VISHAY
4N35/ 4N36/ 4N37/ 4N38
Document Number 83717
Rev. 1.3, 03-Dec-03
Vishay Semiconductors
www.vishay.com
1
i179004i179004
1
2
3
6
5
4
B
C
E
A
C
NC
Optocoupler, Phototransistor Output, With Base Connection
Features
Isolation Test Voltage 5300 VRMS
Interfaces with common logic families
Input-output coupling capacitance < 0.5 pF
Industry Standard Dual-in line 6-pin package
Agency Approvals
Underwriters Laboratory File #E52744
DIN EN 60747-5-2(VDE0884)
DIN EN 60747-5-5 pending
Available with Option 1
Applications
AC mains detection
Reed relay driving
Switch mode power supply feedback
Telephone ring detection
Logic gr oun d isol ation
Logic coupling with high frequency noise rejection
Description
This data sheet presents fi ve families of Vishay Indus-
try Standard Single Channel Phototransistor Cou-
plers.These families include the 4N35/ 4N36/ 4N37/
4N38 co upl er s.
Each optocoupler consists of gallium arsenide infra-
red LED and a silicon NPN phototransistor.
These couplers are Underwriters Laboratories (UL)
listed to compl y with a 5300 VRMS is olation test vo lt-
age.
This isolation performance is accomplished through
Vishay double molding isolation manufacturing pro-
cess. Comliance to DIN EN 60747-5-2(VDE0884)/
DIN EN 60747-5-5 pending partial discharge isolation
specification is available for these families by ordering
option 1.
These isolation processes and the Vishay ISO9001
quality program results in the highest isolation perfor-
mance available for a commecial plastic phototransis-
tor optocoupler.
The devices are available in lead formed configura-
tion suitable for surface mounting and are available
either on tape and reel, or in standard tube shipping
containers.
Note:
Designing with data sheet is cover in Application Note 45
Order Information
For additional option information and package dimensions see
Option Section.
Part Remarks
4N35 CTR > 100 %, DIP-6
4N36 CTR > 100 %, DIP-6
4N37 CTR > 100 %, DIP-6
4N38 CTR > 20 %, DIP-6
4N35-Xxx6 CTR > 100 %, DIP-6 400 mil (option 6)
4N35-Xxx7 CTR > 100 %, SMD-6 (option 7)
4N35-Xxx9 CTR > 100 %, SMD-6 (option 9)
4N36-Xxx7 CTR > 100 %, SMD-6 (option 7)
4N36-Xxx9 CTR > 100 %, SMD-6 (option 9)
4N37-Xxx6 CTR > 100 %, DIP-6 400 mil (option 6)
4N37-Xxx9 CTR > 100 %, SMD-6 (option 9)
www.vishay.com
2Document Number 83717
Rev. 1.3, 03-Dec-03
VISHAY
4N35/ 4N36/ 4N37/ 4N38
Vishay Semiconductors
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Stresses in exces s of the absolute M aximum Rat ings can cause perm anent damage to the device. Functional operation of the devic e is
not implied at these or any other conditions in excess of those given in the operational sections of this document . Exposure to absolute
Maximum Rating for extended periods of the time can adversely affect reliability.
Input
Output
Coupler
Parameter Test condition Symbol Value Unit
Reverse voltage VR6.0 V
Forward current IF60 mA
Surge current 10 µsI
FSM 2.5 A
Power dissipation Pdiss 100 mW
Parameter Test condition Symbol Value Unit
Collector-emitter breakdown
voltage VCEO 70 V
Emitter-base breakdown
voltage VEBO 7.0 V
Collector current IC50 mA
(t 1.0 ms) IC100 mA
Power dissipation Pdiss 150 mW
Parameter Test condition Symbol Value Unit
Isolation test voltage VISO 5300 VRMS
Creepage 7.0 mm
Clearance 7.0 mm
Isolation thickness between
emitter and detector 0.4 mm
Comparative tracking index per
DIN IEC 112/VDE0303,part 1 175
Isolation resistance VIO = 500 V, Tamb = 25 °C RIO 1012
VIO = 500 V, Tamb = 100 °C RIO 1011
Storage temperature Tstg - 55 to + 150 °C
Operating temperature Tamb - 55 to + 100 °C
Junction temperature Tj100 °C
Soldering temperature max. 10 s dip soldering:
distance to seating plane
1.5 mm
Tsld 260 °C
VISHAY
4N35/ 4N36/ 4N37/ 4N38
Document Number 83717
Rev. 1.3, 03-Dec-03
Vishay Semiconductors
www.vishay.com
3
Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.
