MIC860 Micrel MIC860 TeenyTM Ultra Low Power Op Amp Final Information General Description Features The MIC860 is a rail-to-rail output, operational amplifier in TeenyTM SC70 packaging. The MIC860 provides 4MHz gain-bandwidth product while consuming an incredibly low 30A supply current. The SC70 packaging achieves significant board space savings over devices packaged in SOT-23 or MSOP-8 packaging. The SC70 occupies approximately half the board area of a SOT-23 package. * * * * * * * TeenyTM SC70 packaging 4MHz gain-bandwidth product 30A supply current Rail-to-Rail output Ground sensing at input common mode to GND Common mode to GND Drive large capactive loads Applications * * * * * Portable equipment PDAs Pagers Cordless Phones Consumer Electronics Ordering Information Part Number Marking Ambient Temp. Range* Package MIC860BC5 A32 -40C to +85C SC70-5 Pin Configuration Functional Pinout IN-- V-- IN+ IN-- V-- IN+ 3 2 1 Part Identification 3 2 1 A32 4 5 OUT V+ 4 5 OUT V+ SC-70 Teeny is a trademark of Micrel, Inc. Micrel, Inc. * 1849 Fortune Drive * San Jose, CA 95131 * USA * tel + 1 (408) 944-0800 * fax + 1 (408) 944-0970 * http://www.micrel.com January 22, 2002 1 MIC860 MIC860 Micrel Absolute Maximum Ratings (Note 1) Operating Ratings (Note 2) Supply Voltage (VV+ - V-) ......................................... +6.0V Differentail Input Voltage (VIN+ - VIN-), Note 4 ...... +6.0V Input Voltage (VIN+ - VIN-) .................. V+ + 0.3V, V- -0.3V Lead Temperature (soldering, 5 sec.) ....................... 260C Output Short Circuit Current Duration .................. Indefinite Storage Temperature (TS) ........................................ 150C ESD Rating, Note 3 Supply Voltage (V+ - V-) ........................ +2.43V to +5.25V Ambient Temperature Range ..................... -40C to +85C Package Thermal Resistance ............................... 450C/W Electrical Characteristics V+ = +2.7V, V- = 0V, VCM = V+/2; RL= 500k to V+/2; TA= 25C, unless otherwise noted. Bold values indicate -40C TA +85C. Symbol Parameter VOS Input Offset Voltage Condition Min Typ Max Units -20 -5 15 mV 20 mV -25 Input Offset Voltage Temp Coefficient 20 V/C IB Input Bias Current 20 pA IOS Input Offset Current 10 pA VCM Input Voltage Range CMRR > 60dB 1 1.8 V CMRR Common-Mode Rejection Ratio 0 < VCM < 1.35V 38 76 dB PSRR Power Supply Rejection Ratio Supply voltage change of 3V 40 78 dB AVOL Large-Signal Voltage Gain RL = 5k, VOUT 2V peak to peak 50 66 dB RL = 100k, VOUT 2V peak to peak 66 81 dB RL = 500k, VOUT 2V peak to peak 76 91 dB VOUT VOUT Maximum Output Voltage Swing Minimum Output Voltage Swing RL = 5k V+-70mV V+-34mV V RL = 500k V+-2mV V+-0.7mV V RL = 5k V-+11mV V-+ 50mV mV RL = 500k V-+0.2mV V-+ 2mV mV GBW Gain-Bandwidth Product 4 MHz SR Slew Rate 3 V/s ISC Short-Circuit Output Current IS Supply Current Source 4.5 6 mA Sink 10 16 mA No Load 30 50 A V+= +5V, V-= 0V, VCM= V+/2; RL= 500k to V+/2; TA= 25C, unless otherwise noted. Bold values indicate -40C TA +85C. VOS