Data 1 2 cycles Data 2 4 0 4 0 5 1 5 1 6 2 6 1 7 3 7 1 Figure 81 Quad I/O Read Command Sequence(4-byte Address, ECh or EBh [ExtAdd=1], LC=00b) CS# 0 1 2 3 4 5 6 7 8 14 15 16 17 18 19 20 21 22 23 24 25 SCK 8 cycles Instruction IO0 7 6 5 4 3 8 cycles 32 Bit Address 28 4 0 4 IO1 29 5 1 5 IO2 30 6 2 6 IO3 31 7 3 7 Document Number: 002-19099 Rev. *A 2 1 0 2 cycles Mode 0 1 2 3 4 cycles Dummy 2 cycles Data 1 Data 2 4 0 4 0 5 1 5 1 6 2 6 1 7 3 7 1 Page 86 of 140 S25FL128S / S25FL256S Figure 82 Continuous Quad I/O Read Command Sequence (4-byte Address), LC=00b CS# 0 6 7 8 9 10 11 12 13 14 15 16 SCK 2 cycles Data N 2 cycles Data N+1 8 cycles 32 Bit Address 2 cycles Mode IO0 4 0 4 0 28 4 0 4 IO1 5 1 5 1 29 5 1 5 IO2 6 2 6 2 30 6 2 6 IO3 7 3 7 3 31 7 3 7 9.4.7 0 1 2 3 4 cycles Dummy 2 cycles Data 1 2 cycles Data 2 4 0 4 0 5 1 5 1 6 2 6 1 7 3 7 1 DDR Fast Read (DDRFR 0Dh, 4DDRFR 0Eh) The instruction 0Dh (ExtAdd=0) is followed by a 3-byte address (A23-A0) or 0Dh (ExtAdd=1) is followed by a 4-byte address (A31-A0) or 0Eh is followed by a 4-byte address (A31-A0) The DDR Fast Read command improves throughput by transferring address and data on both the falling and rising edge of SCK. It is similar to the Fast Read command but allows transfer of address and data on every edge of the clock. The maximum operating clock frequency for DDR Fast Read command is 80 MHz. For the DDR Fast Read command, there is a latency required after the last address bits are shifted into SI before data begins shifting out of SO. There are different ordering part numbers that select the latency code table used for this command, either the High Performance LC (HPLC) table or the Enhanced High Performance LC (EHPLC) table. The HPLC table does not provide cycles for mode bits so each DDR Fast Read command starts with the 8 bit instruction, followed by address, followed by a latency period. This latency period (dummy cycles) allows the device internal circuitry enough time to access data at the initial address. During the dummy cycles, the data value on SI is "don't care" and may be high impedance. The number of dummy cycles is determined by the frequency of SCK (Table 27, Latency Codes for SDR Enhanced High Performance on page 45). The number of dummy cycles is set by the LC bits in the Configuration Register (CR1). Then the memory contents, at the address given, is shifted out, in DDR fashion, one bit at a time on each clock edge through SO. Each bit is shifted out at the SCK frequency by the rising and falling edge of the SCK signal. The address can start at any byte location of the memory array. The address is automatically incremented to the next higher address in sequential order after each byte of data is shifted out. The entire memory can therefore be read out with one single read instruction and address 000000h provided. When the highest address is reached, the address counter will wrap around and roll back to 000000h, allowing the read sequence to be continued indefinitely. The EHPLC table does provide cycles for mode bits so a series of DDR Fast Read commands may eliminate the 8 bit instruction after the first DDR Fast Read command sends a mode bit pattern of complementary first and second Nibbles, e.g. A5h, 5Ah, 0Fh, etc., that indicates the following command will also be a DDR Fast Read command. The first DDR Fast Read command in a series starts with the 8-bit instruction, followed by address, followed by four cycles of mode bits, followed by a latency period. If the mode bit pattern is complementary the next command is assumed to be an additional DDR Fast Read command that does not provide instruction bits. That command starts with address, followed by mode bits, followed by latency. When the EHPLC table is used, address jumps can be done without the need for additional DDR Fast Read instructions. This is controlled through the setting of the Mode bits (after the address sequence, as shown in Figure 83 on page 88 and Figure 85 on page 89. This added feature removes the need for the eight bit SDR instruction sequence to reduce initial access time (improves XIP performance). The Mode bits control the length of the next DDR Fast Read operation through the inclusion or exclusion of the Document Number: 002-19099 Rev. *A Page 87 of 140 S25FL128S / S25FL256S first byte instruction code. If the upper nibble (IO[7:4]) and lower nibble (IO[3:0]) of the Mode bits are complementary (i.e. 5h and Ah) then the next address can be entered (after CS# is raised high and then asserted low) without requiring the 0Dh or 0Eh instruction, as shown in Figure 84 and Figure 86, thus, eliminating eight cycles from the command sequence. The following sequences will release the device from this continuous DDR Fast Read mode; after which, the device can accept standard SPI commands: 1. During the DDR Fast Read Command Sequence, if the Mode bits are not complementary the next time CS# is raised high the device will be released from the continuous DDR Fast Read mode. 2. During any operation, if CS# toggles high to low to high for eight cycles (or less) and data input (SI) are not set for a valid instruction sequence, then the device will be released from DDR Fast Read mode. CS# should not be driven high during mode or dummy bits as this may make the mode bits indeterminate. The HOLD function is not valid during any part of a Fast DDR Command. Although the data learning pattern (DLP) is programmable, the following example shows example of the DLP of 34h. The DLP 34h (or 00110100) will be driven on each of the active outputs (i.e. all four IOs on a x4 device, both IOs on a x2 device and the single SO output on a x1 device). This pattern was chosen to cover both DC and AC data transition scenarios. The two DC transition scenarios include data low for a long period of time (two half clocks) followed by a high going transition (001) and the complementary low going transition (110). The two AC transition scenarios include data low for a short period of time (one half clock) followed by a high going transition (101) and the complementary low going transition (010). The DC transitions will typically occur with a starting point closer to the supply rail than the AC transitions that may not have fully settled to their steady state (DC) levels. In many cases the DC transitions will bound the beginning of the data valid period and the AC transitions will bound the ending of the data valid period. These transitions will allow the host controller to identify the beginning and ending of the valid data eye. Once the data eye has been characterized the optimal data capture point can be chosen. See Section 7.5.12, SPI DDR Data Learning Registers on page 50 for more details. Figure 83 DDR Fast Read Initial Access (3-byte Address, 0Dh [ExtAdd=0, EHPLC=11b]) CS# 0 1 2 3 4 5 6 7 8 19 20 21 22 23 24 25 26 27 28 29 SCK 8 cycles Instruction IO0 7 6 5 4 3 IO1 Document Number: 002-19099 Rev. *A 12 cycles 24 Bit Address 2 1 0 2 2 1 0 4 cycles Mode 7 6 5 4 3 1 cyc Dummy 2 1 4 cycles per data 0 7 6 5 4 3 2 1 0 7 6 Page 88 of 140 S25FL128S / S25FL256S Figure 84 Continuous DDR Fast Read Subsequent Access (3-byte Address [ExtAdd=0, EHPLC=11b]) CS# 0 11 12 13 14 15 16 17 18 19 20 21 SCK 12 cycles 24 Bit Address IO0 23 22 1 4 cycles Mode 0 7 6 5 4 1 cyc Dummy 3 2 1 4 cycles per data 0 IO1 7 6 5 4 3 2 1 0 7 6 Figure 85 DDR Fast Read Initial Access (4-byte Address, 0Eh or 0Dh [ExtAdd=1], EHPLC=01b) CS# 0 1 2 3 4 5 6 7 8 23 24 25 26 27 28 29 30 31 32 33 34 35 36 SCK 8 cycles Instruction SI 7 6 5 4 16 cycles 32b Add 3 2 1 0 31 22 1 4 cycles Mode 0 7 6 5 4 3 4 cycles Dummy Optional DLP 2 1 4 cycles per data 0 SO 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 Note: 1. Example DLP of 34h (or 00110100). Figure 86 Continuous DDR Fast Read Subsequent Access (4-byte Address [ExtAdd=1], EHPLC=01b) CS# 0 15 16 17 18 19 20 21 22 23 24 25 26 27 28 SCK 16 cycles 32b Add SI 31 22 1 4 cycles Mode 0 7 6 5 SO 4 3 4 cycles Dummy Optional DLP 2 1 4 cycles per data 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 Note: 1. Example DLP of 34h (or 00110100). Document Number: 002-19099 Rev. *A Page 89 of 140 S25FL128S / S25FL256S Figure 87 DDR Fast Read Subsequent Access (4-byte Address, HPLC=01b) CS# 0 1 2 3 4 5 6 7 8 23 24 25 26 27 28 29 30 31 32 33 34 SCK 8 cycles Instruction SI 7 6 5 4 16 cycles 32b Add 3 2 1 0 31 22 1 6 cycles Dummy 4 cycles per data 0 SO 7 9.4.8 6 5 4 3 2 1 0 7 6 DDR Dual I/O Read (BDh, BEh) The instruction BDh (ExtAdd=0) is followed by a 3-byte address (A23-A0) or BDh (ExtAdd=1) is followed by a 4-byte address (A31-A0) or BEh is followed by a 4-byte address (A31-A0) Then the memory contents, at the address given, is shifted out, in a DDR fashion, two bits at a time on each clock edge through IO0 (SI) and IO1 (SO). Two bits are shifted out at the SCK frequency by the rising and falling edge of the SCK signal. The DDR Dual I/O Read command improves throughput with two I/O signals -- IO0 (SI) and IO1 (SO). It is similar to the Dual I/O Read command but transfers two address, mode, or data bits on every edge of the clock. In some applications, the reduced instruction overhead might allow for code execution (XIP) directly from S25FL128S and S25FL256S devices. The maximum operating clock frequency for DDR Dual I/O Read command is 80 MHz. For DDR Dual I/O Read commands, there is a latency required after the last address bits are shifted into IO0 and IO1, before data begins shifting out of IO0 and IO1. There are different ordering part numbers that select the latency code table used for this command, either the High Performance LC (HPLC) table or the Enhanced High Performance LC (EHPLC) table. The number of latency (dummy) clocks is determined by the frequency of SCK (refer to Table 26, Latency Codes for DDR High Performance on page 45 or Table 28, Latency Codes for DDR Enhanced High Performance on page 45). The number of dummy cycles is set by the LC bits in the Configuration Register (CR1). The HPLC table does not provide cycles for mode bits so each Dual I/O command starts with the 8 bit instruction, followed by address, followed by a latency period. This latency period allows the device's internal circuitry enough time to access the initial address. During these latency cycles, the data value on SI (IO0) and SO (IO1) are "don't care" and may be high impedance. When the Data Learning Pattern (DLP) is enabled the host system must not drive the IO signals during the dummy cycles. The IO signals must be left high impedance by the host so that the memory device can drive the DLP during the dummy cycles. The EHPLC table does provide cycles for mode bits so a series of Dual I/O DDR commands may eliminate the 8 bit instruction after the first command sends a complementary mode bit pattern, as shown in Figure 88 and Figure 90 on page 92. This added feature removes the need for the eight bit SDR instruction sequence and dramatically reduces initial access times (improves XIP performance). The Mode bits control the length of the next DDR Dual I/O Read operation through the inclusion or exclusion of the first byte instruction code. If the upper nibble (IO[7:4]) and lower nibble (IO[3:0]) of the Mode bits are complementary (i.e. 5h and Ah) the device transitions to Continuous DDR Dual I/O Read Mode and the next address can be entered (after CS# is raised high and then asserted low) without requiring the BDh or BEh instruction, as shown in Figure 89 on page 91, and thus, eliminating eight cycles from the command sequence. The following sequences will release the device from Continuous DDR Dual I/O Read mode; after which, the device can accept standard SPI commands: 1. During the DDR Dual I/O Read Command Sequence, if the Mode bits are not complementary the next time CS# is raised high and then asserted low the device will be released from DDR Dual I/O Read mode. 2. During any operation, if CS# toggles high to low to high for eight cycles (or less) and data input (IO0 and IO1) are not set for a valid instruction sequence, then the device will be released from DDR Dual I/O Read mode. Document Number: 002-19099 Rev. *A Page 90 of 140 S25FL128S / S25FL256S The address can start at any byte location of the memory array. The address is automatically incremented to the next higher address in sequential order after each byte of data is shifted out. The entire memory can therefore be read out with one single read instruction and address 000000h provided. When the highest address is reached, the address counter will wrap around and roll back to 000000h, allowing the read sequence to be continued indefinitely. CS# should not be driven high during mode or dummy bits as this may make the mode bits indeterminate. The HOLD function is not valid during Dual I/O DDR commands. Note that the memory devices may drive the IOs with a preamble prior to the first data value. The preamble is a data learning pattern (DLP) that is used by the host controller to optimize data capture at higher frequencies. The preamble DLP drives the IO bus for the four clock cycles immediately before data is output. The host must be sure to stop driving the IO bus prior to the time that the memory starts outputting the preamble. The preamble is intended to give the host controller an indication about the round trip time from when the host drives a clock edge to when the corresponding data value returns from the memory device. The host controller will skew the data capture point during the preamble period to optimize timing margins and then use the same skew time to capture the data during the rest of the read operation. The optimized capture point will be determined during the preamble period of every read operation. This optimization strategy is intended to compensate for both the PVT (process, voltage, temperature) of both the memory device and the host controller as well as any system level delays caused by flight time on the PCB. Although the data learning pattern (DLP) is programmable, the following example shows example of the DLP of 34h. The DLP 34h (or 00110100) will be driven on each of the active outputs (i.e. all four SIOs on a x4 device, both SIOs on a x2 device and the single SO output on a x1 device). This pattern was chosen to cover both DC