Input
1) Indicates JEDEC registered value
Output
1) Indicates JEDEC registered value
Coupler
1) Indicates JEDEC registered value
Parameter Test condition Symbol Min Typ. Max Unit
Forward voltage1) IF = 10 mA VF1.3 1.5 V
IF = 10 mA, Tamb = - 55 °C VF0.9 1.3 1.7 V
Reverse current1) VR = 6.0 V IR0.1 10 µA
Capacitance VR = 0, f = 1.0 MHz CO25 pF
Parameter Test condition Part Symbol Min Typ. Max Unit
Collector-emitter breakdown
voltage1) IC = 1.0 mA 4N35 BVCEO 30 V
4N36 BVCEO 30 V
4N37 BVCEO 30 V
4N38 BVCEO 80 V
Emitter-collector breakdown
voltage1) IE = 100 µABV
ECO 7.0 V
Collector-base breakdown
voltage1) IC = 100 µA, IB = 1.0 µA4N35BV
CBO 70 V
4N36 BVCBO 70 V
4N37 BVCBO 70 V
4N38 BVCBO 80 V
Collector-emitter leakage
current1) VCE = 10 V, IF = 0 4N35 ICEO 5.0 50 nA
4N36 ICEO 5.0 50 nA
VCE = 10 V, IF=0 4N37 ICEO 5.0 50 nA
VCE = 60 V, IF = 0 4N38 ICEO 50 nA
VCE = 30 V, IF = 0, Tamb = 100 °C 4N35 ICEO 500 µA
4N36 ICEO 500 µA
4N37 ICEO 500 µA
VCE = 60 V, IF = 0, Tamb = 100 °C 4N38 ICEO 6.0 µA
Collector-emitter capacitance VCE = 0 CCE 6.0 pF
Parameter Test condition Symbol Min Typ. Max Unit
Resistance, input to output1) VIO = 500 V RIO 1011
Capacitance (input-output) f = 1.0 MHz CIO 0.5 pF
www.vishay.com
4Document Number 83717
Rev. 1.3, 03-Dec-03
VISHAY
4N35/ 4N36/ 4N37/ 4N38
Vishay Semiconductors
Current Transfer Ratio
1) Indicates JEDEC registered value
Switching Characterist ics
1) Indicates JEDEC registered value
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
Parameter Test condition Part Symbol Min Typ. Max Unit
DC Current Transfer Ratio1) VCE = 10 V, IF = 10 mA 4N35 CTRDC 100 %
4N36 CTRDC 100 %
4N37 CTRDC 100 %
VCE = 10 V, IF = 20 mA 4N38 CTRDC 20 %
VCE = 10 V, IF = 10 mA,
TA = - 55 to + 100 °C 4N35 CTRDC 40 50 %
4N36 CTRDC 40 50 %
4N37 CTRDC 40 50 %
4N38 CTRDC 30 %
Parameter Test condition Symbol Min Typ. Max Unit
Switching time1) IC = 2 mA, RL = 100 , VCC = 10 V ton, toff 10 µs
Figure 1. Forward Voltage vs. Forward Current
i4n25_01
100101.1
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
I
F
- Forward Current - mA
V
F
- Forward Voltage - V
T
A
=–55°C
T
A
=25°C
T
A
=85°C
Figure 2. Normalized Non-saturated and Saturated CTR vs. LED
Current
i4n25_02
Normalized to:
0.0
0.5
1.0
1.5
0 1 10 100
I
F
- LED Current - mA
NCTR
NCTR(SAT)
NCTR - Normlized CTR
CTRce(sat) Vce=0.4 V
Vce=10 V, I
F
=10 mA, T
A
=25°C
T
A
=25°C
VISHAY
4N35/ 4N36/ 4N37/ 4N38
Document Number 83717
Rev. 1.3, 03-Dec-03
Vishay Semiconductors
www.vishay.com
5
Figure 3. Normalized Non-saturated and Saturated CTR vs. LED
Current
Figure 4. Normalized Non-saturated and saturated CTR vs. LED
Current
Figure 5. Normalized Non-saturated and saturated CTR vs. LED
Current
i4n25_03
100101.1
0.0
0.5
1.0
1.5
I
F
- LED Current - mA
NCTR - Normalized CTR
Normalized to:
CTRce(sat) Vce=0.4 V
Vce=10 V, I
F
=10 mA, T
A
=25°C
NCTR
NCTR(SAT)
T
A
=50°C
i4n25_04
100101.1
0.0
0.5
1.0
1.5
I
F
- LED Current - mA
NCTR - Normalized CTR
Normalized to:
CTRce(sat) Vce=0.4 V
Vce=10 V, I
F
=10 mA, T
A
=25°C
NCTR
NCTR(SAT)
T
A
=70°C
i4n25_05
100101.1
0.0
0.5
1.0
1.5
I
F
- LED Current - mA
NCTR - Normalized CTR
Normalized to:
CTRce(sat) Vce = 0.4 V
Vce=10 V, I
F
=10 mA, T
A
=25°C
NCTR
NCTR(SAT)
T
A
=85°C
Figure 6. Collector-Emitter Current vs. Temperature and LED
Current
Figure 7. Collector-Emitter Leakage Current vs.Temp.