Input Offset Voltage -20 -5 20 mV Input Offset Voltage Temp Coefficient 20 V/C IB Input Bias Current 20 pA IOS Input Offset Current 10 pA VCM Input Voltage Range CMRR > 60dB 3.5 4.2 V CMRR Common-Mode Rejection Ratio 0 < VCM < 3.5V 44 77 dB PSRR Power Supply Rejection Ratio Supply voltage change of 1V 40 79 dB AVOL Large-Signal Voltage Gain RL = 5k, VOUT 4.8V peak to peak 52 66 dB RL = 100k, VOUT 4.8V peak to peak 67 80 dB RL = 500k, VOUT 4.8V peak to peak 75 90 dB MIC860 2 January 22, 2002 MIC860 Micrel Symbol Parameter Condition VOUT Maximum Output Voltage Swing RL = 5k V+-75mV V+-37mV V RL = 500k V+-35mV V VOUT Minimum Output Voltage Swing Min Typ Max Units V+-4mV RL = 5k V-+14mV V-+ 40mV mV RL = 500k V-+0.4mV V-+ 5mV mV GBW Gain-Bandwidth Product 4 MHz SR Slew Rate 3 V/s ISC Short-Circuit Output Current IS Supply Current Source 15 23 mA Sink 30 47 mA No Load 33 A 55 Note 1. Exceeding the absolute maximum rating may damage the device. Note 2. The device is not guaranteed to function outside its operating rating. Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Pin 4 is ESD sensetive Note 4. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to increase. January 22, 2002 3 MIC860 MIC860 Micrel Test Circuits 200k 20k V+ V+ 0.1F 10F 0.1F 10F 20k 20k MIC860 MIC860 RF RF FET PROBE 0.1F 10F 501/2 FET PROBE FET PROBE 0.1F 10F 501/2 RL 5k FET PROBE V V Test Circuit 2:AV = 2 Test Circuit 1. AV = 10 20k V+ V+ 0.1F 10F 0.1F 10F 20k RF MIC860 MIC860 RF FET PROBE 0.1F 10F 501/2 FET PROBE RL 5k 501/2 501/2 0.1F 10F FET PROBE FET PROBE V V Test Circuit 4. AV = -1 Test Circuit 3. AV = 1 V+ 10F 100F 0.1F 50 BNC Input 10F 10k 170k 48k 4 10k 3 2 MIC860 1 BNC Output 5 50 0.1F All resistors: 1% metal film 100F 10F V-- Test Circuit 5. Positive Power Supply Rejection Ratio Measurement MIC860 4 January 22, 2002 MIC860 Micrel Typical Characteristics Offset Voltage vs. Temperature -3 37 35 5V 33 31 29 2.7V 27 OFFSET VOLTAGE (mV) 5V -3.5 -4 -4.5 2.7V -5 -5.5 25 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) -6 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) -30 5V -40 -50 -60 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) 39 35 33 31 +25C 29 27 +85C 25 0.5 +25C 4 3 2 1 V+ = 5V Offset Voltage vs. Common-Mode Voltage 1 0.5 +25C +85C 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 COMMON-MODE VOLTAGE (V) January 22, 2002 OFFSET VOLTAGE (mV) OFFSET VOLTAGE (mV) V+ = 5V -40C 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) 20 2 +85C 10 5 Short Circuit Current vs. Supply Voltage (Sinking) V+ = 5V 0.5 1 1.5 2 2.5 SUPPLY VOLTAGE (V) -40C 50 40 +25C 30 +85C 20 10 0 0 3 2.2 2.0 1.8 -40C 1.6 1.4 1.2 +25C 1.0 0.8 +85C 0.6 0.4 0.2 Supply = 2.7V 0 0 0.54 1.08 1.62 2.16 2.7 COMMON-MODE VOLTAGE (V) 5 +25C 1.5 1 60 +25C 15 -40C 3 2.5 Offset Voltage vs. Common-Mode Voltage 2.5 1.5 2.7V 5 4 3.5 -40C 25 0 0 10 20 30 40 50 60 OUTPUT CURRENT (mA) 2 10 0.5 V+ = 5V +85C 0 0 5 10 15 20 25 30 OUTPUT CURRENT (mA) V+ = 5V 1 1.5 2 2.5 3 SUPPLY VOLTAGE (V) 30 -40C 