DS122 (v1.1) January 7, 2004 www.xilinx.com 1
Product Specification 1-800-255-7778
© 2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
Summary of QPro™ Virtex™-II Features
Industry First Military Grade Platform FPGA Solution
Certified to MIL-PRF-38535 (Qualified Manufacturer
Listing)
100% Factory Tested
Guaranteed over the full military temperature range
(–55°C to +125°C)
Ceramic and Plastic Wire-Bond and Flip-Chip Grid
Array Packages
IP-Immersion Architecture
- Densities from 1M to 6M system gates
- 300+ MHz internal clock speed (Advance Data)
- 622+ Mb/s I/O (Advance Data)
SelectRAM™ Memory Hierarchy
- 2.5 Mb of dual-port RAM in 18 Kbit block
SelectRAM resources
- Up to 1 Mb of distributed SelectRAM resources
High-Performance Interfaces to External Memory
- DRAM interfaces
· SDR/DDR SDRAM
·Network FCRAM
· Reduced Latency DRAM
- SRAM interfaces
· SDR/DDR SRAM
· QDR SRAM
- CAM interfaces
Arithmetic Functions
- Dedicated 18-bit x 18-bit multiplier blocks
- Fast look-ahead carry logic chains
Flexible Logic Resources
- Up to 67,584 internal registers/latches with Clock
Enable
- Up to 67,584 look-up tables (LUTs) or cascadable
16-bit shift registers
- Wide multiplexers and wide-input function support
- Horizontal cascade chain and sum-of-products
support
- Internal 3-state busing
High-Performance Clock Management Circuitry
- Up to 12 DCM (Digital Clock Manager) modules
· Precise clock de-skew
· Flexible frequency synthesis
· High-resolution phase shifting
- 16 global clock multiplexer buffers
Active Interconnect Technology
- Fourth generation segmented routing structure
- Predictable, fast routing delay, independent of
fanout
SelectIO™-Ultra Technology
- Up to 824 user I/Os
- 19 single-ended and six differential standards
- Programmable sink current (2 mA to 24 mA) per
I/O
- Digitally Controlled Impedance (DCI) I/O: on-chip
termination resistors for single-ended I/O standards
- PCI compliant (32/33 MHz) at 3.3V
- Differential Signaling
· 622 Mb/s Low-Voltage Differential Signaling I/O
(LVDS) with current mode drivers
· Bus LVDS I/O
· Lightning Data Transport (LDT) I/O with current
driver buffers
· Low-Voltage Positive Emitter-Coupled Logic
(LVPECL) I/O
· Built-in DDR input and output registers
- Proprietary high-performance SelectLink
Technology
· High-bandwidth data path
· Double Data Rate (DDR) link
· Web-based HDL generation methodology
Supported by Xilinx Foundation Series™ and Alliance
Series™ Development Systems
- Integrated VHDL and Verilog design flows
- Compilation of 10M system gates designs
- Internet Team Design (ITD) tool
SRAM-Based In-System Configuration
- Fast SelectMAP configuration
- Triple Data Encryption Standard (DES) security
option (Bitstream Encryption)
- IEEE 1532 support
- Partial reconfiguration
- Unlimited reprogrammability
- Readback capability
0.15 µm 8-Layer Metal Process with 0.12 µm
High-Speed Transistors
•1.5V (V
CCINT) Core Power Supply, Dedicated 3.3V
VCCAUX Auxiliary and VCCO I/O Power Supplies
IEEE 1149.1 Compatible Boundary-Scan Logic
Support
0
QPro Virtex-II 1.5V Military QML
Platform FPGAs
DS122 (v1.1) January 7, 2004 00Product Specification
R
ds122_1_1.fm Page 1 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
2www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
General Description
The Virtex-II family includes platform FPGAs developed for
high performance from low-density to high-density designs
that are based on IP cores and customized modules. The
family delivers complete solutions for telecommunication,
wireless, networking, video, and DSP applications, includ-
ing PCI, LVDS, and DDR interfaces.
The leading-edge 0.15 µm/0.12 µm CMOS 8-layer metal
process and the Virtex-II architecture are optimized for high
speed with low power consumption. Combining a wide vari-
ety of flexible features and a large range of densities up to
8 million system gates, the Virtex-II family enhances pro-
grammable logic design capabilities and is a powerful alter-
native to mask-programmed gates arrays. As shown in
Ta b l e 1 , the QPro Virtex-II family comprises three members,
ranging from 1M to 6M system gates.
Packaging
Offerings include ball grid array (BGA) packages with
1.00 mm and 1.27 mm pitches. In addition to traditional
wire-bond interconnects, flip-chip interconnect is used in
some of the CGA offerings. The use of flip-chip interconnect
offers more I/Os than is possible in wire-bond versions of
the similar packages. Flip-chip construction offers the com-
bination of high pin count with high thermal capacity.
Table 2 shows the maximum number of user I/Os available.
The Virtex-II device/package combination table (Ta bl e 5 on
page 5) details the maximum number of I/Os for each
device and package using wire-bond or flip-chip technology.
Architecture
Virtex-II Array Overview
Virtex-II devices are user-programmable gate arrays with
various configurable elements. The Virtex-II architecture is
optimized for high-density and high-performance logic
designs. As shown in Figure 1, the programmable device is
comprised of input/output blocks (IOBs) and internal config-
urable logic blocks (CLBs).
Programmable I/O blocks provide the interface between
package pins and the internal configurable logic. Most
popular and leading-edge I/O standards are supported by
the programmable IOBs.
Table 1: Virtex-II Field-Programmable Gate Array Family Members
Device
System
Gates
CLB
(1 CLB = 4 slices = Max 128 bits)
Multiplier
Blocks
SelectRAM Blocks
DCMs
Max I/O
Pads(1)
Array
Row x Col. Slices
Maximum
Distributed
RAM Kbits
18 Kbit
Blocks
Max RAM
(Kbits)
XQ2V1000 1M 40 x 32 5,120 160 40 40 720 8 432
XQ2V3000 3M 64 x 56 14,336 448 96 96 1,728 12 720
XQ2V6000 6M 96 x 88 33,792 1,056 144 144 2,592 12 1,104
Notes:
1. See details in Ta b l e 2 , "Maximum Number of User I/O Pads".
Table 2: Maximum Number of User I/O Pads
Device Wire-Bond Flip-Chip
XQ2V1000 328 -
XQ2V3000 516 -
XQ2V6000 - 824
ds122_1_1.fm Page 2 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 3
Product Specification 1-800-255-7778
R
The internal configurable logic includes four major elements
organized in a regular array:
Configurable Logic Blocks (CLBs) provide functional
elements for combinatorial and synchronous logic,
including basic storage elements. BUFTs (3-state
buffers) associated with each CLB element drive
dedicated segmentable horizontal routing resources.
Block SelectRAM memory modules provide large
18 Kbit storage elements of dual-port RAM.
Multiplier blocks are 18-bit x 18-bit dedicated
multipliers.
DCM (Digital Clock Manager) blocks provide
self-calibrating, fully digital solutions for clock
distribution delay compensation, clock multiplication
and division, coarse- and fine-grained clock phase
shifting.
A new generation of programmable routing resources called
Active Interconnect Technology interconnects all of these
elements. The general routing matrix (GRM) is an array of
routing switches. Each programmable element is tied to a
switch matrix, allowing multiple connections to the general
routing matrix. The overall programmable interconnection is
hierarchical and designed to support high-speed designs.
All programmable elements, including the routing
resources, are controlled by values stored in static memory
cells. These values are loaded in the memory cells during
configuration and can be reloaded to change the functions
of the programmable elements.
Virtex-II Features
This section briefly describes Virtex-II features.
Input/Output Blocks (IOBs)
IOBs are programmable and can be categorized as follows:
Input block with an optional single-data-rate or
double-data-rate (DDR) register
Output block with an optional single-data-rate or DDR
register, and an optional 3-state buffer, to be driven
directly or through a single or DDR register
Bidirectional block (any combination of input and output
configurations)
These registers are either edge-triggered D-type flip-flops
or level-sensitive latches.
IOBs support the following single-ended I/O standards:
LVTTL, LVCMOS (3.3V, 2.5V, 1.8V, and 1.5V)
PCI compatible (33 MHz) at 3.3V
CardBus compliant (33 MHz) at 3.3V
GTL and GTLP
HSTL (Class I, II, III, and IV)
SSTL (3.3V and 2.5V, Class I and II)
•AGP-2X
The digitally controlled impedance (DCI) I/O feature auto-
matically provides on-chip termination for each I/O element.
The IOB elements also support the following differential sig-
naling I/O standards:
•LVDS
•BLVDS (Bus LVDS)
•ULVDS
•LDT
LVPECL
Two adjacent pads are used for each differential pair. Two or
four IOB blocks connect to one switch matrix to access the
routing resources.