and AC data transition scenarios. The two DC transition scenarios include data low for a long period of time (two half clocks) followed by a high going transition (001) and the complementary low going transition (110). The two AC transition scenarios include data low for a short period of time (one half clock) followed by a high going transition (101) and the complementary low going transition (010). The DC transitions will typically occur with a starting point closer to the supply rail than the AC transitions that may not have fully settled to their steady state (DC) levels. In many cases the DC transitions will bound the beginning of the data valid period and the AC transitions will bound the ending of the data valid period. These transitions will allow the host controller to identify the beginning and ending of the valid data eye. Once the data eye has been characterized the optimal data capture point can be chosen. See Section 7.5.12, SPI DDR Data Learning Registers on page 50 for more details. Figure 88 DDR Dual I/O Read Initial Access (4-byte Address, BEh or BDh [ExtAdd=1], EHPLC= 01b) CS# 0 1 2 3 4 5 6 7 8 15 16 17 18 19 20 21 22 23 24 25 SCK 8 cycles Instruction IO0 7 6 5 4 8 cycles 32b Add 3 2 1 0 IO1 2 cycles Mode 5 cycles Dummy Optional DLP 2 cycles per data 30 22 2 0 6 4 2 0 7 6 5 4 3 2 1 0 6 4 2 0 6 31 22 3 1 7 5 3 1 7 6 5 4 3 2 1 0 7 5 3 1 7 Figure 89 Continuous DDR Dual I/O Read Subsequent Access (4-byte Address, EHPLC= 01b) CS# 0 8 9 10 11 12 13 14 8 15 16 17 SCK 8 cycles 32b Add 2 cycles Mode 5 cycles Dummy Optional DLP 2 cycles per data IO0 30 22 2 0 6 4 2 0 7 6 5 4 3 2 1 0 6 4 2 0 6 IO1 31 22 3 1 7 5 3 1 7 6 5 4 3 2 1 0 7 5 3 1 7 Document Number: 002-19099 Rev. *A Page 91 of 140 S25FL128S / S25FL256S Figure 90 DDR Dual I/O Read (4-byte Address, BEh or BDh [ExtAdd=1], HPLC=00b) CS# 0 1 2 3 4 5 6 7 8 15 16 17 18 19 20 21 22 23 24 SCK 8 cycles Instruction IO0 7 6 5 4 3 8 cycles 32b Add 2 1 IO1 9.4.9 0 6 cycles Dummy 2 cycles per data 30 2 0 6 4 2 0 6 31 3 1 7 5 3 1 7 2 DDR Quad I/O Read (EDh, EEh) The Read DDR Quad I/O command improves throughput with four I/O signals - IO0-IO3. It is similar to the Quad I/O Read command but allows input of the address four bits on every edge of the clock. In some applications, the reduced instruction overhead might allow for code execution (XIP) directly from S25FL128S and S25FL256S devices. The QUAD bit of the Configuration Register must be set (CR Bit1=1) to enable the Quad capability. The instruction EDh (ExtAdd=0) is followed by a 3-byte address (A23-A0) or EDh (ExtAdd=1) is followed by a 4-byte address (A31-A0) or EEh is followed by a 4-byte address (A31-A0) The address is followed by mode bits. Then the memory contents, at the address given, is shifted out, in a DDR fashion, with four bits at a time on each clock edge through IO0-IO3. The maximum operating clock frequency for Read DDR Quad I/O command is 80 MHz. For Read DDR Quad I/O, there is a latency required after the last address and mode bits are shifted into the IO0-IO3 signals before data begins shifting out of IO0-IO3. This latency period (dummy cycles) allows the device's internal circuitry enough time to access the initial address. During these latency cycles, the data value on IO0-IO3 are "don't care" and may be high impedance. When the Data Learning Pattern (DLP) is enabled the host system must not drive the IO signals during the dummy cycles. The IO signals must be left high impedance by the host so that the memory device can drive the DLP during the dummy cycles. There are different ordering part numbers that select the latency code table used for this command, either the High Performance LC (HPLC) table or the Enhanced High Performance LC (EHPLC) table. The number of dummy cycles is determined by the frequency of SCK (refer to Table 26, Latency Codes for DDR High Performance on page 45). The number of dummy cycles is set by the LC bits in the Configuration Register (CR1). Both latency tables provide cycles for mode bits so a series of Quad I/O DDR commands may eliminate the 8 bit instruction after the first command sends a complementary mode bit pattern, as shown in Figure 91 and Figure 93. This feature removes the need for the eight bit SDR instruction sequence and dramatically reduces initial access times (improves XIP performance). The Mode bits control the length of the next Read DDR Quad I/O operation through the inclusion or exclusion of the first byte instruction code. If the upper nibble (IO[7:4]) and lower nibble (IO[3:0]) of the Mode bits are complementary (i.e. 5h and Ah) the device transitions to Continuous Read DDR Quad I/O Mode and the next address can be entered (after CS# is raised high and then asserted low) without requiring the EDh or EEh instruction, as shown in Figure 92 on page 94 and Figure 94 on page 94 thus, eliminating eight cycles from the command sequence. The following sequences will release the device from Continuous Read DDR Quad I/O mode; after which, the device can accept standard SPI commands: 1. During the Read DDR Quad I/O Command Sequence, if the Mode bits are not complementary the next time CS# is raised high and then asserted low the device will be released from Read DDR Quad I/O mode. 2. During any operation, if CS# toggles high to low to high for eight cycles (or less) and data input (IO0, IO1, IO2, and IO3) are not set for a valid instruction sequence, then the device will be released from Read DDR Quad I/O mode. The address can start at any byte location of the memory array. The address is automatically incremented to the next higher address in sequential order after each byte of data is shifted out. The entire memory can therefore be read out with one single read instruction and address 000000h provided. When the highest address is reached, the address counter will wrap around and roll back to 000000h, allowing the read sequence to be continued indefinitely. Document Number: 002-19099 Rev. *A Page 92 of 140 S25FL128S / S25FL256S CS# should not be driven high during mode or dummy bits as this may make the mode bits indeterminate. The HOLD function is not valid during Quad I/O DDR commands. Note that the memory devices drive the IOs with a preamble prior to the first data value. The preamble is a pattern that is used by the host controller to optimize data capture at higher frequencies. The preamble drives the IO bus for the four clock cycles immediately before data is output. The host must be sure to stop driving the IO bus prior to the time that the memory starts outputting the preamble. The preamble is intended to give the host controller an indication about the round trip time from when the host drives a clock edge to when the corresponding data value returns from the memory device. The host controller will skew the data capture point during the preamble period to optimize timing margins and then use the same skew time to capture the data during the rest of the read operation. The optimized capture point will be determined during the preamble period of every read operation. This optimization strategy is intended to compensate for both the PVT (process, voltage, temperature) of both the memory device and the host controller as well as any system level delays caused by flight time on the PCB. Although the data learning pattern (DLP) is programmable, the following example shows example of the DLP of 34h. The DLP 34h (or 00110100) will be driven on each of the active outputs (i.e. all four SIOs on a x4 device, both SIOs on a x2 device and the single SO output on a x1 device). This pattern was chosen to cover both DC and AC data transition scenarios. The two DC transition scenarios include data low for a long period of time (two half clocks) followed by a high going transition (001) and the complementary low going transition (110). The two AC transition scenarios include data low for a short period of time (one half clock) followed by a high going transition (101) and the complementary low going transition (010). The DC transitions will typically occur with a starting point closer to the supply rail than the AC transitions that may not have fully settled to their steady state (DC) levels. In many cases the DC transitions will bound the beginning of the data valid period and the AC transitions will bound the ending of the data valid period. These transitions will allow the host controller to identify the beginning and ending of the valid data eye. Once the data eye has been characterized the optimal data capture point can be chosen. See SPI DDR Data Learning Registers on page 50 for more details. Figure 91 DDR Quad I/O Read Initial Access (3-byte Address, EDh [ExtAdd=0], HPLC=11b) CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SCK IO0 7 6 5 8 cycles 3 cycles 1 cycle 3 cycle Dummy Instruction Address Mode High-Z Bus Turn-around 4 2 1 0 Data 1 20 16 12 8 4 0 4 0 4 0 4 0 IO1 21 17 13 9 5 1 5 1 5 1 5 1 IO2 22 18 14 10 6 2 6 2 6 2 6 2 IO3 23 19 15 11 7 3 7 3 7 3 7 3 Document Number: 002-19099 Rev. *A 3 1 cycle per data Data 0 Page 93 of 140 S25FL128S / S25FL256S Figure 92 Continuous DDR Quad I/O Read Subsequent Access (3-byte Address,HPLC=11b) CS# 0 1 2 3 4 5 6 7 8 SCK 3 cycle 1 cycle 3 cycle Dummy Address Mode High-Z Bus Turn-around 1 cycle per data Data 0 Data 1 IO0 20 16 12 8 4 0 4 0 4 0 4 0 IO1 21 17 13 9 5 1 5 1 5 1 5 1 IO2 22 18 14 10 6 2 6 2 6 2 6 2 IO3 23 19 15 11 7 3 7 3 7 3 7 3 Figure 93 DDR Quad I/O Read Initial Access (4-byte Address, EEh or EDh [ExtAdd=1], EHPLC=01b) CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 SCK 8 cycles Instruction IO0 7 6 5 4 4 cycles 32 Bit Address 3 2 1 0 1 cycle Mode High-Z Bus Turn-around 7 cycle Dummy Optional Data Learning Pattern 1 cycle per data Data 0 Data 1 28 24 20 16 12 8 4 0 4 0 7 6 5 4 3 2 1 0 4 0 4 0 IO1 29 25 21 17 13 9 5 1 5 1 7 6 5 4 3 2 1 0 5 1 5 1 IO2 30 26 22 18 14 10 6 2 6 2 7 6 5 4 3 2 1 0 6 2 6 2 IO3 31 27 23 19 15 11 7 3 7 3 7 6 5 4 3 2 1 0 7 3 7 3 Note: 1. Example DLP of 34h (or 00110100). Figure 94 Continuous DDR Quad I/O Read Subsequent Access (4-byte Address, EHPLC=01b) CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 SCK 4 cycles 32 Bit Address 1 cycle Mode High-Z Bus Turn-around 7 cycle Dummy Optional Data Learning Pattern 1 cycle per data Data 0 Data 1 IO0 28 24 20 16 12 8 4 0 4 0 7 6 5 4 3 2 1 0 4 0 4 0 IO1 29 25 21 17 13 9 5 1 5 1 7 6 5 4 3 2 1 0 5 1 5 1 IO2 30 26 22 18 14 10 6 2 6 2 7 6 5 4 3 2 1 0 6 2 6 2 IO3 31 27 23 19 15 11 7 3 7 3 7 6 5 4 3 2 1 0 7 3 7 3 Note: 1. Example DLP of 34h (or 00110100). 9.5 9.5.1 9.5.1.1 Program Flash Array Commands Program Granularity Automatic ECC Each 16 byte aligned and 16 byte length Programming Block has an automatic Error Correction Code (ECC) value. The data block plus ECC form an ECC unit. In combination with Error Detection and Correction (EDC) logic the ECC is used to detect and correct Document Number: 002-19099 Rev. *A Page 94 of 140 S25FL128S / S25FL256S any single bit error found during a read access. When data is first programmed within an ECC unit the ECC value is set for the entire ECC unit. If the same ECC unit is programmed more than once the ECC value is changed to disable the Error Detection and Correction (EDC) function. A sector erase is needed to again enable Automatic ECC on that Programming Block. The 16 byte Program Block is the smallest program granularity on which Automatic ECC is enabled. These are automatic operations transparent to the user. The transparency of the Automatic ECC feature enhances data accuracy for typical programming operations which write data once to each ECC unit but, facilitates software compatibility to previous generations of FL-S family of products by allowing for single byte programming and bit walking in which the same ECC unit is programmed more than once. When an ECC unit has Automatic ECC disabled, EDC is not done on data read from the ECC unit location. An ECC status register is provided for determining if ECC is enabled on an ECC unit and whether any errors have been detected and corrected in the ECC unit data or the ECC (See Section 7.5.6, ECC Status Register (ECCSR) on page 48.) The ECC Status Register Read (ECCRD) command is used to read the ECC status on any ECC unit. EDC is applied to all parts of the Flash address spaces other than registers. An ECC is calculated for each group of bytes protected and the ECC is stored in a hidden area related to the group of bytes. The group of protected bytes and the related ECC are together called an ECC unit. ECC is calculated for each 16 byte aligned and length ECC unit. Single Bit EDC is supported with 8 ECC bits per ECC unit, plus 1 bit for an ECC disable Flag. Sector erase resets all ECC bits and ECC disable flags in a sector to the default state (enabled). ECC is programmed as part of the standard Program commands operation. ECC is disabled automatically if multiple programming operations are done on the same ECC unit. Single byte programming or bit walking is allowed but disables ECC on the second program to the same 16-byte ECC unit. The ECC disable flag is programmed when ECC is disabled. To re-enable ECC for an ECC unit that has been disabled, the Sector that includes the ECC unit must be erased. To ensure the best data integrity provided by EDC, each ECC unit should be programmed only once so that ECC is stored for that unit and not disabled. The calculation, programming, and disabling of ECC is done automatically as part of a programming operation. The detection and correction, if needed, is done automatically as part of read operations. The host system sees only corrected data from a read operation. ECC protects the OTP region - however a second program operation on the same ECC unit will disable ECC permanently on that ECC unit (OTP is one time programmable, hence an erase operation to re-enable the ECC enable/indicator bit is prohibited). 