5 15 Short Circuit Current vs. Supply Voltage (Sourcing) OUTPUT CURRENT (mA) OUTPUT VOLTAGE (V) +85C -40C 37 Output Voltage vs. Output Current (Sinking) 6 OUTPUT VOLTAGE (V) -20 5V 20 Output Voltage vs. Output Current (Sourcing) OUTPUT CURRENT (mA) 2.7V 25 5 4.5 41 -10 30 Supply Current vs. Supply Voltage 0 SUPPLY CURRENT (A) SHORT CIRCUIT CURRENT (mA) Short Circuit Current (sink) vs. Temperature V+ = 5V 0.5 1 1.5 2 2.5 SUPPLY VOLTAGE (V) 3 Output Voltage Swing vs. Resistive Load (Sinking) 4.5 OUTPUT VOLTAGE (V) SUPPLY CURRENT (A) 39 0 0 Short Circuit Current (source) vs. Temperature SHORT CIRCUIT CURRENT (mA) Supply Current vs. Temperature 4 3.5 3 2.5 VCC = 5V 2 1.5 1 0.5 0 V = 2.7V -0.5 CC 0.1 1 10 100 1000 10000 RESISTIVE LOAD (k) MIC860 MIC860 Micrel Output Voltage Swing vs. Resistive Load (sourcing) Open Loop Gain vs. Resistive Load 4.5 VCC = 5V 3.5 2.5 VCC = 2.7V 1.5 0.5 -0.5 0.1 MIC860 100 1 10 100 1000 10000 RESISTIVE LOAD (k) OPEN LOOP GAIN (dB) OUTPUT VOLTAGE (V) 5.5 VCC = 5.0V VCC = 2.7V 80 60 1 10 100 1000 10000 RESISTIVE LOAD (k) 6 January 22, 2002 MIC860 Micrel Functional Characteristics 180 135 20 10 90 45 10 5 90 45 10 5 90 45 0 -10 0 -45 0 -5 0 -45 0 -5 0 -45 1x107 2x107 1x106 1x105 1x104 -180 -225 1x107 2x107 1x106 1x105 1x104 1x107 2x107 2 VCC = 2.7V 1.5 Note: To drive capacitive load, 1 a 500 series resistor would 0.5 help stablize the circuit 0 1 10 100 1000 CAPACITIVE LOAD (pF) PSRR (dB) 2.5 60 50 40 30 20 10 VCC = 2.7V 0 1x106 0 -45 70 3 1x105 0 -5 80 1x104 90 45 VCC = 5.0V 1x103 10 5 -180 -225 PSRR vs. Frequency 1x102 3.5 -90 -135 90 1x101 180 135 1x100 20 15 GAIN BANDWIDTH (MHz) 4 PHASE () 225 -90 -135 -180 -225 VCC = 5V -10 R = 5k L -15 C = 2pF L -20 A = 1 V -25 Gain Bandwidth vs. Capacitve Load 25 VCC = 2.7V -10 R = 5k L -15 C = 2pF L -20 A = 1 V -25 -90 -135 1x106 1x104 1x107 2x107 -180 -225 VCC = 5V -10 A = 2 V -15 C = 2pF L -20 R = 5k L -25 1x105 -90 -135 1x106 1x105 VCC = 5V -20 A = 10 V -30 R = 1M L -40 C = 2pF L -50 PHASE () 225 20 15 GAIN (dB) 25 180 135 PHASE () 225 20 15 GAIN (dB) 25 180 135 PHASE () 225 40 30 Unity Gain Frequency Response GAIN (dB) Unity Gain Frequency Response Gain Frequency Response 50 1x104 GAIN (dB) Gain Bandwidth and Phase Margin FREQUENCY (Hz) PSRR vs. Frequency 90 80 PSRR (dB) 70 60 50 40 30 20 1x106 1x105 1x104 1x103 1x102 1x100 0 1x101 10 VCC = 5V FREQUENCY (Hz) January 22, 2002 7 MIC860 MIC860 Micrel Small Signal Response Test Circuit 3: AV = 1 Small Signal Response Test Circuit 3: AV = 1 AV = 1 V+ = 5V CL = 2 pF RL = 5k OUTPUT 50mV/div OUTPUT 50mV/div AV = 1 V+ = 2.7V CL = 2 pF RL = 5k TIME 500ns/div TIME 500ns/div Small Signal Response Test Circuit 3: AV = 1 Small Signal Response Test Circuit 3: AV = 1 AV = 1 V+ = 2.7V CL = 50pF RL = 5k OUTPUT 50mV/div OUTPUT 50mV/div AV = 1 V+ = 5V CL = 50pF RL = 5k TIME 500ns/div TIME 500ns/div Smal Signal Response Test Circuit 3: AV = 1 Smal Signal Response Test Circuit 3: AV = 1 AV = 1 V+ = 5V CL = 50pF RL = 500 OUTPUT 50mV/div OUTPUT 50mV/div