Figure 1: Virtex-II Architecture Overview
Global Clock Mux
DCM DCM IOB
CLB
Programmable I/Os
Block SelectRAM Multiplier
Configurable Logic
DS031_28_100900
ds122_1_1.fm Page 3 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
4www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Configurable Logic Blocks (CLBs)
CLB resources include four slices and two 3-state buffers.
Each slice is equivalent and contains:
Two function generators (F and G)
Two storage elements
Arithmetic logic gates
Large multiplexers
Wide function capability
Fast carry look-ahead chain
Horizontal cascade chain (OR gate)
The function generators F and G are configurable as 4-input
look-up tables (LUTs), as 16-bit shift registers, or as 16-bit
distributed SelectRAM memory.
In addition, the two storage elements are either edge-trig-
gered D-type flip-flops or level-sensitive latches.
Each CLB has internal fast interconnect and connects to a
switch matrix to access general routing resources.
Block SelectRAM Memory
The block SelectRAM memory resources are 18 Kb of
dual-port RAM, programmable from 16K x 1 bit to 512 x 36
bits, in various depth and width configurations. Each port is
totally synchronous and independent, offering three
"read-during-write" modes. Block SelectRAM memory is
cascadable to implement large embedded storage blocks.
Supported memory configurations for dual-port and sin-
gle-port modes are shown in Table 3.
A multiplier block is associated with each SelectRAM mem-
ory block. The multiplier block is a dedicated 18 x 18-bit
multiplier and is optimized for operations based on the block
SelectRAM content on one port. The 18 x 18 multiplier can
be used independently of the block SelectRAM resource.
Read/multiply/accumulate operations and DSP filter struc-
tures are extremely efficient.
Both the SelectRAM memory and the multiplier resource
are connected to four switch matrices to access the general
routing resources.
Global Clocking
The DCM and global clock multiplexer buffers provide a
complete solution for designing high-speed clocking
schemes.
Up to 12 DCM blocks are available. To generate de-skewed
internal or external clocks, each DCM can be used to elimi-
nate clock distribution delay. The DCM also provides 90-,
180-, and 270-degree phase-shifted versions of its output
clocks. Fine-grained phase shifting offers high-resolution
phase adjustments in increments of 1/256 of the clock
period. Very flexible frequency synthesis provides a clock
output frequency equal to any M/D ratio of the input clock
frequency, where M and D are two integers. For the exact
timing parameters, see QPro Virtex-II Switching Charac-
teristics, page 51.
Virtex-II devices have 16 global clock MUX buffers with up
to eight clock nets per quadrant. Each global clock MUX
buffer can select one of the two clock inputs and switch
glitch-free from one clock to the other. Each DCM block is
able to drive up to four of the 16 global clock MUX buffers.
Routing Resources
The IOB, CLB, block SelectRAM, multiplier, and DCM ele-
ments all use the same interconnect scheme and the same
access to the global routing matrix. Timing models are
shared, greatly improving the predictability of the perfor-
mance of high-speed designs.
There are a total of 16 global clock lines with eight available
per quadrant. In addition, 24 vertical and horizontal long
lines per row or column as well as massive secondary and
local routing resources provide fast interconnect. Virtex-II
buffered interconnects are relatively unaffected by net
fanout, and the interconnect layout is designed to minimize
crosstalk.
Horizontal and vertical routing resources for each row or
column include:
24 long lines
120 hex lines
40 double lines
16 direct connect lines (total in all four directions)
Boundary Scan
Boundary-scan instructions and associated data registers
support a standard methodology for accessing and config-
uring Virtex-II devices that complies with IEEE standards
1149.1 — 1993 and 1532. A system mode and a test mode
are implemented. In system mode, a Virtex-II device per-
forms its intended mission even while executing non-test
boundary-scan instructions. In test mode, boundary-scan
test instructions control the I/O pins for testing purposes.
The Virtex-II Test Access Port (TAP) supports BYPASS,
PRELOAD, SAMPLE, IDCODE, and USERCODE non-test
instructions. The EXTEST, INTEST, and HIGHZ test instruc-
tions are also supported.
Table 3: Dual-Port And Single-Port Configurations
16K x 1 bit 2K x 9 bits
8K x 2 bits 1K x 18 bits
4K x 4 bits 512 x 36 bits
ds122_1_1.fm Page 4 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 5
Product Specification 1-800-255-7778
R
Virtex-II Device/Package Combinations and Maximum I/O
Wire-bond and flip-chip packages are available. Tabl e 4
shows the maximum possible number of user I/Os in
wire-bond and flip-chip packages. Tabl e 5 shows the num-
ber of available user I/Os for all device/package combina-
tions.
FG denotes wire-bond fine-pitch Plastic BGA (1.00 mm
pitch).
BG denotes wire-bond standard Plastic BGA (1.27 mm
pitch).
CG denotes wire-bond fine-pitch Hermetic Ceramic
Column Grid Array (1.27 mm pitch).
CF denotes flip-chip fine-pitch non-Hermetic Ceramic
Column Grid Array (1.00 mm pitch).
The number of I/Os per package include all user I/Os except
the 15 control pins (CCLK, DONE, M0, M1, M2, PROG_B,
PWRDWN_B, TCK, TDI, TDO, TMS, HSWAP_EN, DXN,
DXP, and RSVD) and VBATT.
Table 4: Package Information
Package FG456 BG575 BG728 & CG717 CF1144
Pitch (mm) 1.00 1.27 1.27 1.00
Size (mm) 23 x 23 31 x 31 35 x 35 35 x 35
Table 5: Virtex-II Device/Package Combinations and Maximum Number of Available I/Os
Package
Available I/Os
XQ2V1000 XQ2V3000 XQ2V6000
FG456 324 - -
BG575 328 - -
BG728 - 516 -
CG717 - 516 -
CF1144 - - 824
Notes:
1. The BG728 and CG717 packages are pinout (footprint) compatible.
2. The CF1144 is pinout (footprint) compatible with the FF1152.
ds122_1_1.fm Page 5 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
6www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Virtex-II Ordering Information
XQ2V3000 -4 CG 717 M
Example:
Temperature Range/Grade
Number of Pins
Package Type
Device Type
Speed Grade(1)
Device Ordering Options
Device
Type Package Grade Temperature
XQ2V1000 FG456 456-ball Plastic Fine Pitch BGA
Package
M Military
Ceramic
TC = –55°C to
+125°C
XQ2V3000 BG575 575-ball Plastic BGA Package N Military Plastic TJ = –55°C to
+125°C
XQ2V6000 BG728 728-ball Plastic BGA Package
CG717 717-column Ceramic CGA Package
CF1144 1144-column Ceramic Flip-Chip
Package
Notes:
1. -4 only supported speed grade.
Valid Ordering Combinations
M Grade N Grade
XQ2V3000-4CG717M XQ2V1000-4FG456N
XQ2V6000-4CF1144M(1) XQ2V1000-4BG575N
XQ2V3000-4BG728N
Notes:
1. CF1144 is non-Hermetic Ceramic.
ds122_1_1.fm Page 6 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 7
Product Specification 1-800-255-7778
R
Detailed Description
Input/Output Blocks (IOBs)
Virtex-II I/O blocks (IOBs) are provided in groups of two or
four on the perimeter of each device. Each IOB can be used
as an input and/or an output for single-ended I/Os. Two
IOBs can be used as a differential pair. A differential pair is
always connected to the same switch matrix, as shown in
Figure 2.
IOB blocks are designed for high-performance I/Os, sup-
porting 19 single-ended standards, as well as differential
signaling with LVDS, LDT, Bus LVDS, and LVPECL.
Note: Differential I/Os must use the same clock.
Supported I/O Standards
Virtex-II IOB blocks feature SelectI/O-Ultra inputs and out-
puts that support a wide variety of I/O signaling standards.
In addition to the internal supply voltage (VCCINT =1.5V),
output driver supply voltage (VCCO) is dependent on the I/O
standard (see Ta b l e 6 ). An auxiliary supply voltage
(VCCAUX = 3.3 V) is required, regardless of the I/O stan-
dard used. For exact supply voltage absolute maximum rat-
ings, see DC Input and Output Levels.