9.5.1.2 Page Programming Page Programming is done by loading a Page Buffer with data to be programmed and issuing a programming command to move data from the buffer to the memory array. This sets an upper limit on the amount of data that can be programmed with a single programming command. Page Programming allows up to a page size (either 256 or 512 bytes) to be programmed in one operation. The page size is determined by the Ordering Part Number (OPN). The page is aligned on the page size address boundary. It is possible to program from one bit up to a page size in each Page programming operation. It is recommended that a multiple of 16 byte length and aligned Program Blocks be written. For the very best performance, programming should be done in full pages of 512 bytes aligned on 512-byte boundaries with each Page being programmed only once. 9.5.1.3 Single Byte Programming Single Byte Programming allows full backward compatibility to the standard SPI Page Programming (PP) command by allowing a single byte to be programmed anywhere in the memory array. While single byte programming is supported, this will disable Automatic ECC on the 16 byte ECC unit where the byte is located 9.5.2 Page Program (PP 02h or 4PP 12h) Document Number: 002-19099 Rev. *A Page 95 of 140 S25FL128S / S25FL256S The Page Program (PP) commands allows bytes to be programmed in the memory (changing bits from 1 to 0). Before the Page Program (PP) commands can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device. After the Write Enable (WREN) command has been decoded successfully, the device sets the Write Enable Latch (WEL) in the Status Register to enable any write operations. The instruction 02h (ExtAdd=0) is followed by a 3-byte address (A23-A0) or 02h (ExtAdd=1) is followed by a 4-byte address (A31-A0) or 12h is followed by a 4-byte address (A31-A0) and at least one data byte on SI. Depending on the device OPN, the page size can either be 256 or 512 bytes. Up to a page can be provided on SI after the 3-byte address with instruction 02h or 4-byte address with instruction 12h has been provided. If the 9 least significant address bits (A8-A0) are not all zero, all transmitted data that goes beyond the end of the current page are programmed from the start address of the same page (from the address whose 9 least significant bits (A8-A0) are all zero) i.e. the address wraps within the page aligned address boundaries. This is a result of only requiring the user to enter one single page address to cover the entire page boundary. If less than a page of data is sent to the device, these data bytes will be programmed in sequence, starting at the provided address within the page, without having any affect on the other bytes of the same page. For optimized timings, using the Page Program (PP) command to load the entire page size program buffer within the page boundary will save overall programming time versus loading less than a page size into the program buffer. The programming process is managed by the flash memory device internal control logic. After a programming command is issued, the programming operation status can be checked using the Read Status Register-1 command. The WIP bit (SR1[0]) will indicate Document Number: 002-19099 Rev. *A Page 96 of 140 S25FL128S / S25FL256S when the programming operation is completed. The P_ERR bit (SR1[6]) will indicate if an error occurs in the programming operation that prevents successful completion of programming. Figure 95 Page Program (PP) Command Sequence (3-byte Address, 02h) CS # 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39 SCK 24-Bit Address Instruction 23 22 21 SI Data Byte 1 3 2 1 0 MSB 7 6 5 4 3 2 1 0 MSB 4127 4125 4126 4123 4124 4122 40 41 42 43 44 45 46 47 48 49 59 51 52 53 54 55 4121 4120 CS # 1 0 SCK Data Byte 2 SI 7 6 5 4 3 Data Byte 3 2 1 0 MSB 7 6 5 4 3 Data Byte 512 2 1 0 7 MSB 6 5 4 3 2 MSB Figure 96 Page Program (4PP) Command Sequence (4-byte Address, 12h) CS # 0 1 2 3 4 5 6 7 8 9 10 36 37 38 39 40 41 42 43 44 45 46 47 SCK 32-Bit Address Instruction 31 30 29 SI Data Byte 1 3 2 1 0 MSB 7 6 5 4 3 2 1 0 MSB 4134 4135 4133 4132 4130 4131 4129 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 4128 CS # 1 0 SCK Data Byte 2 SI 7 6 5 MSB 9.5.3 4 3 Data Byte 3 2 1 0 7 MSB 6 5 4 3 Data Byte 512 2 1 0 7 6 5 4 3 2 MSB Quad Page Program (QPP 32h or 38h, or 4QPP 34h) The Quad-input Page Program (QPP) command allows bytes to be programmed in the memory (changing bits from 1 to 0). The Quad-input Page Program (QPP) command allows up to a page size (either 256 or 512 bytes) of data to be loaded into the Page Buffer using four signals: IO0-IO3. QPP can improve performance for PROM Programmer and applications that have slower clock speeds (< 12 MHz) by loading 4 bits of data per clock cycle. Systems with faster clock speeds do not realize as much benefit for the Document Number: 002-19099 Rev. *A Page 97 of 140 S25FL128S / S25FL256S QPP command since the inherent page program time becomes greater than the time it takes to clock-in the data. The maximum frequency for the QPP command is 80 MHz. To use Quad Page Program the Quad Enable Bit in the Configuration Register must be set (QUAD=1). A Write Enable command must be executed before the device will accept the QPP command (Status Register 1, WEL=1). The instruction 32h (ExtAdd=0) is followed by a 3-byte address (A23-A0) or 32h (ExtAdd=1) is followed by a 4-byte address (A31-A0) or 38h (ExtAdd=0) is followed by a 3-byte address (A23-A0) or 38h (ExtAdd=1) is followed by a 4-byte address (A31-A0) or 34h is followed by a 4-byte address (A31-A0) and at least one data byte, into the IO signals. Data must be programmed at previously erased (FFh) memory locations. QPP requires programming to be done one full page at a time. While less than a full page of data may be loaded for programming, the entire page is considered programmed, any locations not filled with data will be left as ones, the same page must not be programmed more than once. Document Number: 002-19099 Rev. *A Page 98 of 140 S25FL128S / S25FL256S All other functions of QPP are identical to Page Program. The QPP command sequence is shown in Figure 97. Figure 97 Quad 512-Byte Page Program Command Sequence (3-Byte Address, 32h or 38h) CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39 SCK 24-Bit Address Instruction IO0 23 22 21 3 2 1 0 0 4 * 0 4 0 4 0 4 5 1 5 1 5 6 1 5 1 IO2 6 2 6 2 6 2 6 2 IO3 7 3 7 3 7 3 7 3 IO1 * Byte 1 * Byte 2 * Byte 3 * Byte 4 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 536 537 538 539 540 541 542 543 CS# IO0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 IO1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 SCK IO2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 IO3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 * *MSB * Byte 6 Byte 5 * Byte 7 * Byte 8 * Byte 9 * * * * Byte 10 Byte 11 Byte 12 * * * Byte 509 Byte 510Byte 511 Byte 512 Figure 98 Quad 256-Byte Page Program Command Sequence (3-Byte Address, 32h or 38h) CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39 SCK 24-Bit Address Instruction IO0 23 22 21 3 2 1 0 * IO1 4 0 4 0 4 0 4 0 5 1 5 1 5 6 1 5 1 IO2 6 2 6 2 6 2 6 2 IO3 7 3 7 3 7 3 7 3 * * * Byte 2 Byte 1 * Byte 4 Byte 3 286 0 287 4 285 0 284 281 4 282 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 283 40 280 CS# 4 0 4 0 4 0 SCK IO0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 IO1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 IO2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 IO3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 * *MSB Byte 5 * Byte 6 Document Number: 002-19099 Rev. *A * Byte 7 * Byte 8 * Byte 9 * * * Byte 10 Byte 11 Byte 12 * * * * Byte 253 Byte 254Byte 255 Byte 256 Page 99 of 140 S25FL128S / S25FL256S Figure 99 Quad 512-Byte Page Program Command Sequence (4-Byte Address, 34h or 32h or 38h [ExtAdd=1]) CS# 0 1 2 3 4 5 6 7 8 9 10 36 37 38 39 40 41 42 43 44 45 46 47 SCK 32-Bit Address Instruction IO0 7 6 5 4 3 2 1 0 31 30 29 * 3 2 1 0 * 4 4 0 4 0 4 0 0 5 1 5 1 6 5 1 5 1 IO2 6 2 6 2 6 2 6 2 IO3 7 3 7 3 7 3 7 3 IO1 * Byte 1 * * Byte 2 Byte 3 * Byte 4 4 551 548 0 549 547 4 550 545 0 0 4 0 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 544 546 CS# IO0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 IO1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 2 6 2 6 2 6 2 3 7 3 7 3 7 3 SCK IO2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 IO3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 * *MSB Byte 5 * * Byte 6 Byte 7 Document Number: 002-19099 Rev. *A * Byte 8 * * * * Byte 9 Byte 10 Byte 11 Byte 12 * Byte 509 * Byte 510 * Byte 511 * Byte 512 Page 100 of 140 S25FL128S / S25FL256S Figure 100 Quad 256-Byte Page Program Command Sequence (4-Byte Address, 34h or 32h or 38h [ExtAdd=1]) CS# 0 1 2 3 4 5 6 7 8 9 10 36 37 38 39 40 41 42 43 44 45 46 47 SCK 32-Bit Address Instruction IO0 7 6 5 4 3 2 1 0 31 30 29 3 2 1 0 4 0 4 0 4 0 4 0 5 1 5 1 5 6 1 5 1 IO2 6 2 6 2 6 2 6 2 IO3 7 3 7 3 7 3 7 3 * IO1 * * Byte 1 * * Byte 2 Byte 3 * Byte 4 294 295 0 293 4 292 0 290 4 291 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 288 48 289 CS# 4 0 4 0 4 0 SCK IO0 0 4 0 4 0 4 0 4 0 4 0 4 0 IO1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 IO2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 IO3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 * *MSB 9.5.4 4 Byte 5 * * Byte 6 Byte 7 * Byte 8 * * * * Byte 9 Byte 10 Byte 11 Byte 12 * Byte 253 * Byte 254 * Byte 255 * Byte 256 Program Suspend (PGSP 85h) and Resume (PGRS 8Ah) The Program Suspend command allows the system to interrupt a programming operation and then read from any other non-erasesuspended sector or non-program-suspended-page. Program Suspend is valid only during a programming operation. Commands allowed after the Program Suspend command is issued: Read Status Register 1 (RDSR1 05h) Read Status Register 2 (RDSR2 07h) The Write in Progress (WIP) bit in Status Register 1 (SR1[0]) must be checked to know when the programming operation has stopped. The Program Suspend Status bit in the Status Register-2 (SR2[0]) can be used to determine if a programming operation has been suspended or was completed at the time WIP changes to 0. The time required for the suspend operation to complete is tPSL, see Table 50, Program Suspend AC Parameters on page 117. See Table 48, Commands Allowed During Program or Erase Suspend on page 106 for the commands allowed while programming is suspend. The Program Resume command 8Ah must be written to resume the programming operation after a Program Suspend. If the programming operation was completed during the suspend operation, a resume command is not needed and has no effect if issued. Program Resume commands will be ignored unless a Program operation is suspended. After a Program Resume command is issued, the WIP bit in the Status Register-1 will be set to a 1 and the programming operation will resume. Program operations may be interrupted as often as necessary e.g. a program suspend command could immediately follow a program resume command but, in order for a program operation to progress to completion there must be some periods of time between resume and the next suspend command greater than or equal to tPRS. See Table 50, Program Suspend AC Parameters on page 117. Document Number: 002-19099 Rev. *A Page 101 of 140 S25FL128S / S25FL256S Figure 101 Program Suspend Command Sequence tPSL CS# SCK Program Suspend Instruction SI 7 6 5 4 3 2 Prog. Suspend Mode Command Read Status 1 0 7 6 0 SO 7 7 6 5 0 Figure 102 Program Resume Command Sequence CS # 0 1 2 3 4 5 6 7 SCK Instruction (8Ah) SI 7 6 5 4 3 2 1 0 MSB High Impedance SO Resume Programming 9.6 Erase Flash Array Commands 9.6.1 Parameter 4-kB Sector Erase (P4E 20h or 4P4E 21h) The P4E command is implemented only in FL128S and FL256S. The P4E command is ignored when the device is configured with the 256-kB sector option. The Parameter 4-kB Sector Erase (P4E) command sets all the bits of a 4-kbyte parameter sector to 1 (all bytes are FFh). Before the P4E command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device, which sets the Write Enable Latch (WEL) in the Status Register to enable any write operations. The instruction 20h [ExtAdd=0] is followed by a 3-byte address (A23-A0), or 20h [ExtAdd=1] is followed by a 4-byte address (A31-A0), or 21h is followed by a 4-byte address (A31-A0) CS# must be driven into the logic high state after the twenty-fourth or thirty-second bit of the address has been latched in on SI. This will initiate the beginning of internal erase cycle, which involves the pre-programming and erase of the chosen sector of the flash memory array. If CS# is not driven high after the last bit of address, the sector erase operation will not be executed. As soon as CS# is driven high, the internal erase cycle will be initiated. With the internal erase cycle in progress, the user can read the value of the Write-In Progress (WIP) bit to determine when the operation has been completed. The WIP bit will indicate a 1. when the erase cycle is in progress and a 0 when the erase cycle has been completed. Document Number: 002-19099 Rev. *A Page 102 of 140 S25FL128S / S25FL256S A P4E command applied to a sector that has been write protected through the Block Protection bits or ASP, will not be executed and will set the E_ERR status. A P4E command applied to a sector that is larger than 4 kbytes will not be executed and will not set the E_ERR status. Figure 103 Parameter Sector Erase Command Sequence (3-Byte Address, 20h) CS # 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 SCK Instruction 24 Bit Address 23 22 21 SI 3 2 1 0 MSB Figure 104 Parameter Sector Erase Command Sequence (ExtAdd = 1, 20h or 4-Byte Address, 21h) CS # 0 1 2 3 4 5 6 7 8 9 10 36 37 38 39 SCK Instruction SI 32 Bit Address 31 30 29 3 2 1 0 MSB 9.6.2 Sector Erase (SE D8h or 4SE DCh) The Sector Erase (SE) command sets all bits in the addressed sector to 1 (all bytes are FFh). Before the Sector Erase (SE) command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device, which sets the Write Enable Latch (WEL) in the Status Register to enable any write operations. The instruction D8h [ExtAdd=0] is followed by a 3-byte address (A23-A0), or D8h [ExtAdd=1] is followed by a 4-byte address (A31-A0), or DCh is followed by a 4-byte address (A31-A0) CS# must be driven into the logic high state after the twenty-fourth or thirty-second bit of address has been latched in on SI. This will initiate the erase cycle, which involves the pre-programming and erase of the chosen sector. If CS# is not driven high after the last bit of address, the