Figure 8. Normalized CT Rcb vs. LED Current and Temp.
i4n25_06
6050403020100
0
5
10
15
20
25
30
35
50°C
70°C
85°C
I
F
- LED Current - mA
Ice - Collector Current - mA
25°C
i4n25_07
100806040200–20
10
10
10
10
10
10
10
10
–2
–1
0
1
2
3
4
5
T
A
- Ambient Temperature - °C
Iceo - Collector-Emitter - nA
Typical
V
ce
=10V
i4n25_08
Normalized to:
0.0
0.5
1.0
1.5
25°C
50°C
70°C
I
F
- LED Current - mA
NCTRcb - Normalized CTRcb
.1 1 10 100
Vcb=9.3 V, I
F
=10 mA, T
A
=25°C
www.vishay.com
6Document Number 83717
Rev. 1.3, 03-Dec-03
VISHAY
4N35/ 4N36/ 4N37/ 4N38
Vishay Semiconductors
Figure 9. Normalized Photocurrent vs. IF and Temp.
Figure 10. Normalized Non-saturated HFE vs. Base Curr ent and
Temperature
Figure 11. Normalized HFE vs. Base Current and Temp.
i4n25_09
0.
Normalized to:
0.01
1
1
10
IF- LED Current - mA
Normalized Photocurrent
.1 1 10 100
I
F
=10 mA, T
A
=25°C
Nib,
T
A
=–20°C
Nib,
T
A
= 25°C
Nib,
T
A
= 50°C
Nib,
T
A
= 70°C
i4n25_10
0.4
0.6
1.0
1.2
Normalized to:
Ib - Base Current - µA
1101001000
Ib=20 µA, Vce=10 V, TA=25°C
25°C
70°C
–20°C
NHFE - Normalized HFE
0.8
i4n25_11
0.0
0.5
1.0
1.5
25°C
–20°C
50°C
70°C
NHFE(sat) - Normalized Saturated HFE
1 10 100 1000
Vce=10 V, Ib=20 µA
TA=25°C
Vce=0.4 V
Ib - Base Current -
µA
Normalized to:
Figure 12. Propagation Delay vs. Collector Load Resistor
Figure 13. Switching Timing
Figure 14 . Switching Schematic
i4n25_12
1
10
100
1000
RL - Collector Load Resistor - k
tPLH - Propagation Delay - µs
2.5
2.0
1.5
1.0
.1 1 10 100
IF=10 mA,TA=25°C
VCC=5.0 V, Vth=1.5 V
tPLH
tPHL
tPHL - Propagation Delay - µs
i4n25_13
I
F
tR
=1.5 V
V
O
tD
tStF
tPHL
tPLH
VTH
i4n25_14
V
CC =5.0V
F=10 KHz,
DF=50%
RL
VO
IF=1 0 mA
VISHAY
4N35/ 4N36/ 4N37/ 4N38
Document Number 83717
Rev. 1.3, 03-Dec-03
Vishay Semiconductors
www.vishay.com
7
Package Dimensions in Inches (mm)
i178004
.010 (.25)
typ.
.114 (2.90)
.130 (3.0)
.130 (3.30)
.150 (3.81)
.031 (0.80) min.
.300 (7.62)
typ.
.031 (0.80)
.035 (0.90)
.100 (2.54) typ.
.039
(1.00)
Min.
.018 (0.45)
.022 (0.55)
.048 (0.45)
.022 (0.55)
.248 (6.30)
.256 (6.50)
.335 (8.50)
.343 (8.70)
pin one ID
6
5
4
12
3
18°
3°–9°
.300–.347
(7.62–8.81)
typ.
ISO Method A
min.
.315 (8.00)
.020 (.51)
.040 (1.02)
.300 (7.62)
ref.
.375 (9.53)
.395 (10.03)
.012 (.30) typ.
.0040 (.102)
.0098 (.249)
15° max.
Option 9
.014 (0.35)
.010 (0.25)
.400 (10.16)
.430 (10.92)
.307 (7.8)
.291 (7.4)
.407 (10.36)
.391 (9.96)
Option 6
.315 (8.0)
MIN.
.300 (7.62)
TYP.
.180 (4.6)
.160 (4.1)
.331 (8.4)
MIN.
.406 (10.3)
MAX.
.028 (0.7)
MIN.
Option 7
18450
www.vishay.com
8Document Number 83717
Rev. 1.3, 03-Dec-03
VISHAY
4N35/ 4N36/ 4N37/ 4N38
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the
use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423