Figure 2: Virtex-II Input/Output Tile
IOB
PAD4
IOB
PAD3
Differential Pair
IOB
PAD2
IOB
PAD1
Differential Pair
Switch
Matrix
DS031_30_101600
Table 6: Supported Single-Ended I/O Standards
I/O
Standard
Output
VCCO
Input
VCCO
Input
VREF
Board
Termination
Voltage (VTT)
LV T T L 3 . 3 3 .3 N / A N / A
LVCMOS33 3.3 3.3 N/A N/A
LVCMOS25 2.5 2.5 N/A N/A
LVCMOS18 1.8 1.8 N/A N/A
LVCMOS15 1.5 1.5 N/A N/A
PCI33_3 3.3 3.3 N/A N/A
PCI66_3 3.3 3.3 N/A N/A
PCI-X 3.3 3.3 N/A N/A
GTL Note 1 Note 1 0.8 1.2
GTLP Note 1 Note 1 1.0 1.5
HSTL_I 1.5 N/A 0.75 0.75
HSTL_II 1.5 N/A 0.75 0.75
HSTL_III 1.5 N/A 0.9 1.5
HSTL_IV 1.5 N/A 0.9 1.5
HSTL_I 1.8 N/A 0.9 0.9
HSTL_II 1.8 N/A 0.9 0.9
HSTL_III 1.8 N/A 1.1 1.8
HSTL_IV 1.8 N/A 1.1 1.8
SSTL2_I 2.5 N/A 1.25 1.25
SSTL2_II 2.5 N/A 1.25 1.25
SSTL3_I 3.3 N/A 1.5 1.5
SSTL3_II 3.3 N/A 1.5 1.5
AGP-2X/AGP 3.3 N/A 1.32 N/A
Notes:
1. VCCO of GTL or GTLP should not be lower than the
termination voltage or the voltage seen at the I/O pad.
ds122_1_1.fm Page 7 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
8www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
All of the user IOBs have fixed-clamp diodes to VCCO and to
ground. As outputs, these IOBs are not compatible or com-
pliant with 5V I/O standards. As inputs, these IOBs are not
normally 5V tolerant, but can be used with 5V I/O standards
when external current-limiting resistors are used. For more
details, see the “5V Tolerant I/Os” Tech Topic at
http://www.xilinx.com.
Ta b l e 8 lists supported I/O standards with Digitally Con-
trolled Impedance. See Digitally Controlled Impedance
(DCI), page 13.
Logic Resources
IOB blocks include six storage elements, as shown in
Figure 3.
Each storage element can be configured either as an
edge-triggered D-type flip-flop or as a level-sensitive latch.
On the input, output, and 3-state path, one or two DDR reg-
isters can be used.
Double data rate is directly accomplished by the two regis-
ters on each path, clocked by the rising edges (or falling
edges) from two different clock nets. The two clock signals
are generated by the DCM and must be 180 degrees out of
phase, as shown in Figure 4. There are two input, output,
and 3-state data signals, each being alternately clocked out.
Table 7: Supported Differential Signal I/O Standards
I/O Standard
Output
VCCO
Input
VCCO
Input
VREF
Output
VOD
LVPECL_33 3.3 N/A N/A 490 mV to 1.22V
LDT_25 2.5 N/A N/A 0.430 - 0.670
LVDS_33 3.3 N/A N/A 0.250 - 0.400
LVDS_25 2.5 N/A N/A 0.250 - 0.400
LVDSEXT_33 3.3 N/A N/A 0.330 - 0.700
LVDSEXT_25 2.5 N/A N/A 0.330 - 0.700
BLVDS_25 2.5 N/A N/A 0.250 - 0.450
ULVDS_25 2.5 N/A N/A 0.430 - 0.670
Figure 3: Virtex-II IOB Block
Reg
OCK1
Reg
OCK2
Reg
ICK1
Reg
ICK2
DDR mux Input
PAD
3-State
Reg
OCK1
Reg
OCK2
DDR mux
Output
IOB
DS031_29_100900
Table 8: Supported DCI I/O Standards
I/O
Standard
Output
VCCO
Input
VCCO
Input
VREF
Termination
Type
LVDCI_33(1) 3.3 3.3 N/A Series
LVDCI_DV2_33(1) 3.3 3.3 N/A Series
LVDCI_25(1) 2.5 2.5 N/A Series
LVDCI_DV2_25(1) 2.5 2.5 N/A Series
LVDCI_18(1) 1.8 1.8 N/A Series
LVDCI_DV2_18(1) 1.8 1.8 N/A Series
LVDCI_15(1) 1.5 1.5 N/A Series
LVDCI_DV2_15(1) 1.5 1.5 N/A Series
GTL_DCI 1.2 1.2 0.8 Single
GTLP_DCI 1.5 1.5 1.0 Single
HSTL_I_DCI 1.5 1.5 0.75 Split
HSTL_II_DCI 1.5 1.5 0.75 Split
HSTL_III_DCI 1.5 1.5 0.9 Single
HSTL_IV_DCI 1.5 1.5 0.9 Single
HSTL_I_DCI 1.8 N/A 0.9 Split
HSTL_II_DCI 1.8 N/A 0.9 Split
HSTL_III_DCI 1.8 N/A 1.1 Single
HSTL_IV_DCI 1.8 N/A 1.1 Single
SSTL2_I_DCI(2) 2.5 2.5 1.25 Split
SSTL2_II_DCI(2) 2.5 2.5 1.25 Split
SSTL3_I_DCI(2) 3.3 3.3 1.5 Split
SSTL3_II_DCI(2) 3.3 3.3 1.5 Split
Notes:
1. LVDCI_XX and LVDCI_DV2_XX are LVCMOS controlled
impedance buffers, matching the reference resistors or half
of the reference resistors.
2. These are SSTL compatible.
ds122_1_1.fm Page 8 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 9
Product Specification 1-800-255-7778
R
The DDR mechanism shown in Figure 4 can be used to mir-
ror a copy of the clock on the output. This is useful for prop-
agating a clock along the data that has an identical delay. It
is also useful for multiple clock generation, where there is a
unique clock driver for every clock load. Virtex-II devices
can produce many copies of a clock with very little skew.
Each group of two registers has a clock enable signal (ICE
for the input registers, OCE for the output registers, and
TCE for the 3-state registers). The clock enable signals are
active High by default. If left unconnected, the clock enable
for that storage element defaults to the active state.
Each IOB block has common synchronous or asynchronous
set and reset (SR and REV signals).
SR forces the storage element into the state specified by the
SRHIGH or SRLOW attribute. SRHIGH forces a logic “1”.
SRLOW forces a logic “0”. When SR is used, a second input
(REV) forces the storage element into the opposite state. The
reset condition predominates over the set condition. The ini-
tial state after configuration or global initialization state is
defined by a separate INIT0 and INIT1 attribute. By default,
the SRLOW attribute forces INIT0, and the SRHIGH attribute
forces INIT1.
For each storage element, the SRHIGH, SRLOW, INIT0,
and INIT1 attributes are independent. Synchronous or
asynchronous set/reset is consistent in an IOB block.
All the control signals have independent polarities. Any
inverter placed on a control input is automatically absorbed.
Each register or latch (independent of all other registers or
latches) (see Figure 5) can be configured as follows:
No set or reset
Synchronous set
Synchronous reset
Synchronous set and reset
Asynchronous set (preset)
Asynchronous reset (clear)
Asynchronous set and reset (preset and clear)
The synchronous reset overrides a set, and an asynchro-
nous clear overrides a preset.
Figure 4: Double Data Rate Registers
D1
CLK1
DDR MUX
Q1
FDDR
D2
CLK2
(50/50 duty cycle clock)
CLOCK
QQ
Q2
D1
CLK1
DDR MUX
DCM
Q1
FDDR
D2
CLK2
Q2
180°0°
DS031_26_100900
ds122_1_1.fm Page 9 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
10 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Input/Output Individual Options
Each device pad has optional pull-up and pull-down resis-
tors in all SelectI/O-Ultra configurations. Each device pad
has an optional weak-keeper in LVTTL, LVCMOS, and PCI
SelectI/O-Ultra configurations, as illustrated in Figure 6.
Values of the optional pull-up and pull-down resistors are in
the range 10 - 60 K, which is the specification for VCCO
when operating at 3.3V (from 3.0V to 3.6V only). The clamp
diode is always present, even when power is not.
Figure 5: Register/Latch Configuration in an IOB Block
FF
LATCH
SR REV
D1 Q1
CE
CK1
FF
LATCH
SR REV
D2
FF1
FF2
DDR MUX
Q2
CE
CK2
REV
SR
(O/T) CLK1
(OQ or TQ)
(O/T) CE
(O/T) 1
(O/T) CLK2
(O/T) 2
Attribute INIT1
INIT0
SRHIGH
SRLOW
Attribute INIT1
INIT0
SRHIGH
SRLOW Reset Type
SYNC
ASYNC
DS031_25_110300
Shared
by all
registers
Figure 6: LVTTL, LVCMOS, or PCI SelectI/O-Ultra Standards
VCCO
VCCO
VCCO
Weak
Keeper
Program
Delay
OBUF
IBUF
Program Current
Clamp
Diode
10-60K
10-60K
PAD
VCCAUX = 3.3V
DS031_23_011601
VCCINT = 1.5V
ds122_1_1.fm Page 10 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 11
Product Specification 1-800-255-7778
R
The optional weak-keeper circuit is connected to each out-
put. When selected, this circuit monitors the voltage on the
pad and weakly drives the pin High or Low. If the pin is con-
nected to a multiple-source signal, the weak-keeper holds
the signal in its last state if all drivers are disabled. Maintain-
ing a valid logic level in this way eliminates bus chatter.