sector erase operation will not be executed. As soon as CS# is driven into the logic high state, the internal erase cycle will be initiated. With the internal erase cycle in progress, the user can read the value of the Write-In Progress (WIP) bit to check if the operation has been completed. The WIP bit will indicate a 1 when the erase cycle is in progress and a0 when the erase cycle has been completed. Document Number: 002-19099 Rev. *A Page 103 of 140 S25FL128S / S25FL256S A Sector Erase (SE) command applied to a sector that has been Write Protected through the Block Protection bits or ASP, will not be executed and will set the E_ERR status. A device ordering option determines whether the SE command erases 64 kbytes or 256 kbytes. The option to use this command to always erase 256 kbytes provides for software compatibility with higher density and future S25FL family devices. ASP has a PPB and a DYB protection bit for each sector, including any 4-kB sectors. If a sector erase command is applied to a 64kB range that includes a protected 4-kB sector, or to a 256-kB range that includes a 64-kB protected address range, the erase will not be executed on the range and will set the E_ERR status. Figure 105 Sector Erase Command Sequence (ExtAdd = 0, 3-Byte Address, D8h) CS # 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 SCK Instruction 24 Bit Address 23 22 21 SI 3 2 1 0 MSB Figure 106 Sector Erase Command Sequence (ExtAdd = 1, D8h or 4-Byte Address, DCh) CS # 0 1 2 3 4 5 6 7 8 9 10 36 37 38 39 1 0 SCK In stru ctio n SI 3 2 B it A d d re ss 31 30 29 3 2 MSB 9.6.3 Bulk Erase (BE 60h or C7h) The Bulk Erase (BE) command sets all bits to 1 (all bytes are FFh) inside the entire flash memory array. Before the BE command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device, which sets the Write Enable Latch (WEL) in the Status Register to enable any write operations. CS# must be driven into the logic high state after the eighth bit of the instruction byte has been latched in on SI. This will initiate the erase cycle, which involves the pre-programming and erase of the entire flash memory array. If CS# is not driven high after the last bit of instruction, the BE operation will not be executed. As soon as CS# is driven into the logic high state, the erase cycle will be initiated. With the erase cycle in progress, the user can read the value of the Write-In Progress (WIP) bit to determine when the operation has been completed. The WIP bit will indicate a 1 when the erase cycle is in progress and a 0 when the erase cycle has been completed. Document Number: 002-19099 Rev. *A Page 104 of 140 S25FL128S / S25FL256S A BE command can be executed only when the Block Protection (BP2, BP1, BP0) bits are set to 0's. If the BP bits are not zero, the BE command is not executed and E_ERR is not set. The BE command will skip any sectors protected by the DYB or PPB and the E_ERR status will not be set. Figure 107 Bulk Erase Command Sequence CS# 0 1 2 3 4 5 6 7 SCK Instruction SI 9.6.4 Erase Suspend and Resume Commands (ERSP 75h or ERRS 7Ah) The Erase Suspend command, allows the system to interrupt a sector erase operation and then read from or program data to, any other sector. Erase Suspend is valid only during a sector erase operation. The Erase Suspend command is ignored if written during the Bulk Erase operation. When the Erase Suspend command is written during the sector erase operation, the device requires a maximum of tESL (erase suspend latency) to suspend the erase operation and update the status bits. See Table 51, Erase Suspend AC Parameters on page 117. Commands allowed after the Erase Suspend command is issued: Read Status Register 1 (RDSR1 05h) Read Status Register 2 (RDSR2 07h) The Write in Progress (WIP) bit in Status Register 1 (SR1[0]) must be checked to know when the erase operation has stopped. The Erase Suspend bit in Status Register-2 (SR2[1]) can be used to determine if an erase operation has been suspended or was completed at the time WIP changes to 0. If the erase operation was completed during the suspend operation, a resume command is not needed and has no effect if issued. Erase Resume commands will be ignored unless an Erase operation is suspended. See Table 48, Commands Allowed During Program or Erase Suspend on page 106 for the commands allowed while erase is suspend. After the erase operation has been suspended, the sector enters the erase-suspend mode. The system can read data from or program data to the device. Reading at any address within an erase-suspended sector produces undetermined data. A WREN command is required before any command that will change non-volatile data, even during erase suspend. The WRR and PPB Erase commands are not allowed during Erase Suspend, it is therefore not possible to alter the Block Protection or PPB bits during Erase Suspend. If there are sectors that may need programming during Erase suspend, these sectors should be protected only by DYB bits that can be turned off during Erase Suspend. However, WRR is allowed immediately following the BRAC command; in this special case the WRR is interpreted as a write to the Bank Address Register, not a write to SR1 or CR1. If a program command is sent for a location within an erase suspended sector the program operation will fail with the P_ERR bit set. After an erase-suspended program operation is complete, the device returns to the erase-suspend mode. The system can determine the status of the program operation by reading the WIP bit in the Status Register, just as in the standard program operation. The Erase Resume command 7Ah must be written to resume the erase operation if an Erase is suspend. Erase Resume commands will be ignored unless an Erase is Suspend. Document Number: 002-19099 Rev. *A Page 105 of 140 S25FL128S / S25FL256S After an Erase Resume command is sent, the WIP bit in the status register will be set to a 1 and the erase operation will continue. Further Resume commands are ignored. Erase operations may be interrupted as often as necessary e.g. an erase suspend command could immediately follow an erase resume command but, in order for an erase operation to progress to completion there must be some periods of time between resume and the next suspend command greater than or equal to tERS. See Table 51, Erase Suspend AC Parameters on page 117. Figure 108 Erase Suspend Command Sequence tESL CS# SCK Erase Suspend Instruction SI 7 6 5 4 3 Erase Suspend Mode Command Read Status 2 1 0 7 6 0 SO 7 7 6 5 0 Figure 109 Erase Resume Command Sequence CS # 0 1 2 3 4 5 6 7 SCK Instruction (7Ah) SI 7 6 5 4 3 2 1 0 MSB High Impedance SO Resume Sector or Block Erase Table 48 Commands Allowed During Program or Erase Suspend Instruction Name Instruction Code (Hex) Allowed During Erase Suspend Allowed During Program Suspend Comment BRAC B9 X X Bank address register may need to be changed during a suspend to reach a sector for read or program. BRRD 16 X X Bank address register may need to be changed during a suspend to reach a sector for read or program. BRWR 17 X X Bank address register may need to be changed during a suspend to reach a sector for read or program. CLSR 30 X Clear status may be used if a program operation fails during erase suspend. DYBRD E0 X It may be necessary to remove and restore dynamic protection during erase suspend to allow programming during erase suspend. DYBWR E1 X It may be necessary to remove and restore dynamic protection during erase suspend to allow programming during erase suspend. ERRS 7A X DDRFR 0D X Required to resume from erase suspend. X All array reads allowed in suspend. 4DDRFR 0E X X All array reads allowed in suspend. FAST_READ 0B X X All array reads allowed in suspend. Document Number: 002-19099 Rev. *A Page 106 of 140 S25FL128S / S25FL256S Table 48 Commands Allowed During Program or Erase Suspend (Continued) Instruction Name Instruction Code (Hex) Allowed During Erase Suspend Allowed During Program Suspend 4FAST_READ 0C X X MBR FF X X May need to reset a read operation during suspend. X Needed to resume a program operation. A program resume may also be used during nested program suspend within an erase suspend. Comment All array reads allowed in suspend. PGRS 8A X PGSP 85 X Program suspend allowed during erase suspend. PP 02 X Required for array program during erase suspend. 4PP 12 X Required for array program during erase suspend. PPBRD E2 X Allowed for checking persistent protection before attempting a program command during erase suspend. QPP 32, 38 X Required for array program during erase suspend. 4QPP 34 X 4READ 13 X X Required for array program during erase suspend. RDCR 35 X X DIOR BB X X All array reads allowed in suspend. 4DIOR BC X X All array reads allowed in suspend. DOR 3B X X All array reads allowed in suspend. 4DOR 3C X X All array reads allowed in suspend. DDRDIOR BD X X All array reads allowed in suspend. All array reads allowed in suspend. 4DDRDIOR BE X X All array reads allowed in suspend. DDRQIOR ED X X All array reads allowed in suspend. DDRQIOR4 EE X X All array reads allowed in suspend. QIOR EB X X All array reads allowed in suspend. 4QIOR EC X X All array reads allowed in suspend. QOR 6B X X All array reads allowed in suspend. 4QOR 6C X X All array reads allowed in suspend. RDSR1 05 X X Needed to read WIP to determine end of suspend process. RDSR2 07 X X Needed to read suspend status to determine whether the operation is suspended or complete. READ 03 X X All array reads allowed in suspend. RESET F0 X X WREN 06 X WRR 01 X Document Number: 002-19099 Rev. *A Reset allowed anytime. Required for program command within erase suspend. X Bank register may need to be changed during a suspend to reach a sector needed for read or program. WRR is allowed when following BRAC. Page 107 of 140 S25FL128S / S25FL256S 9.7 9.7.1 One Time Program Array Commands OTP Program (OTPP 42h) The OTP Program command programs data in the One Time Program region, which is in a different address space from the main array data. The OTP region is 1024 bytes so, the address bits from A23 to A10 must be zero for this command. Refer to Section 7.4, OTP Address Space on page 41 for details on the OTP region. The protocol of the OTP Program command is the same as the Page Program command. Before the OTP Program command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device, which sets the Write Enable Latch (WEL) in the Status Register to enable any write operations. To program the OTP array in bit granularity, the rest of the bits within a data byte can be set to 1. Each region in the OTP memory space can be programmed one or more times, provided that the region is not locked. Attempting to program zeros in a region that is locked will fail with the P_ERR bit in SR1 set to 1 Programming ones, even in a protected area does not cause an error and does not set P_ERR. Subsequent OTP programming can be performed only on the un-programmed bits (that is, 1 data). Figure 110 OTP Program Command Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39 SCK 24-Bit Address Instruction SI 7 6 5 4 3 2 0 23 22 21 1 Data Byte 1 3 2 1 0 MSB 7 6 4 5 3 2 1 0 MSB 4127 4125 4126 4123 4124 4121 4122 40 41 42 43 44 45 46 47 48 49 59 51 52 53 54 55 4120 CS# 1 0 SCK Data Byte 2 SI 7 6 5 4 3 MSB 9.7.2 Data Byte 3 2 1 0 7 MSB 6 5 4 3 2 Data Byte 512 1 0 7 6 5 4 3 2 MSB OTP Read (OTPR 4Bh) The OTP Read command reads data from the OTP region. The OTP region is 1024 bytes so, the address bits from A23 to A10 must be zero for this command. Refer to OTP Address Space on page 41 for details on the OTP region. The protocol of the OTP Read command is similar to the Fast Read command except that it will not wrap to the starting address after the OTP address is at its maximum; instead, the data beyond the maximum OTP address will be undefined. Also, the OTP Read command is not affected by the latency code. The OTP read command always has one dummy byte of latency as shown below. Document Number: 002-19099 Rev. *A Page 108 of 140 S25FL128S / S25FL256S Figure 111 OTP Read Command Sequence CS # 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 SCK 24-Bit Address Instruction SI 23 22 21 3 Dummy Byte 2 1 0 7 6 5 4 3 2 1 0 DATA OUT 1 High Impedance SO 7 6 5 4 3 2 DATA OUT 2 1 MSB 9.8 7 0 MSB Advanced Sector Protection Commands 9.8.1 ASP Read (ASPRD 2Bh) The ASP Read instruction 2Bh is shifted into SI by the rising edge of the SCK signal. Then the 16-bit ASP register contents is shifted out on the serial output SO, least significant byte first. Each bit is shifted out at the SCK frequency by the falling edge of the SCK signal. It is possible to read the ASP register continuously by providing multiples of 16 clock cycles. The maximum operating clock frequency for the ASP Read (ASPRD) command is 133 MHz. Figure 112 ASPRD Command CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 15 14 18 19 20 21 22 23 SCK Instruction SI 7 6 5 4 3 2 1 0 MSB Register Out Register Out High Impedance 7 SO MSB 9.8.2 6 5 4 3 2 1 MSB 13 12 11 10 9 8 7 MSB ASP Program (ASPP 2Fh) Before the ASP Program (ASPP) command can be accepted by the device, a Write Enable (WREN) command must be issued. After the Write Enable (WREN) command has been decoded, the device will set the Write Enable Latch (WEL) in the Status Register to enable any write operations. The ASPP command is entered by driving CS# to the logic low state, followed by the instruction and two data bytes on SI, least significant byte first. The ASP Register is two data bytes in length. The ASPP command affects the P_ERR and WIP bits of the Status and Configuration Registers in the same manner as any other programming operation. CS# input must be driven to the logic high state after the sixteenth bit of data has been latched in. If not, the ASPP command is not executed. As soon as CS# is driven to the logic high state, the self-timed ASPP operation is initiated. While the ASPP operation is in progress, the Status Register may be read to check the value of the Write-In Progress (WIP) bit. The Write-In Progress (WIP) bit is a 1 during the self-timed ASPP operation, and is a 0 when it is completed. When the ASPP operation is completed, the Write Enable Latch (WEL) is set to a 0. Document Number: 