AV = 1 V+ = 2.7V CL = 50pF RL = 500 TIME 500ns/div MIC860 TIME 500ns/div 8 January 22, 2002 MIC860 Micrel Smal Signal Response Test Circuit 3: AV = 1 OUTPUT 50mV/div AV = 1 V+ = 2.7V CL = 2pF RL = 1M V+ RL V-- CL TIME 500ns/div Small Signal Response Test Circuit 4: AV = --1 Small Signal Response Test Circuit 4: AV = --1 AV = --1 V+= 5V CL = 2pF RL = 1M OUTPUT 50mV/div OUTPUT 50mV/div AV = --1 V+= 2.7V CL = 2pF RL = 1M TIME 500ns/div TIME 500ns/div Small Signal Response Test Circuit 4: AV = --1 Small Signal Response Test Circuit 4: AV = -1 AV = -1 V+= 5V CL = 2pF RL = 5k OUTPUT 50mV/div OUTPUT 50mV/div AV = --1 V+= 2.7V CL = 2pF RL = 5k TIME 500ns/div TIME 500ns/div January 22, 2002 9 MIC860 MIC860 Micrel Rail to Rail Output Operation Test Circuit 2: AV = 2 Rail to Rail Output Operation Test Circuit 2: AV = 2 VP-P = 2.7V OUTPUT 1V/div OUTPUT 2V/div VP-P = 5V AV = 2 V+ = 2.7V CL = 2pF RL = 1M AV = 2 V+ = 5V CL = 2pF RL = 1M TIME 250s/div TIME 250s/div Rail to Rail Output Operation Test Circuit 2: AV = 2 Rail to Rail Output Operation Test Circuit 2: AV = 2 VP-P = 2.7V OUTPUT 2V/div OUTPUT 1V/div VP-P = 5V AV = 2 V+ = 2.7V CL = 2pF RL = 5k AV = 2 V+ = 5V CL = 2pF RL = 5k TIME 250s/div TIME 250s/div Rail to Rail Output Operation Test Circuit 2: AV = 2 Large Signal Pulse Response Test Circuit 3: AV = 1 AV = 1 CL = 2pF RL = 5k VCC = 5V VP-P = 2.7V OUTPUT 50mV/div OUTPUT 1V/div V=2.84V t = 700ns AV = 2 V+ = 2.7V CL = 2pF RL = 1M Rise Slew Rate = 4.1V/s Fall Slew Rate = 2.9V/s TIME 250s/div MIC860 TIME 5s/div 10 January 22, 2002 MIC860 Micrel Large Signal Pulse Response Test Circuit 3: AV = 1 OUTPUT 50mV/div AV = 1 CL = 50pF RL = 5k VCC = 2.7V V=730mV t = 300ns Rise Slew Rate = 2.4V/s Fall Slew Rate = 4.7V/s TIME 5s/div January 22, 2002 11 MIC860 MIC860 Micrel Applications Information Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10F capacitor in parallel with a 0.1F capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. Supply and Loading Considerations The MIC860 is intended for single supply applications configured with a grounded load. It is not advisable to operate the MIC860 with either: 1). A grounded load and split supplies (+/-V) or 2). A single supply where the load is terminated above ground. Under the above conditions, if the load is less than 20kOhm and the output swing is greater than 1V(peak), there may be some instability when the output is sinking current. MIC860 12 January 22, 2002 MIC860 Micrel Package Information 0.65 (0.0256) BSC 1.35 (0.053) 2.40 (0.094) 1.15 (0.045) 1.80 (0.071) 2.20 (0.087) 1.80 (0.071) DIMENSIONS: MM (INCH) 1.00 (0.039) 1.10 (0.043) 0.80 (0.032) 0.80 (0.032) 0.10 (0.004) 0.00 (0.000) 0.30 (0.012) 0.15 (0.006) 0.18 (0.007) 0.10 (0.004) 0.30 (0.012) 0.10 (0.004) SC70-5 MICREL INC. 1849 FORTUNE DRIVE TEL + 1 (408) 944-0800 FAX SAN JOSE, CA 95131 + 1 (408) 944-0970 WEB USA http://www.micrel.com This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. (c) 2002 Micrel Incorporated January 22, 2002 13 MIC860