Pull-up or pull-down resistors override the weak-keeper cir-
cuit.
LVTTL sinks and sources current up to 24 mA. The current
is programmable for LVTTL and LVCMOS SelectI/O-Ultra
standards (see Tabl e 9 ). Drive-strength and slew-rate con-
trols for each output driver minimize bus transients. For
LVDCI and LVDCI_DV2 standards, drive strength and
slew-rate controls are not available.
Figure 7 shows the SSTL2, SSTL3, and HSTL configura-
tions. HSTL can sink current up to 48 mA. (HSTL IV)
All pads are protected against damage from electrostatic
discharge (ESD) and from over-voltage transients. Virtex-II
devices use two memory cells to control the configuration of
an I/O as an input. This is to reduce the probability of an I/O
configured as an input from flipping to an output when sub-
jected to a single event upset (SEU) in space applications.
Prior to configuration, all outputs not involved in configura-
tion are forced into their high-impedance state. The
pull-down resistors and the weak-keeper circuits are inac-
tive. The dedicated pin HSWAP_EN controls the pull-up
resistors prior to configuration. By default, HSWAP_EN is
driven High, which disables the pull-up resistors on user I/O
pins. When HSWAP_EN is driven Low, the pull-up resistors
are activated on user I/O pins.
All Virtex-II IOBs support IEEE 1149.1 compatible bound-
ary-scan testing.
Input Path
The Virtex-II IOB input path routes input signals directly to
internal logic and/or through an optional input flip-flop or
latch, or through the DDR input registers. An optional delay
element at the D-input of the storage element eliminates
pad-to-pad hold time. The delay is matched to the internal
clock-distribution delay of the Virtex-II device, and when
used, ensures that the pad-to-pad hold time is zero.
Each input buffer can be configured to conform to any of the
low-voltage signaling standards supported. In some of
these standards the input buffer utilizes a user-supplied
threshold voltage, VREF
. The need to supply VREF imposes
constraints on which standards can be used in the same
bank. See I/O Banking description below.
Output Path
The output path includes a 3-state output buffer that drives
the output signal onto the pad. The output and/or the 3-state
signal can be routed to the buffer directly from the internal
logic or through an output/3-state flip-flop or latch, or
through the DDR output/3-state registers.
Each output driver can be individually programmed for a
wide range of low-voltage signaling standards. In most sig-
naling standards, the output High voltage depends on an
externally supplied VCCO voltage. The need to supply VCCO
imposes constraints on which standards can be used in the
same bank. See I/O Banking description below.
I/O Banking
Some of the I/O standards described above require VCCO
and VREF voltages. These voltages are externally supplied
Table 9: LVTTL and LVCMOS Programmable Currents (Sink and Source)
SelectI/O-Ultra Programmable Current (Worst-Case Guaranteed Minimum)
LVTTL 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA
LVCMOS33 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA
LVCMOS25 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA
LVCMOS18 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA n/a
LVCMOS15 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA n/a
Figure 7: SSTL or HSTL SelectI/O-Ultra Standards
VCCO
OBUF
VREF
Clamp
Diode
PAD
VCCAUX = 3.3V
VCCINT = 1.5V
DS031_24_100900
ds122_1_1.fm Page 11 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
12 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
and connected to device pins that serve groups of IOB
blocks, called banks. Consequently, restrictions exist about
which I/O standards can be combined within a given bank.
Eight I/O banks result from dividing each edge of the FPGA
into two banks, as shown in Figure 8 and Figure 9. Each
bank has multiple VCCO pins, all of which must be con-
nected to the same voltage. This voltage is determined by
the output standards in use.
Some input standards require a user-supplied threshold
voltage (VREF), and certain user-I/O pins are automatically
configured as VREF inputs. Approximately one in six of the
I/O pins in the bank assume this role.
VREF pins within a bank are interconnected internally, and
consequently only one VREF voltage can be used within
each bank. However, for correct operation, all VREF pins in
the bank must be connected to the external reference volt-
age source.
The VCCO and the VREF pins for each bank appear in the
device pinout tables. Within a given package, the number of
VREF and VCCO pins can vary depending on the size of
device. In larger devices, more I/O pins convert to VREF
pins. Since these are always a superset of the VREF pins
used for smaller devices, it is possible to design a PCB that
permits migration to a larger device if necessary.
All VREF pins for the largest device anticipated must be con-
nected to the VREF voltage and are not used for I/O. In
smaller devices, some VCCO pins used in larger devices do
not connect within the package. These unconnected pins
can be left unconnected externally, or, if necessary, they can
be connected to VCCO to permit migration to a larger device.
Rules for Combining I/O Standards in the Same Bank
The following rules must be obeyed to combine different
input, output, and bidirectional standards in the same bank:
1. Combining output standards only. Output standards
with the same output VCCO requirement can be
combined in the same bank.
Compatible example:
SSTL2_I and LVDS_25_DCI outputs
Incompatible example:
SSTL2_I (output VCCO = 2.5V) and
LVCMOS33 (output VCCO = 3.3V) outputs
2. Combining input standards only. Input standards
with the same input VCCO and input VREF requirements
can be combined in the same bank.
Compatible example:
LVCMOS15 and HSTL_IV inputs
Incompatible example:
LVCMOS15 (input VCCO = 1.5V) and
LVCMOS18 (input VCCO = 1.8V) inputs
Incompatible example:
HSTL_I_DCI_18 (VREF = 0.9V) and
HSTL_IV_DCI_18 (VREF = 1.1V) inputs
3. Combining input standards and output standards.
Input standards and output standards with the same
input VCCO and output VCCO requirement can be
combined in the same bank.
Compatible example:
LVDS_25 output and HSTL_I input
Incompatible example:
LVDS_25 output (output VCCO = 2.5V) and
HSTL_I_DCI_18 input (input VCCO = 1.8V)
4. Combining bidirectional standards with input or
output standards. When combining bidirectional I/O
with other standards, make sure the bidirectional
standard can meet rules 1 through 3 above.
5. Additional rules for combining DCI I/O standards.
a. No more than one Single Termination type (input or
output) is allowed in the same bank.
Incompatible example:
HSTL_IV_DCI input and HSTL_III_DCI input
b. No more than one Split Termination type (input or
output) is allowed in the same bank.
Figure 8: Virtex-II I/O Banks: Top View for Wire-Bond
Packages (CS, FG, & BG)
Figure 9: Virtex-II I/O Banks: Top View for Flip-Chip
Packages (FF & BF)
ug002_c2_014_112900
Bank 0 Bank 1
Bank 5 Bank 4
Bank 7
Bank 6
Bank 2
Bank 3
ds031_66_112900
Bank 1 Bank 0
Bank 4 Bank 5
Bank 2
Bank 3
Bank 7
Bank 6
ds122_1_1.fm Page 12 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 13
Product Specification 1-800-255-7778
R
Incompatible example:
HSTL_I_DCI input and HSTL_II_DCI input
The implementation tools will enforce these design rules.
Ta b l e 1 0 summarizes all standards and voltage supplies.
Digitally Controlled Impedance (DCI)
Today’s chip output signals with fast edge rates require ter-
mination to prevent reflections and maintain signal integrity.