002-19099 Rev. *A Page 109 of 140 S25FL128S / S25FL256S Figure 113 ASPP Command CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 15 17 18 19 20 21 22 23 SCK Instruction SI 7 6 5 4 3 Register In 2 1 7 0 MSB 6 3 4 5 2 1 0 15 14 13 12 11 10 9 8 MSB High Impedance SO 9.8.3 DYB Read (DYBRD E0h) The instruction E0h is latched into SI by the rising edge of the SCK signal. Followed by the 32-bit address selecting location zero within the desired sector (note, the high order address bits not used by a particular density device must be zero). Then the 8-bit DYB access register contents are shifted out on the serial output SO. Each bit is shifted out at the SCK frequency by the falling edge of the SCK signal. It is possible to read the same DYB access register continuously by providing multiples of eight clock cycles. The address of the DYB register does not increment so this is not a means to read the entire DYB array. Each location must be read with a separate DYB Read command. The maximum operating clock frequency for READ command is 133 MHz. Figure 114 DYBRD Command Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 36 37 38 39 40 41 42 43 44 45 46 47 SCK 32-Bit Address Instruction SI 7 6 5 4 3 2 1 0 31 30 29 3 2 1 0 DATA OUT 1 SO High Impedance 7 6 5 4 3 2 1 0 MSB 9.8.4 DYB Write (DYBWR E1h) Before the DYB Write (DYBWR) command can be accepted by the device, a Write Enable (WREN) command must be issued. After the Write Enable (WREN) command has been decoded, the device will set the Write Enable Latch (WEL) in the Status Register to enable any write operations. The DYBWR command is entered by driving CS# to the logic low state, followed by the instruction, the 32-bit address selecting location zero within the desired sector (note, the high order address bits not used by a particular density device must be zero), then the data byte on SI. The DYB Access Register is one data byte in length. The DYBWR command affects the P_ERR and WIP bits of the Status and Configuration Registers in the same manner as any other programming operation. CS# must be driven to the logic high state after the eighth bit of data has been latched in. If not, the DYBWR command is not executed. As soon as CS# is driven to the logic high state, the self-timed DYBWR operation is initiated. While the DYBWR operation is in progress, the Status Register may be read to check the value of the Write-In Progress (WIP) bit. The Write- Document Number: 002-19099 Rev. *A Page 110 of 140 S25FL128S / S25FL256S In Progress (WIP) bit is a 1 during the self-timed DYBWR operation, and is a 0 when it is completed. When the DYBWR operation is completed, the Write Enable Latch (WEL) is set to a 0. Figure 115 DYBWR Command Sequence CS# 0 1 2 3 4 5 6 7 8 9 36 37 38 39 40 41 42 43 44 45 46 47 10 SCK 32-Bit Address Instruction SI 7 6 5 4 3 2 1 31 30 29 0 3 Data Byte 1 2 0 1 MSB 9.8.5 7 6 4 5 3 2 1 0 MSB PPB Read (PPBRD E2h) The instruction E2h is shifted into SI by the rising edges of the SCK signal, followed by the 32-bit address selecting location zero within the desired sector (note, the high order address bits not used by a particular density device must be zero) Then the 8-bit PPB access register contents are shifted out on SO. It is possible to read the same PPB access register continuously by providing multiples of eight clock cycles. The address of the PPB register does not increment so this is not a means to read the entire PPB array. Each location must be read with a separate PPB Read command. The maximum operating clock frequency for the PPB Read command is 133 MHz. Figure 116 PPBRD Command Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 36 37 38 39 40 41 42 43 44 45 46 47 SCK 32-Bit Address Instruction SI 7 6 5 4 3 2 1 0 31 30 29 3 2 1 0 DATA OUT 1 SO High Impedance 7 6 5 4 3 2 1 0 MSB 9.8.6 PPB Program (PPBP E3h) Before the PPB Program (PPBP) command can be accepted by the device, a Write Enable (WREN) command must be issued. After the Write Enable (WREN) command has been decoded, the device will set the Write Enable Latch (WEL) in the Status Register to enable any write operations. The PPBP command is entered by driving CS# to the logic low state, followed by the instruction, followed by the 32-bit address selecting location zero within the desired sector (note, the high order address bits not used by a particular density device must be zero). The PPBP command affects the P_ERR and WIP bits of the Status and Configuration Registers in the same manner as any other programming operation. CS# must be driven to the logic high state after the last bit of address has been latched in. If not, the PPBP command is not executed. As soon as CS# is driven to the logic high state, the self-timed PPBP operation is initiated. While the PPBP operation is in progress, the Status Register may be read to check the value of the Write-In Progress (WIP) bit. The Write-In Progress (WIP) bit is a Document Number: 002-19099 Rev. *A Page 111 of 140 S25FL128S / S25FL256S 1 during the self-timed PPBP operation, and is a 0 when it is completed. When the PPBP operation is completed, the Write Enable Latch (WEL) is set to a 0. Figure 117 PPBP Command Sequence CS # 0 1 2 3 4 5 6 7 8 9 10 35 36 37 38 39 SCK Instruction SI 7 6 5 4 3 32 bit Address 2 1 0 31 MSB 29 3 2 1 0 High Impedance SO 9.8.7 30 MSB PPB Erase (PPBE E4h) The PPB Erase (PPBE) command sets all PPB bits to 1. Before the PPB Erase command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device, which sets the Write Enable Latch (WEL) in the Status Register to enable any write operations. The instruction E4h is shifted into SI by the rising edges of the SCK signal. CS# must be driven into the logic high state after the eighth bit of the instruction byte has been latched in on SI. This will initiate the beginning of internal erase cycle, which involves the pre-programming and erase of the entire PPB memory array. Without CS# being driven to the logic high state after the eighth bit of the instruction, the PPB erase operation will not be executed. With the internal erase cycle in progress, the user can read the value of the Write-In Progress (WIP) bit to check if the operation has been completed. The WIP bit will indicate a 1 when the erase cycle is in progress and a 0 when the erase cycle has been completed. Erase suspend is not allowed during PPB Erase. Figure 118 PPB Erase Command Sequence CS# 0 1 2 3 4 5 6 7 SCK Instruction SI 7 6 5 4 3 2 1 0 MSB High Impedance SO 9.8.8 PPB Lock Bit Read (PLBRD A7h) The PPB Lock Bit Read (PLBRD) command allows the PPB Lock Register contents to be read out of SO. It is possible to read the PPB lock register continuously by providing multiples of eight clock cycles. The PPB Lock Register contents may only be read when the device is in standby state with no other operation in progress. It is recommended to check the Write-In Progress (WIP) bit of the Status Register before issuing a new command to the device. Document Number: 002-19099 Rev. *A Page 112 of 140 S25FL128S / S25FL256S Figure 119 PPB Lock Register Read Command Sequence CS# SCK SI 7 6 5 4 3 2 1 0 SO Phase 9.8.9 7 6 Instruction 5 4 3 Register Read 2 1 0 7 6 5 4 3 2 1 0 Repeat Register Read PPB Lock Bit Write (PLBWR A6h) The PPB Lock Bit Write (PLBWR) command clears the PPB Lock Register to zero. Before the PLBWR command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device, which sets the Write Enable Latch (WEL) in the Status Register to enable any write operations. The PLBWR command is entered by driving CS# to the logic low state, followed by the instruction. CS# must be driven to the logic high state after the eighth bit of instruction has been latched in. If not, the PLBWR command is not executed. As soon as CS# is driven to the logic high state, the self-timed PLBWR operation is initiated. While the PLBWR operation is in progress, the Status Register may still be read to check the value of the Write-In Progress (WIP) bit. The Write-In Progress (WIP) bit is a 1 during the self-timed PLBWR operation, and is a 0 when it is completed. When the PLBWR operation is completed, the Write Enable Latch (WEL) is set to a 0. The maximum clock frequency for the PLBWR command is 133 MHz. Figure 120 PPB Lock Bit Write Command Sequence CS# 0 1 2 3 4 5 6 7 SCK Instruction SI 7 6 5 4 3 2 1 0 MSB High Impedance SO 9.8.10 Password Read (PASSRD E7h) The correct password value may be read only after it is programmed and before the Password Mode has been selected by programming the Password Protection Mode bit to 0 in the ASP Register (ASP[2]). After the Password Protection Mode is selected the PASSRD command is ignored. The PASSRD command is shifted into SI. Then the 64-bit Password is shifted out on the serial output SO, least significant byte first, most significant bit of each byte first. Each bit is shifted out at the SCK frequency by the falling edge of the SCK signal. It is possible Document Number: 002-19099 Rev. *A Page 113 of 140 S25FL128S / S25FL256S to read the Password continuously by providing multiples of 64 clock cycles. The maximum operating clock frequency for the PASSRD command is 133 MHz. Figure 121 Password Read Command Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 11 69 70 71 72 SCK Instruction SI 7 6 5 4 3 2 1 0 MSB Password Least Sig. Byte First High Impedance 7 SO 6 5 4 58 57 7 56 MSB 9.8.11 MSB Password Program (PASSP E8h) Before the Password Program (PASSP) command can be accepted by the device, a Write Enable (WREN) command must be issued and decoded by the device. After the Write Enable (WREN) command has been decoded, the device sets the Write Enable Latch (WEL) to enable the PASSP operation. The password can only be programmed before the Password Mode is selected by programming the Password Protection Mode bit to 0 in the ASP Register (ASP[2]). After the Password Protection Mode is selected the PASSP command is ignored. The PASSP command is entered by driving CS# to the logic low state, followed by the instruction and the password data bytes on SI, least significant byte first, most significant bit of each byte first. The password is sixty-four (64) bits in length. CS# must be driven to the logic high state after the sixty-fourth (64th) bit of data has been latched. If not, the PASSP command is not executed. As soon as CS# is driven to the logic high state, the self-timed PASSP operation is initiated. While the PASSP operation is in progress, the Status Register may be read to check the value of the Write-In Progress (WIP) bit. The Write-In Progress (WIP) bit is a 1 during the self-timed PASSP cycle, and is a 0 when it is completed. The PASSP command can report a program error in the P_ERR bit of the status register. When the PASSP operation is completed, the Write Enable Latch (WEL) is set to a 0. The maximum clock frequency for the PASSP command is 133 MHz. Figure 122 Password Program Command Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 68 69 70 71 SCK Instruction SI 7 6 5 4 3 Password 2 0 7 6 5 59 58 57 56 MSB MSB High Impedance SO 9.8.12 1 Password Unlock (PASSU E9h) The PASSU command is entered by driving CS# to the logic low state, followed by the instruction and the password data bytes on SI, least significant byte first, most significant bit of each byte first. The password is sixty-four (64) bits in length. Document Number: 002-19099 Rev. *A Page 114 of 140 S25FL128S / S25FL256S CS# must be driven to the logic high state after the sixty-fourth (64th) bit of data has been latched. If not, the PASSU command is not executed. As soon as CS# is driven to the logic high state, the self-timed PASSU operation is initiated. While the PASSU operation is in progress, the Status Register may be read to check the value of the Write-In Progress (WIP) bit. The Write-In Progress (WIP) bit is a 1 during the self-timed PASSU cycle, and is a 0 when it is completed. If the PASSU command supplied password does not match the hidden password in the Password Register, an error is reported by setting the P_ERR bit to 1. The WIP bit of the status register also remains set to 1. It is necessary to use the CLSR command to clear the status register, the RESET command to software reset the device, or drive the RESET# input low to initiate a hardware reset, in order to return the P_ERR and WIP bits to 0. This returns the device to standby state, ready for new commands such as a retry of the PASSU command. If the password does match, the PPB Lock bit is set to 1. The maximum clock frequency for the PASSU command is 133 MHz. Figure 123 Password Unlock Command Sequence CS# 0 1 2 3 4 5 6 7 8 9 10 68 69 70 71 SCK Instruction SI 7 6 5 4 3 Password 2 7 6 5 59 58 57 56 High Impedance SO 9.9.1 0 MSB MSB 9.9 1 Reset Commands Software Reset Command (RESET F0h) The Software Reset command (RESET) restores the device to its initial power up state, except for the volatile FREEZE bit in the Configuration register CR1[1] and the volatile PPB Lock bit in the PPB Lock Register. The Freeze bit and the PPB Lock bit will remain set at their last value prior to the software reset. To clear the FREEZE bit and set the PPB Lock bit to its protection mode selected power on state, a full power-on-reset sequence or hardware reset must be done. Note that the non-volatile bits in the configuration register, TBPROT, TBPARM, and BPNV, retain their previous state after a Software Reset. The Block Protection bits BP2, BP1, and BP0, in the status register will only be reset if they are configured as volatile via the BPNV bit in the Configuration Register (CR1[3]) and FREEZE is cleared to zero . The software reset cannot be used to circumvent the FREEZE or PPB Lock bit Document Number: 002-19099 Rev. *A Page 115 of 140 S25FL128S / S25FL256S protection mechanisms for the other security configuration bits. The reset command is executed when CS# is brought to high state and requires tRPH time to execute. Figure 124 Software Reset Command Sequence CS# 0 1 2 3 4 5 6 7 SCK Instruction SI 9.9.2 Mode Bit Reset (MBR FFh) The Mode Bit Reset (MBR) command can be used to return the device from continuous high performance read mode back to normal standby awaiting any new command. Because some device packages lack a hardware RESET# input and a device that is in a continuous high performance read mode may not recognize any normal SPI command, a system hardware reset or software reset command may not be recognized by the device. It is recommended to use the MBR command after a system reset when the RESET# signal is not available or, before sending a software reset, to ensure the device is released from continuous high performance read mode. The MBR command sends Ones on SI or IO0 for 8 SCK cycles. IO1 to IO3 are "don't care" during these cycles. Figure 125 Mode Bit Reset Command Sequence CS S# 0 1 2 3 4 5 6 7 SCK Instruction (FFh) SI High Impedance SO Document Number: 002-19099 Rev. *A Page 116 of 140 S25FL128S / S25FL256S 9.10 Embedded Algorithm Performance Tables Table 49 Program and Erase Performance Symbol Typ (1) Max (2) Unit tW WRR Write Time 140 500 ms tPP Page Programming (512 bytes) Page Programming (256 bytes) 540 400 750 750 (3) s Sector Erase Time (64-kB / 4-kB physical sectors) 171 650 (4) ms 3,610 10,400 ms Sector Erase Time (256-kB logical sectors = 4 x 64-kB physical sectors) 685 2600 ms tBE Bulk Erase Time (S25FL128S) 33 165 sec tBE Bulk Erase Time (S25FL256S) 66 330 sec tSE Parameter Min Sector Erase Time (64 kB Top/Bottom: logical sector = 16 x 4-kB physical sectors) Notes: 1. Typical program and erase times assume the following conditions: 25C, VCC = 3.0V; 10,000 cycles; checkerboard data pattern. 