Table 10: Summary of Voltage Supply Requirements
for All Input and Output Standards
I/O Standard
VCCO VREF Termination Type
Output Input Input Output Input
LVDS_33
3.3
N/R
N/R(1) N/R N/R
LVDSEXT_33 N/R N/R N/R
LVPECL_33 N/R N/R N/R
SSTL3_I 1.5 N/R N/R
SSTL3_II 1.5 N/R N/R
AGP 1.32 N/R N/R
LV T T L
3.3
N/R N/R N/R
LVCMOS33 N/R N/R N/R
LVDCI_33 N/R Series N/R
LVDCI_DV2_33 N/R Series N/R
PCI33_3 N/R N/R N/R
PCI66_3 N/R N/R N/R
PCIX N/R N/R N/R
LVDS_33_DCI N/R N/R Split
LVDSEXT_33_DCI N/R N/R Split
SSTL3_I_DCI 1.5 N/R Split
SSTL3_II_DCI 1.5 Split Split
LVDS_25
2.5
N/R
N/R N/R N/R
LVDSEXT_25 N/R N/R N/R
LDT_25 N/R N/R N/R
ULVDS_25 N/R N/R N/R
BLVDS_25 N/R N/R N/R
SSTL2_I 1.25 N/R N/R
SSTL2_II 1.25 N/R N/R
LV C M O S 25
2.5
N/R N/R N/R
LVDCI_25 N/R Series N/R
LVDCI_DV2_25 N/R Series N/R
LVDS_25_DCI N/R N/R Split
LVDSEXT_25_DCI N/R N/R Split
SSTL2_I_DCI 1.25 N/R Split
SSTL2_II_DCI 1.25 Split Split
HSTL_III_18
1.8
N/R
1.1 N/R N/R
HSTL_IV_18 1.1 N/R N/R
HSTL_I_18 0.9 N/R N/R
HSTL_II_18 0.9 N/R N/R
SSTL18_I 0.9 N/R N/R
SSTL18_II 0.9 N/R N/R
LV C M O S1 8
1.8
N/R N/R N/R
LVDCI_18 N/R Series N/R
LVDCI_DV2_18 N/R Series N/R
HSTL_III_DCI_18 1.1 N/R Single
HSTL_IV_DCI_18 1.1 Single Single
HSTL_I_DCI_18 0.9 N/R Split
HSTL_II_DCI_18 0.9 Split Split
SSTL18_I_DCI 0.9 N/R Split
SSTL18_II_DCI 0.9 Split Split
HSTL_III
1.5
N/R
0.9 N/R N/R
HSTL_IV 0.9 N/R N/R
HSTL_I 0.75 N/R N/R
HSTL_II 0.75 N/R N/R
LV C M O S1 5
1.5
N/R N/R N/R
LVDCI_15 N/R Series N/R
LVDCI_DV2_15 N/R Series N/R
GTLP_DCI 1 Single Single
HSTL_III_DCI 0.9 N/R Single
HSTL_IV_DCI 0.9 Single Single
HSTL_I_DCI 0.75 N/R Split
HSTL_II_DCI 0.75 Split Split
GTL_DCI 1.2 1.2 0.8 Single Single
GTLP
N/R N/R
1N/RN/R
GTL 0.8 N/R N/R
Notes:
1. N/R = no requirement.
Table 10: Summary of Voltage Supply Requirements
for All Input and Output Standards (Continued)
I/O Standard
VCCO VREF Termination Type
Output Input Input Output Input
ds122_1_1.fm Page 13 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
14 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
High pin count packages (especially ball grid arrays) can
not accommodate external termination resistors.
Virtex-II XCITE DCI provides controlled impedance drivers
and on-chip termination for single-ended and differential
I/Os. This eliminates the need for external resistors, and
improves signal integrity. The DCI feature can be used on
any IOB by selecting one of the DCI I/O standards.
When applied to inputs, DCI provides input parallel termina-
tion. When applied to outputs, DCI provides controlled
impedance drivers (series termination) or output parallel
termination.
DCI operates independently on each I/O bank. When a DCI
I/O standard is used in a particular I/O bank, external refer-
ence resistors must be connected to two dual-function pins
on the bank. These resistors, the voltage reference of the N
transistor (VRN), and the voltage reference of the P transis-
tor (VRP) are shown in Figure 10.
When used with a terminated I/O standard, the value of
resistors are specified by the standard (typically 50 ).
When used with a controlled impedance driver, the resistors
set the output impedance of the driver within the specified
range (25 to 100 Ω) . For all series and parallel termina-
tions listed in Table 11 and Ta b l e 1 2 , the reference resistors
must have the same value for any given bank. One percent
resistors are recommended.
The DCI system adjusts the I/O impedance to match the two
external reference resistors or half of the reference resis-
tors, and compensates for impedance changes due to volt-
age and/or temperature fluctuations. The adjustment is
done by turning parallel transistors in the IOB on or off.
Controlled Impedance Drivers (Series
Termination)
DCI can be used to provide a buffer with a controlled output
impedance. It is desirable for this output impedance to
match the transmission line impedance (Z). Virtex-II input
buffers also support LVDCI and LVDCI_DV2 I/O standards.
Controlled Impedance Drivers (Parallel
Termination)
DCI also provides on-chip termination for SSTL3, SSTL2,
HSTL (Class I, II, III, or IV), and GTL/GTLP receivers or
transmitters on bidirectional lines.
Tabl e 1 2 lists the on-chip parallel terminations available in
Virtex-II devices. VCCO must be set according to Table 8.
Note that there is a VCCO requirement for GTL_DCI and
GTLP_DCI, due to the on-chip termination resistor.
Figure 10: DCI in a Virtex-II Bank
DS031_50_101200
VCCO
GND
DCI
DCI
DCI
DCI
VRN
VRP
1 Bank
RREF (1%)
RREF (1%)
Figure 11: Internal Series Termination
Table 11: SelectI/O-Ultra Controlled Impedance Buffers
VCCO DCI DCI Half Impedance
3.3 V LVDCI_33 LVDCI_DV2_33
2.5 V LVDCI_25 LVDCI_DV2_25
1.8 V LVDCI_18 LVDCI_DV2_18
1.5 V LVDCI_15 LVDCI_DV2_15
Table 12: SelectI/O-Ultra Buffers with On-Chip Parallel
Termination
I/O Standard
External
Termination
On-Chip
Termination
SSTL3 Class I SSTL3_I SSTL3_I_DCI(1)
SSTL3 Class II SSTL3_II SSTL3_II_DCI(1)
SSTL2 Class I SSTL2_I SSTL2_I_DCI(1)
SSTL2 Class II SSTL2_II SSTL2_II_DCI(1)
HSTL Class I HSTL_I HSTL_I_DCI
HSTL Class II HSTL_II HSTL_II_DCI
HSTL Class III HSTL_III HSTL_III_DCI
HSTL Class IV HSTL_IV HSTL_IV_DCI
Z
IOB
Z
Virtex-II DCI
DS031_51_110600
VCCO = 3.3 V, 2.5 V, 1.8 V or 1.5 V
ds122_1_1.fm Page 14 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 15
Product Specification 1-800-255-7778
R
Figure 12 provides examples illustrating the use of the
HSTL_I_DCI, HSTL_II_DCI, HSTL_III_DCI, and
HSTL_IV_DCI I/O standards. For a complete list, see the
Virtex-II User Guide (UG002).
GTL GTL GTL_DCI
GTLP GTLP GTLP_DCI
Notes:
1. SSTL Compatible
Table 12: SelectI/O-Ultra Buffers with On-Chip Parallel
Termination (Continued)
I/O Standard
External
Termination
On-Chip
Termination
Figure 12: HSTL DCI Usage Examples
Virtex-II DCI
RR
VCCO VCCO
RR
VCCO VCCO
R
VCCO
R
VCCO
Virtex-II DCI
Virtex-II DCI
R
VCCO
R
VCCO
Virtex-II DCI
RR
VCCO/2 VCCO/2
2R
Virtex-II DCI
2R
R
VCCO VCCO/2
Virtex-II DCI
2R
R
VCCO/2
2R
VCCO
2R
Virtex-II DCI
2R
VCCO
Virtex-II DCI
2R
2R
VCCO
DS031_65a_100201
Conventional
DCI Transmit
Conventional
Receive
Conventional
Transmit
DCI Receive
DCI Transmit
DCI Receive
Bidirectional
Reference
Resistor
Recommended
Z0
VRN = VRP = R = Z0
50
VRN = VRP = R = Z0
50
VRN = VRP = R = Z0
50
VRN = VRP = R = Z0
50
HSTL_I HSTL_II HSTL_III HSTL_IV
N/A N/A
Virtex-II DCI
R
VCCO
R
VCCO
R
VCCO
Virtex-II DCI
R
VCCO
Virtex-II DCI
Z0
R
VCCO/2
Virtex-II DCI
R
VCCO/2
Virtex-II DCI
2R
2R
VCCO
Virtex-II DCI Virtex-II DCI
2R
2R
VCCO
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0Z0
Z0
Z0
Z0
Virtex-II DCI
Virtex-II DCI
Z0
Virtex-II DCI
2R
2R
VCCO
2R
2R
VCCO
Virtex-II DCI
Z0
Virtex-II DCI
R
VCCO
R
VCCO
ds122_1_1.fm Page 15 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
16 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Figure 13 provides examples illustrating the use of the SSTL2_I_DCI, SSTL2_II_DCI, SSTL3_I_DCI, and SSTL3_II_DCI I/O
standards. For a complete list, see the Virtex-II User Guide (UG002).
Figure 13: SSTL DCI Usage Examples
DS031_65b_112502
Conventional
DCI Transmit
Conventional
Receive
Conventional
Transmit
DCI Receive
DCI Transmit
DCI Receive
Bidirectional
Reference
Resistor
Recommended
Z0(2)
VRN = VRP = R = Z0
50
VRN = VRP = R = Z0
50
VRN = VRP = R = Z0
50
VRN = VRP = R = Z0
50
SSTL2_I SSTL2_II SSTL3_I SSTL3_II
N/A N/A
Virtex-II DCI
Z0
R
VCCO/2
Z0
R/2
RR
VCCO/2 VCCO/2
Z0
R/2
RR
VCCO/2 VCCO/2
Z0
R/2
R
VCCO/2
Z0
R/2
R
VCCO/2
Z0
R/2
Virtex-II DCI
2R
2R
VCCO
R
VCCO/2
Z0
R/2
Virtex-II DCI
2R
2R
VCCO
Z0
R/2
Virtex-II DCI
2R
2R
VCCO
Z0
R/2
Virtex-II DCI
2R
2R
VCCO
Virtex-II DCI
R
VCCO VCCO/2
2R
Virtex-II DCI
R
VCCO VCCO/2
2R
Virtex-II DCI
R
VCCO/2
Z0Z0Z0
Virtex-II DCI
R
VCCO/2
Z0
2R
2R
2R
Virtex-II DCI
2R
VCCO
Virtex-II DCI
2R
2R
VCCO
Z0
Virtex-II DCI
Virtex-II DCI
2R
2R
VCCO
Z0
2R
Virtex-II DCI
2R
VCCO
Virtex-II DCI
2R
2R
VCCO
Z0
Virtex-II DCI
2R
2R
VCCO
Virtex-II DCI
Z0
Virtex-II DCI
2R
2R
VCCO
2R
2R
VCCO
Virtex-II DCI
Z0
Virtex-II DCI
2R
2R
VCCO
2R
2R
VCCO
25(1)
25(1) 25(1)
25(1)
25(1)
25(1)
25(1)
25(1)
25(1)
25(1)
25(1)
25(1)
Notes:
1. The SSTL-compatible 25series resistor is accounted for in the DCI buffer, and it is not DCI controlled.
2. Z0 is the recommended PCB trace impedance.
ds122_1_1.fm Page 16 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 17
Product Specification 1-800-255-7778
R
Figure 14 provides examples illustrating the use of the LVDS_DCI and LVDSEXT_DCI I/O standards. For a complete list,
see the Virtex-II User Guide (UG002).
Figure 14: LVDS DCI Usage Examples
DS031_65c_082102
Conventional
Conventional
Transmit
DCI Receive
Reference
Resistor
Recommended
Z0
VRN = VRP = R = Z0
50
LVDS_DCI and LVDSEXT_DCI Receiver
Virtex-II
LVDS DCI
Z0
2R
2R
VCCO
Z0
2R
2R
VCCO
Virtex-II
LVD S
Z0
2R
Z0
ds122_1_1.fm Page 17 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
18 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Configurable Logic Blocks (CLBs)
The Virtex-II configurable logic blocks (CLB) are organized
in an array and are used to build combinatorial and synchro-
nous logic designs. Each CLB element is tied to a switch
matrix to access the general routing matrix, as shown in
Figure 15. A CLB element comprises four similar slices with
fast local feedback within the CLB. The four slices are split
into two columns of two slices with two independent carry
logic chains and one common shift chain.
Slice Description
Each slice includes two 4-input function generators, carry
logic, arithmetic logic gates, wide function multiplexers and
two storage elements. As shown in Figure 16, each 4-input
function generator is programmable as a 4-input LUT, 16
bits of distributed SelectRAM memory, or a 16-bit vari-
able-tap shift register element.
The output from the function generator in each slice drives
both the slice output and the D input of the storage element.
Figure 17 shows a more detailed view of a single slice.
Configurations
Look-Up Table
Virtex-II function generators are implemented as 4-input
look-up tables (LUTs). Four independent inputs are pro-
vided to each of the two function generators in a slice (F and
G). These function generators are each capable of imple-
menting any arbitrarily defined Boolean function of four
inputs. The propagation delay is therefore independent of
the function implemented. Signals from the function gener-
ators can exit the slice (X or Y output), can input the XOR
dedicated gate (see arithmetic logic), or input the carry-logic
multiplexer (see fast look-ahead carry logic), or feed the D
input of the storage element, or go to the MUXF5 (not
shown in Figure 17).
In addition to the basic LUTs, the Virtex-II slice contains
logic (MUXF5 and MUXFX multiplexers) that combines
function generators to provide any function of five, six,
seven, or eight inputs. The MUXFXs are either MUXF6,
MUXF7, or MUXF8 according to the slice considered in the
CLB. Selected functions up to nine inputs (MUXF5 multi-
plexer) can be implemented in one slice. The MUXFX can
also be a MUXF6, MUXF7, or MUXF8 multiplexer to map
any functions of six, seven, or eight inputs and selected
wide logic functions.
Register/Latch
The storage elements in a Virtex-II slice can be configured
as either edge-triggered D-type flip-flops or level-sensitive
latches. The D input can be directly driven by the X or Y out-
put via the DX or DY input, or by the slice inputs bypassing
the function generators via the BX or BY input. The clock
enable signal (CE) is active High by default. If left uncon-
nected, the clock enable for that storage element defaults to
the active state.
In addition to clock (CK) and clock enable (CE) signals,
each slice has set and reset signals (SR and BY slice
inputs). SR forces the storage element into the state speci-
fied by the attribute SRHIGH or SRLOW. SRHIGH forces a
logic “1” when SR is asserted. SRLOW forces a logic “0”.
When SR is used, a second input (BY) forces the storage
element into the opposite state. The reset condition is pre-
dominant over the set condition. (See Figure 18.)
The initial state after configuration or global initial state is
defined by a separate INIT0 and INIT1 attribute. By default,
setting the SRLOW attribute sets INIT0, and setting the
SRHIGH attribute sets INIT1.
For each slice, set and reset can be set to be synchronous
or asynchronous. Virtex-II devices also have the ability to
set INIT0 and INIT1 independent of SRHIGH and SRLOW.
Control signals CLK, CE, and SR are common to both stor-
age elements in one slice. All control signals have indepen-
dent polarities. Any inverter placed on a control input is
automatically absorbed.
Figure 15: Virtex-II CLB Element
Figure 16: Virtex-II Slice Configuration
Slice
X1Y1
Slice
X1Y0
Slice
X0Y1
Slice
X0Y0
Fast
Connects
to neighbors
Switch
Matrix
DS031_32_101600
SHIFT
CIN
COUT
TBUF X0Y1 COUT
CIN
TBUF X0Y0
Register
MUXF5
MUXFx
CY
SRL16
RAM16
LUT
G
Register
Arithmetic Logic
CY
LUT
F
DS031_31_100900
SRL16
RAM16
ORCY
ds122_1_1.fm Page 18 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 19
Product Specification 1-800-255-7778
R
Figure 17: Virtex-II Slice (Top Half)
G4
SOPIN
A4
G3 A3
G2 A2
G1 A1
WG4 WG4
WG3 WG3
WG2 WG2
WG1
BY
WG1
Dual-Port
LUT
FF
LATCH
RAM
ROM
Shift-Reg
D
0
MC15
WS
SR
SR
REV
DI
G
Y
G2
G1
BY
1
0
PROD
DQ
CECE
CKCLK
MUXCY YB
DIG
DY
Y
01
MUXCY
01
1
SOPOUT
DYMUX
GYMUX
YBMUX
ORCY
WSG
WE[2:0]
SHIFTOUT
CYOG
XORG
WE
CLK
WSF
ALTDIG
CE
SR
CLK
SLICEWE[2:0]
MULTAND
Shared between
x & y Registers
SHIFTIN COUT
CIN DS031_01_112502
Q
ds122_1_1.fm Page 19 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
20 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
The set and reset functionality of a register or a latch can be
configured as follows:
No set or reset
Synchronous set
Synchronous reset
Synchronous set and reset
Asynchronous set (preset)
Asynchronous reset (clear)
Asynchronous set and reset (preset and clear)
The synchronous reset has precedence over a set, and an
asynchronous clear has precedence over a preset.
Distributed SelectRAM Memory
Each function generator (LUT) can implement a 16 x 1-bit
synchronous RAM resource called a distributed SelectRAM
element. The SelectRAM elements are configurable within
a CLB to implement the following:
Single-Port 16 x 8 bit RAM
Single-Port 32 x 4 bit RAM
Single-Port 64 x 2 bit RAM
Single-Port 128 x 1 bit RAM
Dual-Port 16 x 4 bit RAM
Dual-Port 32 x 2 bit RAM
Dual-Port 64 x 1 bit RAM
Distributed SelectRAM memory modules are synchronous
(write) resources. The combinatorial read access time is
extremely fast, while the synchronous write simplifies
high-speed designs. A synchronous read can be imple-
mented with a storage element in the same slice. The dis-
tributed SelectRAM memory and the storage element share
the same clock input. A Write Enable (WE) input is active
High, and is driven by the SR input.