3. Maximum value also applies to OTPP, PPBP, ASPP, PASSP, ABWR, and PNVDLR programming commands. 2. Under worst case conditions of 90C; 100,000 cycles max. 4. Maximum value also applies to the PPBE erase command. Table 50 Program Suspend AC Parameters Parameter Min Typical Program Suspend Latency (tPSL) Program Resume to next Program Suspend (tPRS) Max 40 0.06 100 Unit Comments s The time from Program Suspend command until the WIP bit is 0 s Minimum is the time needed to issue the next Program Suspend command but typical periods are needed for Program to progress to completion Table 51 Erase Suspend AC Parameters Parameter Min Typical Erase Suspend Latency (tESL) Erase Resume to next Erase Suspend (tERS) Document Number: 002-19099 Rev. *A Max 45 0.06 100 Unit Comments s The time from Erase Suspend command until the WIP bit is 0 s Minimum is the time needed to issue the next Erase Suspend command but typical periods are needed for the Erase to progress to completion Page 117 of 140 S25FL128S / S25FL256S 10. Data Integrity 10.1 Erase Endurance Table 52 Erase Endurance Minimum Unit Program/Erase cycles per main Flash array sectors Parameter 100 PE cycle Program/Erase cycles per PPB array or non-volatile register array (1) 100 PE cycle Note: 1. Each write command to a non-volatile register causes a PE cycle on the entire non-volatile register array. OTP bits and registers internally reside in a separate array that is not PE cycled. 10.2 Data Retention Table 53 Data Retention Parameter Data Retention Time Test Conditions 100 Program/Erase Cycles Minimum Time Unit > 20 Years Contact Cypress Sales and FAE for further information on the data integrity. An application note is available at: http:// www.cypress.com/appnotes. Document Number: 002-19099 Rev. *A Page 118 of 140 S25FL128S / S25FL256S 11. Software Interface Reference 11.1 Command Summary Table 54 S25FL128S and S25FL256S Instruction Set (sorted by instruction) Instruction (Hex) Command Name 01 WRR 02 PP 03 READ Read (3- or 4-byte address) 50 04 WRDI Write Disable 133 05 RDSR1 Read Status Register-1 133 06 WREN Write Enable 133 Command Description Maximum Frequency (MHz) Write Register (Status-1, Configuration-1) 133 Page Program (3- or 4-byte address) 133 07 RDSR2 Read Status Register-2 133 0B FAST_READ Fast Read (3- or 4-byte address) 133 0C 4FAST_READ Fast Read (4-byte address) 133 0D DDRFR DDR Fast Read (3- or 4-byte address) 80 0E 4DDRFR 12 4PP 13 4READ Read (4-byte address) 50 14 ABRD AutoBoot Register Read 133 15 ABWR AutoBoot Register Write 133 16 BRRD Bank Register Read 133 17 BRWR Bank Register Write 133 18 ECCRD ECC Read 133 133 DDR Fast Read (4-byte address) 80 Page Program (4-byte address) 133 20 P4E Parameter 4 kB-sector Erase (3- or 4-byte address) 21 4P4E Parameter 4 kB-sector Erase (4-byte address) 133 2B ASPRD ASP Read 133 2F ASPP ASP Program 133 30 CLSR Clear Status Register - Erase/Program Fail Reset 133 32 QPP Quad Page Program (3- or 4-byte address) 80 34 4QPP Quad Page Program (4-byte address) 80 35 RDCR Read Configuration Register-1 133 38 QPP Quad Page Program (3- or 4-byte address) 80 3B DOR Read Dual Out (3- or 4-byte address) 104 3C 4DOR Read Dual Out (4-byte address) 104 41 DLPRD Data Learning Pattern Read 133 42 OTPP 43 PNVDLR 4A WVDLR 4B OTPR OTP Program 133 Program NV Data Learning Register 133 Write Volatile Data Learning Register 133 OTP Read 133 60 BE Bulk Erase 133 6B QOR Read Quad Out (3- or 4-byte address) 104 6C 4QOR Read Quad Out (4-byte address) 104 75 ERSP Erase Suspend 133 7A ERRS Erase Resume 133 85 PGSP Program Suspend 133 8A PGRS Program Resume 133 Document Number: 002-19099 Rev. *A Page 119 of 140 S25FL128S / S25FL256S Table 54 S25FL128S and S25FL256S Instruction Set (sorted by instruction) (Continued) Instruction (Hex) Command Name 90 READ_ID (REMS) Read Electronic Manufacturer Signature 133 9F RDID Read ID (JEDEC Manufacturer ID and JEDEC CFI) 133 A3 MPM Reserved for Multi-I/O-High Perf Mode (MPM) 133 A6 PLBWR PPB Lock Bit Write 133 A7 PLBRD PPB Lock Bit Read 133 AB RES Read Electronic Signature 50 B9 BRAC Bank Register Access (Legacy Command formerly used for Deep Power Down) 133 BB DIOR Dual I/O Read (3- or 4-byte address) 104 BC 4DIOR Dual I/O Read (4-byte address) 104 BD DDRDIOR DDR Dual I/O Read (3- or 4-byte address) 80 BE 4DDRDIOR DDR Dual I/O Read (4-byte address) 80 C7 BE Bulk Erase (alternate command) 133 133 Command Description Maximum Frequency (MHz) D8 SE Erase 64 kB or 256 kB (3- or 4-byte address) DC 4SE Erase 64 kB or 256 kB (4-byte address) 133 E0 DYBRD DYB Read 133 E1 DYBWR DYB Write 133 E2 PPBRD PPB Read 133 E3 PPBP PPB Program 133 E4 PPBE PPB Erase 133 E5 Reserved-E5 E6 Reserved-E6 E7 PASSRD E8 E9 Reserved Reserved Password Read 133 PASSP Password Program 133 PASSU Password Unlock 133 EB QIOR Quad I/O Read (3- or 4-byte address) 104 EC 4QIOR Quad I/O Read (4-byte address) 104 ED DDRQIOR DDR Quad I/O Read (3- or 4-byte address) 80 EE 4DDRQIOR DDR Quad I/O Read (4-byte address) 80 F0 RESET Software Reset 133 FF MBR Mode Bit Reset 133 Document Number: 002-19099 Rev. *A Page 120 of 140 S25FL128S / S25FL256S 11.2 Device ID and Common Flash Interface (ID-CFI) Address Map 11.2.1 Field Definitions Table 55 Manufacturer and Device ID Byte Address Data 00h 01h 01h 20h (128 Mb) 02h (256 Mb) Device ID Most Significant Byte - Memory Interface Type 02h 18h (128 Mb) 19h (256 Mb) Device ID Least Significant Byte - Density 03h 4Dh 04h 00h (Uniform 256-kB sectors) 01h (4-kB parameter sectors with uniform 64-kB sectors) 05h 80h (FL-S Family) 06h xxh Description Manufacturer ID for Cypress ID-CFI Length - number bytes following. Adding this value to the current location of 03h gives the address of the last valid location in the ID-CFI address map. A value of 00h indicates the entire 512-byte ID-CFI space must be read because the actual length of the ID-CFI information is longer than can be indicated by this legacy single byte field. The value is OPN dependent. Sector Architecture Family ID 07h xxh ASCII characters for Model Refer to Ordering Information on page 138 for the model number definitions. 08h xxh Reserved 09h xxh Reserved 0Ah xxh Reserved 0Bh xxh Reserved 0Ch xxh Reserved 0Dh xxh Reserved 0Eh xxh Reserved 0Fh xxh Reserved Table 56 CFI Query Identification String Byte Address Data 10h 11h 12h 51h 52h 59h Query Unique ASCII string "QRY" 13h 14h 02h 00h Primary OEM Command Set FL-P backward compatible command set ID 15h 16h 40h 00h Address for Primary Extended Table 17h 18h 53h 46h Alternate OEM Command Set ASCII characters "FS" for SPI (F) interface, S Technology 19h 1Ah 51h 00h Address for Alternate OEM Extended Table Document Number: 002-19099 Rev. *A Description Page 121 of 140 S25FL128S / S25FL256S Table 57 CFI System Interface String Byte Address Data Description 1Bh 27h VCC Min. (erase/program): 100 millivolts 1Ch 36h VCC Max. (erase/program): 100 millivolts 1Dh 00h VPP Min. voltage (00h = no VPP present) 1Eh 00h VPP Max. voltage (00h = no VPP present) 1Fh 06h Typical timeout per single byte program 2N s 20h 08h (256B page) 09h (512B page) Typical timeout for Min. size Page program 2N s (00h = not supported) 21h 08h (4 kB or 64 kB) 09h (256 kB) Typical timeout per individual sector erase 2N ms 22h 0Fh (128 Mb) 10h (256 Mb) 23h 02h Max. timeout for byte program 2N times typical 24h 02h Max. timeout for page program 2N times typical 25h 03h Max. timeout per individual sector erase 2N times typical 26h 03h Max. timeout for full chip erase 2N times typical (00h = not supported) Typical timeout for full chip erase 2N ms (00h = not supported) Table 58 Device Geometry Definition for 128-Mbit and 256-Mbit Bottom Boot Initial Delivery State Byte Address Data 27h 18h (128 Mb) 19h (256 Mb) 28h 02h 29h 01h 2Ah 08h 2Bh 00h 2Ch 02h 2Dh 1Fh 2Eh 00h 2Fh 10h 30h 00h 31h FDh 32h 00h (128 Mb) 01h (256 Mb) 33h 00h 34h 01h 35h thru 3Fh FFh Note: 1. FL-S 128 Mbit and 256-Mbit devices have either a hybrid sector architecture with thirty two 4-kB sectors and all remaining sectors of 64-kB or with uniform 256-kB sectors. Devices with the hybrid sector architecture are initially shipped from Cypress with the 4 kB sectors located at the bottom of the array address map. However, the device configuration TBPARM bit CR1[2] may be Document Number: 002-19099 Rev. *A Description Device Size = 2N bytes Flash Device Interface Description: 0000h = x8 only 0001h = x16 only 0002h = x8/x16 capable 0003h = x32 only 0004h = Single I/O SPI, 3-byte address 0005h = Multi I/O SPI, 3-byte address 0102h = Multi I/O SPI, 3- or 4-byte address Max. number of bytes in multi-byte write = 2N (0000 = not supported 0008h = 256B page 0009h = 512B page) Number of Erase Block Regions within device 1 = Uniform Device, 2 = Boot Device Erase Block Region 1 Information (refer to JEDEC JEP137): 32 sectors = 32-1 = 001Fh 4-kB sectors = 256 bytes x 0010h Erase Block Region 2 Information: 254 sectors = 254-1 = 00FDh (128 Mb) 510 sectors = 510-1 = 01FDh (256 Mb) 64-kB sectors = 0100h x 256 bytes RFU programed to invert the sector map to place the 4-kB sectors at the top of the array address map. The CFI geometry information of the above table is relevant only to the initial delivery state of a hybrid sector device. The flash device driver software must examine the TBPARM bit to determine if the sector map was inverted at a later time. Page 122 of 140 S25FL128S / S25FL256S Table 59 Device Geometry Definition for 128-Mbit and 256-Mbit Uniform Sector Devices Byte Address Data 27h 18h (128 Mb) 19h (256 Mb) 28h 02h 29h 01h 2Ah 09h 2Bh 00h 2Ch 01h 2Dh 3Fh (128 Mb) 7Fh (256 Mb) 2Eh 00h 2Fh 00h 30h 04h 31h thru 3Fh FFh Description N Device Size = 2 bytes Flash Device Interface Description: 0000h = x8 only 0001h = x16 only 0002h = x8/x16 capable 0003h = x32 only 0004h = Single I/O SPI, 3-byte address 0005h = Multi I/O SPI, 3-byte address 0102h = Multi I/O SPI, 3- or 4-byte address Max. number of bytes in multi-byte write = 2N (0000 = not supported 0008h = 256B page 0009h = 512B page) Number of Erase Block Regions within device 1 = Uniform Device, 2 = Boot Device Erase Block Region 1 Information (refer to JEDEC JEP137): 64 sectors = 64-1 = 003Fh (128 Mb) 128 sectors = 128-1 = 007Fh (256 Mb) 256-kB sectors = 256 bytes x 0400h RFU Table 60 CFI Primary Vendor-Specific Extended Query Byte Address Data 40h 50h Description 41h 52h 42h 49h 43h 31h Major version number = 1, ASCII 44h 33h Minor version number = 3, ASCII Query-unique ASCII string "PRI" Address Sensitive Unlock (Bits 1-0) 00b = Required 01b = Not Required 45h 21h Process Technology (Bits 5-2) 0000b = 0.23 m Floating Gate 0001b = 0.17 m Floating Gate 0010b = 0.23 m MirrorBit 0011b = 0.11 m Floating Gate 0100b = 0.11 m MirrorBit 0101b = 0.09 m MirrorBit 1000b = 0.065 m MirrorBit 46h 02h Erase Suspend 0 = Not Supported 1 = Read Only 2 = Read and Program 47h 01h Sector Protect 00 = Not Supported 00h Temporary Sector Unprotect 00 = Not Supported X = Number of sectors in group 48h 01 = Supported Document Number: 002-19099 Rev. *A Page 123 of 140 S25FL128S / S25FL256S Table 60 CFI Primary Vendor-Specific Extended Query (Continued) Byte Address Data Description Sector Protect/Unprotect Scheme 04 = High Voltage Method 05 = Software Command Locking Method 08 = Advanced Sector Protection Method 09 = Secure 49h 08h 4Ah 00h Simultaneous Operation 00 = Not Supported 01h Burst Mode (Synchronous sequential read) support 00 = Not Supported X = Number of Sectors 4Bh 01 = Supported Page Mode Type, model dependent 00 = Not Supported 4Ch 01 = 4 Word Read Page xxh 02 = 8 Read Word Page 03 = 256-Byte Program Page 04 = 512-Byte Program Page 4Dh 00h ACC (Acceleration) Supply Minimum 00 = Not Supported, 100 mV 4Eh 00h ACC (Acceleration) Supply Maximum 00 = Not Supported, 100 mV 4Fh 07h WP# Protection 01 = Whole Chip 04 = Uniform Device with Bottom WP Protect 05 = Uniform Device with Top WP Protect 07 = Uniform Device with Top or Bottom Write Protect (user select) 50h 01h Program Suspend 00 = Not Supported 01 = Supported The Alternate Vendor-Specific Extended Query provides information related to the expanded command set provided by the FL-S family. The alternate query parameters use a format in which each parameter begins with an identifier byte and a parameter length byte. Driver software can check each parameter ID and can use the length value to skip to the next parameter if the parameter is not needed or not recognized by the software. Table 61 CFI Alternate Vendor-Specific Extended Query Header Byte Address Data 51h 41h Description 52h 4Ch 53h 54h 54h 32h Major version number = 2, ASCII 55h 30h Minor version number = 0, ASCII Query-unique ASCII string "ALT" Document Number: 002-19099 Rev. *A Page 124 of 140 S25FL128S / S25FL256S Table 62 CFI Alternate Vendor-Specific Extended Query Parameter 0 Parameter Relative Byte Address Offset Data 00h 00h Parameter ID (Ordering Part Number) 01h 10h