Table 1 3 shows the number of LUTs (2 per slice) occupied
by each distributed SelectRAM configuration.
For single-port configurations, distributed SelectRAM mem-
ory has one address port for synchronous writes and asyn-
chronous reads.
For dual-port configurations, distributed SelectRAM mem-
ory has one port for synchronous writes and asynchronous
reads and another port for asynchronous reads. The func-
tion generator (LUT) has separated read address inputs
(A1, A2, A3, A4) and write address inputs (WG1/WF1,
WG2/WF2, WG3/WF3, WG4/WF4).
In single-port mode, read and write addresses share the
same address bus. In dual-port mode, one function genera-
tor (R/W port) is connected with shared read and write
addresses. The second function generator has the A inputs
(read) connected to the second read-only port address and
the W inputs (write) shared with the first read/write port
address.
Figure 18: Register/Latch Configuration in a Slice
FF
FFY
LATCH
SR REV
DQ
CE
CK
YQ
FF
FFX
LATCH
SR REV
DQ
CE
CK
XQ
CE
DX
DY
BY
CLK
BX
SR
Attribute
INIT1
INIT0
SRHIGH
SRLOW
Attribute
INIT1
INIT0
SRHIGH
SRLOW
Reset Type
SYNC
ASYNC
DS031_22_110600
Table 13: Distributed SelectRAM Configurations
RAM Number of LUTs
16 x 1S 1
16 x 1D 2
32 x 1S 2
32 x 1D 4
64 x 1S 4
64 x 1D 8
128 x 1S 8
Notes:
1. S = single-port configuration, and D = dual-port
configuration.
ds122_1_1.fm Page 20 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 21
Product Specification 1-800-255-7778
R
Figure 19, Figure 20, and Figure 21 illustrate various exam-
ple configurations.
Similar to the RAM configuration, each function generator
(LUT) can implement a 16 x 1-bit ROM. Five configurations
are available: ROM16x1, ROM32x1, ROM64x1,
ROM128x1, and ROM256x1. The ROM elements are cas-
cadable to implement wider or/and deeper ROM. ROM con-
tents are loaded at configuration. Table 14 shows the
number of LUTs occupied by each configuration.
Figure 19: Distributed SelectRAM (RAM16x1S)
Figure 20: Single-Port Distributed SelectRAM
(RAM32x1S)
A[3:0]
D
D
DIWS
WSG
WE
WCLK
RAM 16x1S
DQ
RAM
WE
CK
A[4:1]
WG[4:1]
Output
Registered
Output
(optional)
(SR)
4
4
(BY)
DS031_02_110303
A[3:0]
D
WSG
F5MUX
WE
WCLK
RAM 32x1S
DQ
WE
WE0
CK
WSF
D
DIWS
RAM
G[4:1]
A[4]
WG[4:1]
D
DIWS
RAM
F[4:1]
WF[4:1]
Output
Registered
Output
(optional)
(SR)
4
(BY)
(BX)
4
DS031_03_110100
Figure 21: Dual-Port Distributed SelectRAM
(RAM16x1D)
Table 14: ROM Configuration
ROM Number of LUTs
16 x 1 1
32 x 1 2
64 x 1 4
128 x 1 8 (1 CLB)
256 x 1 16 (2 CLBs)
A[3:0]
D
WSG
WE
WCLK
RAM 16x1D
WE
CK
D
DIWS
RAM
G[4:1]
WG[4:1]
dual_port
RAM
dual_port
4
(BY)
DPRA[3:0]
SPO
A[3:0]
WSG
WE
CK
D
DIWS
G[4:1]
WG[4:1]
DPO
4
4
DS031_04_110100
(SR)
ds122_1_1.fm Page 21 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
22 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Shift Registers
Each function generator can also be configured as a 16-bit
shift register. The write operation is synchronous with a
clock input (CLK) and an optional clock enable, as shown in
Figure 22. A dynamic read access is performed through the
4-bit address bus, A[3:0]. The configurable 16-bit shift regis-
ter cannot be set or reset. The read is asynchronous, how-
ever, the storage element or flip-flop is available to
implement a synchronous read. The storage element
should always be used with a constant address. For exam-
ple, when building an 8-bit shift register and configuring the
addresses to point to the seventh bit, the eighth bit can be
the flip-flop. The overall system performance is improved by
using the superior clock-to-out of the flip-flops.
An additional dedicated connection between shift registers
allows connecting the last bit of one shift register to the first
bit of the next, without using the ordinary LUT output. (See
Figure 23.) Longer shift registers can be built with dynamic
access to any bit in the chain. The shift register chaining
and the MUXF5, MUXF6, and MUXF7 multiplexers allow up
to a 128-bit shift register with addressable access to be
implemented in one CLB.
Figure 22: Shift Register Configurations
A[3:0]
SHIFTIN
SHIFTOUT
D(BY)
D
MC15
DI
WSG
CE (SR)
CLK
SRLC16
DQ
SHIFT-REG
WE
CK
A[4:1] Output
Registered
Output
(optional)
4
DS031_05_110600
WS
Figure 23: Cascadable Shift Register
SRLC16
MC15
MC15
D
SRLC16
DI
SHIFTIN
CASCADABLE OUT
SLICE S0
SLICE S1
SLICE S2
SLICE S3
1 Shift Chain
in CLB
CLB
DS031_06_110200
FF
FF
D
SRLC16
MC15
MC15
D
SRLC16
DI
SHIFTIN
SHIFTOUT
FF
FF
D
SRLC16
MC15
MC15
D
SRLC16
DI
DI
SHIFTIN
IN
SHIFTOUT
FF
FF
D
SRLC16
MC15
MC15
D
SRLC16
DI
SHIFTOUT
FF
FF
D
DI
DI
DI
OUT
ds122_1_1.fm Page 22 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 23
Product Specification 1-800-255-7778
R
Multiplexers
Virtex-II function generators and associated multiplexers
can implement the following:
4:1 multiplexer in one slice
8:1 multiplexer in two slices
16:1 multiplexer in one CLB element (4 slices)
32:1 multiplexer in two CLB elements (8 slices)
Each Virtex-II slice has one MUXF5 multiplexer and one
MUXFX multiplexer. The MUXFX multiplexer implements
the MUXF6, MUXF7, or MUXF8, as shown in Figure 24.
Each CLB element has two MUXF6 multiplexers, one
MUXF7 multiplexer and one MUXF8 multiplexer. Examples
of multiplexers are shown in the Virtex-II User Guide
(UG002). Any LUT can implement a 2:1 multiplexer.
Fast Lookahead Carry Logic
Dedicated carry logic provides fast arithmetic addition and
subtraction. The Virtex-II CLB has two separate carry
chains, as shown in the Figure 25.
The height of the carry chains is two bits per slice. The carry
chain in the Virtex-II device is running upward. The dedi-
cated carry path and carry multiplexer (MUXCY) can also
be used to cascade function generators for implementing
wide logic functions.
Arithmetic Logic
The arithmetic logic includes an XOR gate that allows a
2-bit full adder to be implemented within a slice. In addition,
a dedicated AND (MULT_AND) gate (shown in Figure 17)
improves the efficiency of multiplier implementation.
Figure 24: MUXF5 and MUXFX multiplexers
Slice S1
Slice S0
Slice S3
Slice S2
CLB
DS031_08_100201
F5
F6
F5
F7
F5
F6
F5
F8
MUXF8 combines
the two MUXF7 outputs
(Two CLBs)
MUXF6 combines the two MUXF5
outputs from slices S2 and S3
MUXF7 combines the two MUXF6
outputs from slices S0 and S2
MUXF6 combines the two MUXF5
outputs from slices S0 and S1
G
F
G
F
G
F
G
F
ds122_1_1.fm Page 23 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
24 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Figure 25: Fast Carry Logic Path
FF
LUT
OI MUXCY
FF
LUT
OI MUXCY
FF
LUT
OI MUXCY
FF
LUT
OI MUXCY
CIN
CIN CIN
COUT
FF
LUT
OI MUXCY
FF
LUT
OI MUXCY
FF
LUT
OI MUXCY
FF
LUT
OI MUXCY
CIN
COUT
COUT
to CIN of S2 of the next CLB
COUT
to S0 of the next CLB
(First Carry Chain)
(Second Carry Chain)
SLICE S1
SLICE S0
SLICE S3
SLICE S2
CLB
DS031_07_110200
ds122_1_1.fm Page 24 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 25
Product Specification 1-800-255-7778
R
Sum of Products
Each Virtex-II slice has a dedicated OR gate named ORCY,
ORing together outputs from the slices carryout and the ORCY
from an adjacent slice. The ORCY gate with the dedicated
Sum of Products (SOP) chain are designed for implementing
large, flexible SOP chains. One input of each ORCY is con-
nected through the fast SOP chain to the output of the previous
ORCY in the same slice row. The second input is connected to
the output of the top MUXCY in the same slice, as shown in
Figure 26.