Parameter Length (The number of following bytes in this parameter. Adding this value to the current location value +1 = the first byte of the next parameter) 02h 53h ASCII "S" for manufacturer (Cypress) 03h 32h 04h 35h Description ASCII "25" for Product Characters (Single Die SPI) 05h 46h 06h 4Ch 07h 31h (128 Mb) 32h (256 Mb) 08h 32h (128 Mb) 35h (256 Mb) 09h 38h (128 Mb) 36h (256 Mb) 0Ah 53h ASCII "S" for Technology (65 nm MirrorBit) xxh Reserved for Future Use (RFU) ASCII "FL" for Interface Characters (SPI 3 Volt) ASCII characters for density 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h Table 63 CFI Alternate Vendor-Specific Extended Query Parameter 80h Address Options Parameter Relative Byte Address Offset Data 00h 80h Parameter ID (address options) 01h 01h Parameter Length (The number of following bytes in this parameter. Adding this value to the current location value +1 = the first byte of the next parameter) F0h Bits 7:4 - Reserved = 1111b Bit 3 - AutoBoot support - Ye s= 0b, No = 1b Bit 2 - 4-byte address instructions supported - Yes = 0b, No = 1b Bit 1 - Bank address + 3-byte address instructions supported - Yes = 0b, No = 1b Bit 0 - 3-byte address instructions supported - Yes = 0b, No = 1b 02h Description Document Number: 002-19099 Rev. *A Page 125 of 140 S25FL128S / S25FL256S Table 64 CFI Alternate Vendor-Specific Extended Query Parameter 84h Suspend Commands Parameter Relative Byte Address Offset Data 00h 84h Parameter ID (Suspend Commands 01h 08h Parameter Length (The number of following bytes in this parameter. Adding this value to the current location value +1 = the first byte of the next parameter) 02h 85h Program suspend instruction code 03h 2Dh Program suspend latency maximum (s) 04h 8Ah Program resume instruction code 05h 64h Program resume to next suspend typical (s) 06h 75h Erase suspend instruction code 07h 2Dh Erase suspend latency maximum (s) 08h 7Ah Erase resume instruction code 09h 64h Erase resume to next suspend typical (s) Description Table 65 CFI Alternate Vendor-Specific Extended Query Parameter 88h Data Protection Parameter Relative Byte Address Offset Data 00h 88h Parameter ID (Data Protection) 01h 04h Parameter Length (The number of following bytes in this parameter. Adding this value to the current location value +1 = the first byte of the next parameter) 02h 0Ah OTP size 2N bytes, FFh = not supported 03h 01h OTP address map format, 01h = FL-S format, FFh = not supported 04h xxh Block Protect Type, model dependent 00h = FL-P, FL-S, FFh = not supported 05h xxh Advanced Sector Protection type, model dependent 01h = FL-S ASP Description Table 66 CFI Alternate Vendor-Specific Extended Query Parameter 8Ch Reset Timing Parameter Relative Byte Address Offset Data 00h 8Ch Parameter ID (Reset Timing) 01h 06h Parameter Length (The number of following bytes in this parameter. Adding this value to the current location value +1 = the first byte of the next parameter) 02h 96h POR maximum value 03h 01h POR maximum exponent 2N s 04h FFh (without separate RESET#) 23h (with separate RESET #) Description Hardware Reset maximum value 05h 00h Hardware Reset maximum exponent 2N s 06h 23h Software Reset maximum value, FFh = not supported 07h 00h Software Reset maximum exponent 2N s Document Number: 002-19099 Rev. *A Page 126 of 140 S25FL128S / S25FL256S Table 67 CFI Alternate Vendor-Specific Extended Query Parameter 90h - HPLC(SDR) Parameter Relative Byte Address Offset Data 00h 90h Parameter ID (Latency Code Table) 01h 56h Parameter Length (The number of following bytes in this parameter. Adding this value to the current location value +1 = the first byte of the next parameter) 02h 06h Number of rows 03h 0Eh Row length in bytes 04h 46h Start of header (row 1), ASCII "F" for frequency column header Description 05h 43h ASCII "C" for Code column header 06h 03h Read 3-byte address instruction 07h 13h Read 4-byte address instruction 08h 0Bh Read Fast 3-byte address instruction 09h 0Ch Read Fast 4-byte address instruction 0Ah 3Bh Read Dual Out 3-byte address instruction 0Bh 3Ch Read Dual Out 4-byte address instruction 0Ch 6Bh Read Quad Out 3-byte address instruction 0Dh 6Ch Read Quad Out 4-byte address instruction 0Eh BBh Dual I/O Read 3-byte address instruction 0Fh BCh Dual I/O Read 4-byte address instruction 10h EBh Quad I/O Read 3-byte address instruction 11h ECh Quad I/O Read 4-byte address instruction 12h 32h Start of row 2, SCK frequency limit for this row (50 MHz) 13h 03h Latency Code for this row (11b) 14h 00h Read mode cycles 15h 00h Read latency cycles 16h 00h Read Fast mode cycles 17h 00h Read Fast latency cycles 18h 00h Read Dual Out mode cycles 19h 00h Read Dual Out latency cycles 1Ah 00h Read Quad Out mode cycles 1Bh 00h Read Quad Out latency cycles 1Ch 00h Dual I/O Read mode cycles 1Dh 04h Dual I/O Read latency cycles 1Eh 02h Quad I/O Read mode cycles 1Fh 01h Quad I/O Read latency cycles 20h 50h Start of row 3, SCK frequency limit for this row (80 MHz) 21h 00h Latency Code for this row (00b) 22h FFh Read mode cycles (FFh = command not supported at this frequency) 23h FFh Read latency cycles 24h 00h Read Fast mode cycles 25h 08h Read Fast latency cycles 26h 00h Read Dual Out mode cycles 27h 08h Read Dual Out latency cycles 28h 00h Read Quad Out mode cycles 29h 08h Read Quad Out latency cycles 2Ah 00h Dual I/O Read mode cycles 2Bh 04h Dual I/O Read latency cycles Document Number: 002-19099 Rev. *A Page 127 of 140 S25FL128S / S25FL256S Table 67 CFI Alternate Vendor-Specific Extended Query Parameter 90h - HPLC(SDR) (Continued) Parameter Relative Byte Address Offset Data 2Ch 02h Quad I/O Read mode cycles 2Dh 04h Quad I/O Read latency cycles 2Eh 5Ah Start of row 4, SCK frequency limit for this row (90 MHz) 2Fh 01h Latency Code for this row (01b) 30h FFh Read mode cycles (FFh = command not supported at this frequency) 31h FFh Read latency cycles 32h 00h Read Fast mode cycles 33h 08h Read Fast latency cycles 34h 00h Read Dual Out mode cycles 35h 08h Read Dual Out latency cycles 36h 00h Read Quad Out mode cycles 37h 08h Read Quad Out latency cycles 38h 00h Dual I/O Read mode cycles Dual I/O Read latency cycles Description 39h 05h 3Ah 02h Quad I/O Read mode cycles 3Bh 04h Quad I/O Read latency cycles 3Ch 68h Start of row 5, SCK frequency limit for this row (104 MHz) 3Dh 02h Latency Code for this row (10b) 3Eh FFh Read mode cycles (FFh = command not supported at this frequency) 3Fh FFh Read latency cycles 40h 00h Read Fast mode cycles 41h 08h Read Fast latency cycles 42h 00h Read Dual Out mode cycles 43h 08h Read Dual Out latency cycles 44h 00h Read Quad Out mode cycles 45h 08h Read Quad Out latency cycles 46h 00h Dual I/O Read mode cycles 47h 06h Dual I/O Read latency cycles 48h 02h Quad I/O Read mode cycles Quad I/O Read latency cycles 49h 05h 4Ah 85h Start of row 6, SCK frequency limit for this row (133 MHz) 4Bh 02h Latency Code for this row (10b) 4Ch FFh Read mode cycles (FFh = command not supported at this frequency) 4Dh FFh Read latency cycles 4Eh 00h Read Fast mode cycles 4Fh 08h Read Fast latency cycles 50h FFh Read Dual Out mode cycles 51h FFh Read Dual Out latency cycles 52h FFh Read Quad Out mode cycles 53h FFh Read Quad Out latency cycles 54h FFh Dual I/O Read mode cycles 55h FFh Dual I/O Read latency cycles 56h FFh Quad I/O Read mode cycles 57h FFh Quad I/O Read latency cycles Document Number: 002-19099 Rev. *A Page 128 of 140 S25FL128S / S25FL256S Table 68 CFI Alternate Vendor-Specific Extended Query Parameter 9Ah - HPLC DDR Parameter Relative Byte Address Offset Data 00h 9Ah Parameter ID (Latency Code Table) 01h 2Ah Parameter Length (The number of following bytes in this parameter. Adding this value to the current location value +1 = the first byte of the next parameter) 02h 05h Number of rows 03h 08h Row length in bytes 04h 46h Start of header (row 1), ASCII "F" for frequency column header 05h 43h ASCII "C" for Code column header 06h 0Dh Read Fast DDR 3-byte address instruction 07h 0Eh Read Fast DDR 4-byte address instruction 08h BDh DDR Dual I/O Read 3-byte address instruction DDR Dual I/O Read 4-byte address instruction Description 09h BEh 0Ah EDh Read DDR Quad I/O 3-byte address instruction 0Bh EEh Read DDR Quad I/O 4-byte address instruction 0Ch 32h Start of row 2, SCK frequency limit for this row (50 MHz) 0Dh 03h Latency Code for this row (11b) 0Eh 00h Read Fast DDR mode cycles 0Fh 04h Read Fast DDR latency cycles 10h 00h DDR Dual I/O Read mode cycles 11h 04h DDR Dual I/O Read latency cycles 12h 01h Read DDR Quad I/O mode cycles 13h 03h Read DDR Quad I/O latency cycles 14h 42h Start of row 3, SCK frequency limit for this row (66 MHz) 15h 00h Latency Code for this row (00b) 16h 00h Read Fast DDR mode cycles 17h 05h Read Fast DDR latency cycles 18h 00h DDR Dual I/O Read mode cycles 19h 06h DDR Dual I/O Read latency cycles 1Ah 01h Read DDR Quad I/O mode cycles 1Bh 06h Read DDR Quad I/O latency cycles 1Ch 42h Start of row 4, SCK frequency limit for this row (66 MHz) 1Dh 01h Latency Code for this row (01b) 1Eh 00h Read Fast DDR mode cycles 1Fh 06h Read Fast DDR latency cycles 20h 00h DDR Dual I/O Read mode cycles 21h 07h DDR Dual I/O Read latency cycles 22h 01h Read DDR Quad I/O mode cycles 23h 07h Read DDR Quad I/O latency cycles 24h 42h Start of row 5, SCK frequency limit for this row (66 MHz) 25h 02h Latency Code for this row (10b) 26h 00h Read Fast DDR mode cycles 27h 07h Read Fast DDR latency cycles 28h 00h DDR Dual I/O Read mode cycles 29h 08h DDR Dual I/O Read latency cycles 2Ah 01h Read DDR Quad I/O mode cycles 2Bh 08h Read DDR Quad I/O latency cycles Document Number: 002-19099 Rev. *A Page 129 of 140 S25FL128S / S25FL256S Table 69 CFI Alternate Vendor-Specific Extended Query Parameter 90h - EHPLC (SDR) Parameter Relative Byte Address Offset Data 00h 90h Parameter ID (Latency Code Table) 01h 56h Parameter Length (The number of following bytes in this parameter. Adding this value to the current location value +1 = the first byte of the next parameter) 02h 06h Number of rows 03h 0Eh Row length in bytes 04h 46h Start of header (row 1), ASCII "F" for frequency column header Description 05h 43h ASCII "C" for Code column header 06h 03h Read 3-byte address instruction 07h 13h Read 4-byte address instruction 08h 0Bh Read Fast 3-byte address instruction 09h 0Ch Read Fast 4-byte address instruction 0Ah 3Bh Read Dual Out 3-byte address instruction 0Bh 3Ch Read Dual Out 4-byte address instruction 0Ch 6Bh Read Quad Out 3-byte address instruction 0Dh 6Ch Read Quad Out 4-byte address instruction 0Eh BBh Dual I/O Read 3-byte address instruction 0Fh BCh Dual I/O Read 4-byte address instruction 10h EBh Quad I/O Read 3-byte address instruction 11h ECh Quad I/O Read 4-byte address instruction 12h 32h Start of row 2, SCK frequency limit for this row (50 MHz) 13h 03h Latency Code for this row (11b) 14h 00h Read mode cycles 15h 00h Read latency cycles 16h 00h Read Fast mode cycles 17h 00h Read Fast latency cycles 18h 00h Read Dual Out mode cycles 19h 00h Read Dual Out latency cycles 1Ah 00h Read Quad Out mode cycles 1Bh 00h Read Quad Out latency cycles 1Ch 04h Dual I/O Read mode cycles 1Dh 00h Dual I/O Read latency cycles 1Eh 02h Quad I/O Read mode cycles 1Fh 01h Quad I/O Read latency cycles 20h 50h Start of row 3, SCK frequency limit for this row (80 MHz) 21h 00h Latency Code for this row (00b) 22h FFh Read mode cycles (FFh = command not supported at this frequency) 23h FFh Read latency cycles 24h 00h Read Fast mode cycles 25h 08h Read Fast latency cycles 26h 00h Read Dual Out mode cycles 27h 08h Read Dual Out latency cycles 28h 00h Read Quad Out mode cycles 29h 08h Read Quad Out latency cycles 2Ah 04h Dual I/O Read mode cycles 2Bh 00h Dual I/O Read latency cycles Document Number: 002-19099 Rev. *A Page 130 of 140 S25FL128S / S25FL256S Table 69 CFI Alternate Vendor-Specific Extended Query Parameter 90h - EHPLC (SDR) (Continued) Parameter Relative Byte Address Offset Data 2Ch 02h Quad I/O Read mode cycles 2Dh 04h Quad I/O Read latency cycles 2Eh 5Ah Start of row 4, SCK frequency limit for this row (90 MHz) 2Fh 01h Latency Code for this row (01b) 30h FFh Read mode cycles (FFh = command not supported at this frequency) 31h FFh Read latency cycles 32h 00h Read Fast mode cycles 33h 08h Read Fast latency cycles 34h 00h Read Dual Out mode cycles 35h 08h Read Dual Out latency cycles 36h 00h Read Quad Out mode cycles 37h 08h Read Quad Out latency cycles 38h 04h Dual I/O Read mode cycles Dual I/O Read latency cycles Description 39h 01h 3Ah 02h Quad I/O Read mode cycles 3Bh 04h Quad I/O Read latency cycles 3Ch 68h Start of row 5, SCK frequency limit for this row (104 MHz) 3Dh 02h Latency Code for this row (10b) 3Eh FFh Read mode cycles (FFh = command not supported at this frequency) 3Fh FFh Read latency cycles 40h 00h Read Fast mode cycles 41h 08h Read Fast latency cycles 42h 00h Read Dual Out mode cycles 43h 08h Read Dual Out latency cycles 44h 00h Read Quad Out mode cycles 45h 08h Read Quad Out latency cycles 46h 04h Dual I/O Read mode cycles 47h 02h Dual I/O Read latency cycles 48h 02h Quad I/O Read mode cycles Quad I/O Read latency cycles 49h 05h 4Ah 85h Start of row 6, SCK frequency limit for this row (133 MHz) 4Bh 02h Latency Code for this row (10b) 4Ch FFh Read mode cycles (FFh = command not supported at this frequency) 4Dh FFh Read latency cycles 4Eh 00h Read Fast mode cycles 4Fh 08h Read Fast latency cycles 50h FFh Read Dual Out mode cycles 51h FFh Read Dual Out latency cycles 52h FFh Read Quad Out mode cycles 53h FFh Read Quad Out latency cycles 54h FFh Dual I/O Read mode cycles 55h FFh Dual I/O Read latency cycles 56h FFh Quad I/O Read mode cycles 57h FFh Quad I/O Read latency cycles Document Number: 002-19099 Rev. *A Page 131 of 140 S25FL128S / S25FL256S Table 70 CFI Alternate Vendor-Specific Extended Query Parameter 9Ah - EHPLC DDR Parameter Relative Byte Address Offset Data 00h 9Ah Parameter ID (Latency Code Table) 01h 2Ah Parameter Length (The number of following bytes in this parameter. Adding this value to the current location value +1 = the first byte of the next parameter) 02h 05h Number of rows 03h 08h Row length in bytes 04h 46h Start of header (row 1), ASCII "F" for frequency column header 05h 43h ASCII "C" for Code column header 06h 0Dh Read Fast DDR 3-byte address instruction 07h 0Eh Read Fast DDR 4-byte address instruction 08h BDh DDR Dual I/O Read 3-byte address instruction DDR Dual I/O Read 4-byte address instruction Description 09h BEh 0Ah EDh Read DDR Quad I/O 3-byte address instruction 0Bh EEh Read DDR Quad I/O 4-byte address instruction 0Ch 32h Start of row 2, SCK frequency limit for this row (50 MHz) 0Dh 03h Latency Code for this row (11b) 0Eh 04h Read Fast DDR mode cycles 0Fh 01h Read Fast DDR latency cycles 10h 02h DDR Dual I/O Read mode cycles 11h 02h DDR Dual I/O Read latency cycles 12h 01h Read DDR Quad I/O mode cycles 13h 03h Read DDR Quad I/O latency cycles 14h 42h Start of row 3, SCK frequency limit for this row (66 MHz) 15h 00h Latency Code for this row (00b) 16h 04h Read Fast DDR mode cycles 17h 02h Read Fast DDR latency cycles 18h 02h DDR Dual I/O Read mode cycles 19h 04h DDR Dual I/O Read latency cycles 1Ah 01h Read DDR Quad I/O mode cycles 1Bh 06h Read DDR Quad I/O latency cycles 1Ch 42h Start of row 4, SCK frequency limit for this row (66 MHz) 1Dh 01h Latency Code for this row (01b) 1Eh 04h Read Fast DDR mode cycles 1Fh 04h Read Fast DDR latency cycles 20h 02h DDR Dual I/O Read mode cycles 21h 05h DDR Dual I/O Read latency cycles 22h 01h Read DDR Quad I/O mode cycles 23h 07h Read DDR Quad I/O latency cycles 24h 42h Start of row 5, SCK frequency limit for this row (66 MHz) 25h 02h Latency Code for this row (10b) 26h 04h Read Fast DDR mode cycles 27h 05h Read Fast DDR latency cycles 28h 02h DDR Dual I/O Read mode cycles 29h 06h DDR Dual I/O Read latency cycles 2Ah 01h Read DDR Quad I/O mode cycles 2Bh 08h Read DDR Quad I/O latency cycles Document Number: 002-19099 Rev. *A Page 132 of 140 S25FL128S / S25FL256S Table 71 CFI Alternate Vendor-Specific Extended Query Parameter F0h RFU Parameter Relative Byte Address Offset Data 00h F0h Parameter ID (RFU) 01h 0Fh Parameter Length (The number of following bytes in this parameter. Adding this value to the current location value +1 = the first byte of the next parameter) 02h FFh RFU ... FFh RFU 10h FFh RFU Description This parameter type (Parameter ID F0h) may appear multiple times and have a different length each time. The parameter is used to reserve space in the ID-CFI map or to force space (pad) to align a following parameter to a required boundary. 11.3 Device ID and Common Flash Interface (ID-CFI) ASO Map -- Automotive Only The CFI Primary Vendor-Specific Extended Query is extended to include Electronic Marking information for device traceability. Data Field # of bytes (SA) + 0180h Size of Electronic Marking (SA) + 0181h Revision of Electronic Marking Address Data Format Example of Actual Data 1 Hex 20 14h 1 Hex 1 01h Hex Read Out of Example Data (SA) + 0182h Fab Lot # 8 ASCII LD87270 (SA) + 018Ah Wafer # 1 Hex 23 17h (SA) + 018Bh Die X Coordinate 1 Hex 10 0Ah (SA) + 018Ch Die Y Coordinate 1 Hex 15 0Fh (SA) + 018Dh Class Lot # 7 ASCII BR33150 (SA) + 0194h Reserved for Future 12 N/A N/A 4Ch, 44h, 38h, 37h, 32h, 37h, 30h, FFh 42h, 52h, 33h, 33h, 31h, 35h, 30h FFh, FFh, FFh, FFh, FFh, FFh, FFh, FFh, FFh, FFh, FFh, FFh Fab Lot # + Wafer # + Die X Coordinate + Die Y Coordinate gives a unique ID for each device. 11.4 Registers The register maps are copied in this section as a quick reference. See Registers on page 42 for the full description of the register contents. Table 72 Status Register 1 (SR1) Bits Field Name Function Type Default State Description 7 SRWD Status Register Write Disable Non-Volatile 0 1 = Locks state of SRWD, BP, and configuration register bits when WP# is low by ignoring WRR command 0 = No protection, even when WP# is low 6 P_ERR Programming Error Occurred Volatile, Read only 0 1 = Error occurred 0 = No Error 5 E_ERR Erase Error Occurred Volatile, Read only 0 1= Error occurred 0 = No Error 4 BP2 3 BP1 Block Protection 2 BP0 Volatile if CR1[3]=1, Non-Volatile if CR1[3]=0 Document Number: 002-19099 Rev. *A 1 if CR1[3]=1, 0 when shipped from Cypress Protects selected range of sectors (Block) from Program or Erase Page 133 of 140 S25FL128S / S25FL256S Table 72 Status Register 1 (SR1) Field Name Bits Function Type Default State Description 1 WEL Write Enable Latch Volatile 0 1 = Device accepts Write Registers (WRR), program or erase commands 0 = Device ignores Write Registers (WRR), program or erase commands This bit is not affected by WRR, only WREN and WRDI commands affect this bit. 0 WIP Write in Progress Volatile, Read only 0 1= Device Busy, a Write Registers (WRR), program, erase or other operation is in progress 0 = Ready Device is in standby mode and can accept commands Table 73 Configuration Register (CR1) Bits Field Name 7 LC1 6 LC0 5 TBPROT 4 Default State Function Type Latency Code Non-Volatile Configures Start of Block Protection OTP 0 RFU RFU OTP 0 Reserved for Future Use 3 BPNV Configures BP2-0 in Status Register OTP 0 1 = Volatile 0 = Non-Volatile 2 TBPARM Configures Parameter Sectors location OTP 0 1 = 4-kB physical sectors at top, (high address) 0 = 4-kB physical sectors at bottom (Low address) RFU in uniform sector devices. 1 QUAD Puts the device into Quad I/O operation Non-Volatile 0 1 = Quad 0 = Dual or Serial FREEZE Lock current state of BP2-0 bits in Status Register, TBPROT and TBPARM in Configuration Register, and OTP regions Volatile 0 1 = Block Protection and OTP locked 0 = Block Protection and OTP un-locked 0 0 0 Description Selects number of initial read latency cycles See Latency Code Tables 1 = BP starts at bottom (Low address) 0 = BP starts at top (High address) Table 74 Status Register 2 (SR2) Bits Field Name Function Type Default State Description 7 RFU Reserved 0 Reserved for Future Use 6 RFU Reserved 0 Reserved for Future Use 5 RFU Reserved 0 Reserved for Future Use 4 RFU Reserved 0 Reserved for Future Use 3 RFU Reserved 0 Reserved for Future Use 2 RFU Reserved 0 Reserved for Future Use 1 ES Erase Suspend Volatile, Read only 0 1 = In erase suspend mode. 0 = Not in erase suspend mode. 0 PS Program Suspend Volatile, Read only 0 1 = In program suspend mode. 0 = Not in program suspend mode. Document Number: 002-19099 Rev. *A Page 134 of 140 S25FL128S / S25FL256S Table 75 Bank Address Register (BAR) Bits Field Name Function Type Default State 7 EXTADD Extended Address Enable Volatile 0b Description 1 = 4-byte (32 bits) addressing required from command. 0 = 3-byte (24 bits) addressing from command + Bank Address 6 to 2 RFU Reserved Volatile 00000b 1 BA25 Bank Address Volatile 0 RFU for lower density devices Reserved for Future Use 0 BA24 Bank Address Volatile 0 A24 for 256-Mbit device, RFU for lower density device Table 76 ASP Register (ASPR) Function Default State Bits Field Name Type Description 15 to 9 RFU Reserved OTP 1 Reserved for Future Use 8 RFU Reserved OTP (Note 1) Reserved for Future Use 7 RFU Reserved OTP (Note 1) Reserved for Future Use 6 RFU Reserved OTP 1 Reserved for Future Use 5 RFU Reserved OTP (Note 1) Reserved for Future Use 4 RFU Reserved OTP (Note 1) Reserved for Future Use 3 RFU Reserved OTP (Note 1) Reserved for Future Use 2 PWDMLB Password Protection Mode Lock Bit OTP 1 0 = Password Protection Mode Permanently Enabled. 1 = Password Protection Mode not Permanently Enabled. 1 PSTMLB Persistent Protection Mode Lock Bit OTP 1 0 = Persistent Protection Mode Permanently Enabled. 1 = Persistent Protection Mode not Permanently Enabled. 0 RFU Reserved OTP 1 Reserved for Future Use Note: 1. Default value depends on ordering part number, see Initial Delivery State on page 137. Table 77 Password Register (PASS) Bits Field Name Function Type Default State Description 63 to 0 PWD Hidden Password OTP FFFFFFFFFFFFFFFFh Non-volatile OTP storage of 64-bit password. The password is no longer readable after the password protection mode is selected by programming ASP register bit 2 to zero. Table 78 PPB Lock Register (PPBL) Bits Field Name Function Type Default State 7 to 1 RFU Reserved Volatile 00h 0 PPBLOCK Protect PPB Array Volatile Persistent Protection Mode = 1 Password Protection Mode = 0 Document Number: 002-19099 Rev. *A Description Reserved for Future Use 0 = PPB array protected until next power cycle or hardware reset 1 = PPB array may be programmed or erased Page 135 of 140 S25FL128S / S25FL256S Table 79 PPB Access Register (PPBAR) Bits 7 to 0 Field Name PPB Function Type Read or Program per sector PPB Non-volatile Default State FFh Description 00h = PPB for the sector addressed by the PPBRD or PPBP command is programmed to `0', protecting that sector from program or erase operations. FFh = PPB for the sector addressed by the PPBRD or PPBP command is erased to `1', not protecting that sector from program or erase operations. Table 80 DYB Access Register (DYBAR) Bits 7 to 0 Field Name DYB Function Read or Write per sector DYB Type Volatile Default State FFh Description 00h = DYB for the sector addressed by the DYBRD or DYBP command is cleared to `0', protecting that sector from program or erase operations. FFh = DYB for the sector addressed by the DYBRD or DYBP command is set to `1', not protecting that sector from program or erase operations. Table 81 Non-Volatile Data Learning Register (NVDLR) Bits 7 to 0 Field Name NVDLP Function Non-Volatile Data Learning Pattern Type OTP Default State 00h Description OTP value that may be transferred to the host during DDR read command latency (dummy) cycles to provide a training pattern to help the host more accurately center the data capture point in the received data bits. Table 82 Volatile Data Learning Register (NVDLR) Bits 7 to 0 Field Name VDLP Function Volatile Data Learning Pattern Type Default State Volatile Takes the value of NVDLR during POR or Reset Document Number: 002-19099 Rev. *A Description Volatile copy of the NVDLP used to enable and deliver the Data Learning Pattern (DLP) to the outputs. The VDLP may be changed by the host during system operation. Page 136 of 140 S25FL128S / S25FL256S 11.5 Initial Delivery State The device is shipped from Cypress with non-volatile bits set as follows: The entire memory array is erased: i.e. all bits are set to 1 (each byte contains FFh). The OTP address space has the first 16 bytes programmed to a random number. All other bytes are erased to FFh. The ID-CFI address space contains the values as defined in the description of the ID-CFI address space. The Status Register 1 contains 00h (all SR1 bits are cleared to 0's). The Configuration Register 1 contains 00h. The Autoboot register contains 00h. The Password Register contains FFFFFFFF-FFFFFFFFh. All PPB bits are 1. The ASP Register contents depend on the ordering options selected: Table 83 ASP Register Content Ordering Part Number Model ASPR Default Value 00, 20, 30, R0, A0, B0, C0, D0, 01, 21, 31, R1, A1, B1, C1, D1, 90, Q0, 70, 60, 80, 91, Q1, 71, 61, 81 FE7Fh Document Number: 002-19099 Rev. *A Page 137 of 140 S25FL128S / S25FL256S 12. Ordering Information The ordering part number is formed by a valid combination of the following: S25FL 256 S AG M F E 0 0 1 Packing Type 0 = Tray 3 = 13" Tape and Reel Model Number (Sector Type) 0 = Uniform 64-kB sectors 1 = Uniform 256-kB sectors Model Number (Latency Type, Package Details, RESET# and V_IO Support) 2 = EHPLC, 5 x 5 ball BGA footprint A = EHPLC, 5 x 5 ball BGA footprint with RESET# and VIO C = EHPLC, 5 x 5 ball BGA footprint with RESET# Temperature Range / Grade E = Military (-55C to +125C) Package Materials A = Leaded (Sn/Pb)-balls - BGA only H = Low-Halogen, Lead (Pb)-free Package Type B = 24-ball BGA 6 x 8 mm package, 1.00 mm pitch Speed AG = 133 MHz DP = 66 MHz DDR DS = 80 MHz DDR Device Technology S = 65 nm MirrorBit Process Technology Density 128= 128 Mbit 256= 256 Mbit Device Family S25FL Cypress Memory 3.0 Volt-Only, Serial Peripheral Interface (SPI) Flash Memory Notes: 1. EHPLC = Enhanced High Performance Latency Code table. 2. Uniform 64-kB sectors = A hybrid of 32 x 4-kB sectors with all remaining sectors being 64 kB, with a 256B programming buffer. 3. Uniform 256-kB sectors = All sectors are uniform 256-kB with a 512B programming buffer. Valid Combinations -- Military The table below lists configurations that are Military qualified and are planned to be available in volume. The table will be updated as new combinations are released. Consult your local sales representative to confirm availability of specific combinations and to check on newly released combinations. Table 84 S25FL128S, S25FL256S Valid Combinations -- Military Valid Combinations -- Military Base Ordering Part Number Speed Option Package and Temperature Model Number Packing Type Package Marking S25FL128S or S25FL256S AG BHE, BAE 20, 21, A0, A1, C0, C1 0, 3 FL + (Density) + SA + (Temp) + H + (Model Number) S25FL128S or S25FL256S DP BHE, BAE 20, 21, A0, A1, C0, C1 0, 3 FL + (Density) + SD + (Temp) + H + (Model Number) S25FL128S or S25FL256S DS BHE, BAE 20, 21, A0, A1, C0, C1 0, 3 FL + (Density) + SS + (Temp) + H + (Model Number) 13. Contacting Cypress Obtain the latest list of company locations and contact information at: http://www.cypress.com/cypresslocations. Document Number: 002-19099 Rev. *A Page 138 of 140 S25FL128S / S25FL256S 14. Revision History Document History Page Document Title: S25FL128S/S25FL256S, Military 128 Mbit (16 Mbyte)/256 Mbit (32 Mbyte) 3.0V SPI Flash Memory Document Number: 002-19099 Rev. ECN No. Orig. of Change Submission Date *A 6361228 HRP 10/23/2018 Document Number: 002-19099 Rev. *A Description of Change Release to Web Page 139 of 140 S25FL128S / S25FL256S Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC(R)Solutions Products Arm(R) Cortex(R) Microcontrollers Automotive cypress.com/arm cypress.com/automotive Clocks & Buffers Interface cypress.com/clocks cypress.com/interface Internet of Things Memory cypress.com/iot cypress.com/memory Microcontrollers cypress.com/mcu PSoC cypress.com/psoc Power Management ICs Cypress Developer Community Community | Projects | Videos | Blogs | Training | Components Technical Support cypress.com/support cypress.com/pmic Touch Sensing cypress.com/touch USB Controllers Wireless Connectivity PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU cypress.com/usb cypress.com/wireless (c) Cypress Semiconductor Corporation, 2017-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 002-19099 Rev. *A Revised October 26, 2018 Page 140 of 140