LUTs and MUXCYs can implement large AND gates or
other combinatorial logic functions. Figure 27 illustrates
LUT and MUXCY resources configured as a 16-input AND
gate.
Figure 26: Horizontal Cascade Chain
MUXCY
4
MUXCY
4
Slice 1
ds031_64_110300
ORCY
LUT
LUT
MUXCY
4
MUXCY
4
Slice 0
VCC
LUT
LUT
MUXCY
4
MUXCY
4
Slice 3
ORCY
LUT
LUT
MUXCY
4
MUXCY
4
Slice 2
VCC
LUT
LUT
SOP
CLB
MUXCY
4
MUXCY
4
Slice 1
ORCY
LUT
LUT
MUXCY
4
MUXCY
4
Slice 0
VCC
LUT
LUT
MUXCY
4
MUXCY
4
Slice 3
ORCY
LUT
LUT
MUXCY
4
MUXCY
4
Slice 2
VCC
LUT
LUT
CLB
Figure 27: Wide-Input AND Gate (16 Inputs)
MUXCY
AND
4
16
MUXCY
4
“0”
01
01
“0”
01
“0”
MUXCY
4
Slice
OUT
OUT
Slice
LUT
DS031_41_110600
LUT
LUT
VCC
MUXCY
4
01
LUT
ds122_1_1.fm Page 25 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
26 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
3-State Buffers
Introduction
Each Virtex-II CLB contains two 3-state drivers (TBUFs)
that can drive on-chip buses. Each 3-state buffer has its
own 3-state control pin and its own input pin.
Each of the four slices have access to the two 3-state buff-
ers through the switch matrix, as shown in Figure 28.
TBUFs in neighboring CLBs can access slice outputs by
direct connects. The outputs of the 3-state buffers drive hor-
izontal routing resources used to implement 3-state buses.
The 3-state buffer logic is implemented using AND-OR logic
rather than 3-state drivers, so that timing is more predict-
able and less load dependent especially with larger devices.
Locations/Organization
Four horizontal routing resources per CLB are provided for
on-chip 3-state buses. Each 3-state buffer has access alter-
nately to two horizontal lines, which can be partitioned as
shown in Figure 29. The switch matrices corresponding to
SelectRAM memory and multiplier or I/O blocks are
skipped.
Number of 3-State Buffers
Table 1 5 shows the number of 3-state buffers available in
each Virtex-II device. The number of 3-state buffers is twice
the number of CLB elements.
CLB/Slice Configurations
Ta b l e 1 6 summarizes the logic resources in one CLB. All of
the CLBs are identical and each CLB or slice can be imple-
mented in one of the configurations listed. Tabl e 1 7 shows
the available resources in all CLBs.
Figure 28: Virtex-II 3-State Buffers
Slice
S3
Slice
S2
Slice
S1
Slice
S0
Switch
Matrix
DS031_37_060700
TBUF
TBUF
Table 15: Virtex-II 3-State Buffers
Device
3-State Buffers
per Row
Total Number
of 3-State Buffers
XQ2V1000 64 2,560
XQ2V3000 112 7,168
XQ2V6000 176 16,896
Figure 29: 3-State Buffer Connection to Horizontal Lines
Switch
matrix
CLB-II
Switch
matrix
CLB-II
DS031_09_032700
Programmable
connection
3 - state lines
Table 16: Logic Resources in One CLB
Slices LUTs Flip-Flops MULT_ANDs
Arithmetic &
Carry Chains
SOP
Chains
Distributed
SelectRAM
Shift
Registers TBUF
4 8 8 8 2 2 128 bits 128 bits 2
ds122_1_1.fm Page 26 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 27
Product Specification 1-800-255-7778
R
18 Kbit Block SelectRAM Resources
Introduction
Virtex-II devices incorporate large amounts of 18 Kbit block
SelectRAM. These complement the distributed SelectRAM
resources that provide shallow RAM structures imple-
mented in CLBs. Each Virtex-II block SelectRAM is an 18
Kbit true dual-port RAM with two independently clocked and
independently controlled synchronous ports that access a
common storage area. Both ports are functionally identical.
CLK, EN, WE, and SSR polarities are defined through con-
figuration.
Each port has the following types of inputs: Clock and Clock
Enable, Write Enable, Set/Reset, and Address, as well as
separate Data/parity data inputs (for writes) and Data/parity
data outputs (for reads).
Operation is synchronous. The block SelectRAM behaves
like a register. Control, address, and data inputs must (and
need only) be valid during the set-up time window prior to a
rising (or falling, a configuration option) clock edge. Data
outputs change as a result of the same clock edge.
Configuration
The Virtex-II block SelectRAM supports various configura-
tions, including single- and dual-port RAM and various
data/address aspect ratios. Supported memory configura-
tions for single- and dual-port modes are shown in Ta bl e 1 8 .
Single-Port Configuration
As a single-port RAM, the block SelectRAM has access to
the 18 Kbit memory locations in any of the 2K x 9-bit,
1K x 18-bit, or 512 x 36-bit configurations and to 16 Kbit
memory locations in any of the 16K x 1-bit, 8K x 2-bit, or
4K x 4-bit configurations. The advantage of 9-bit, 18-bit,
and 36-bit widths is the ability to store a parity bit for every
eight bits. Parity bits must be generated or checked exter-
nally in user logic. In such cases, the width is viewed as 8 +
1, 16 + 2, or 32 + 4. These extra parity bits are stored and
behave exactly as the other bits, including the timing param-
eters. Video applications can use the 9-bit ratio of Virtex-II
block SelectRAM memory to advantage.
Each block SelectRAM cell is a fully synchronous memory,
as illustrated in Figure 30. Input data bus and output data
bus widths are identical.
Dual-Port Configuration
As a dual-port RAM, each port of block SelectRAM has
access to a common 18 Kbit memory resource. These are
fully synchronous ports with independent control signals for
each port. The data widths of the two ports can be config-
ured independently, providing built-in bus-width conversion.
Table 17: Virtex-II Logic Resources Available in All CLBs
Device
CLB Array:
Row x
Column
Number
of
Slices
Number
of
LUTs
Max Distributed
SelectRAM or Shift
Register (bits)
Number
of
Flip-Flops
Number
of
Carry Chains(1)
Number
of SOP
Chains(1)
XQ2V1000 40 x 32 5,120 10,240 163,840 10,240 64 80
XQ2V3000 64 x 56 14,336 28,672 458,752 28,672 112 128
XQ2V6000 96 x 88 33,792 67,584 1,081,344 67,584 176 192
Notes:
1. The carry chains and SOP chains can be split or cascaded.
Table 18: Dual- and Single-Port Configurations
16K x 1 bit 2K x 9 bits
8K x 2 bits 1K x 18 bits
4K x 4 bits 512 x 36 bits
Figure 30: 18 Kbit Block SelectRAM Memory in
Single-Port Mode
DOP
DIP
ADDR
WE
EN
SSR
CLK
18 Kbit Block SelectRAM
DS031_10_071602
DI
DO
ds122_1_1.fm Page 27 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
28 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Ta b l e 1 9 illustrates the different configurations available on
Ports A and B.
If both ports are configured in either 2K x 9-bit, 1K x 18-bit,
or 512 x 36-bit configurations, the 18 Kbit block is accessi-
ble from Port A or B. If both ports are configured in either
16K x 1-bit, 8K x 2-bit, or 4K x 4-bit configurations, the
16 Kbit block is accessible from Port A or Port B. All other
configurations result in one port having access to an 18 Kbit
memory block and the other port having access to a 16 Kbit
subset of the memory block equal to 16 Kbits.
Each block SelectRAM cell is a fully synchronous memory,
as illustrated in Figure 31. The two ports have independent
inputs and outputs and are independently clocked.
Port Aspect Ratios
Ta bl e 2 0 shows the depth and the width aspect ratios for the
18 Kbit block SelectRAM. Virtex-II block SelectRAM also
includes dedicated routing resources to provide an efficient
interface with CLBs, block SelectRAM, and multipliers.
Read/Write Operations
The Virtex-II block SelectRAM read operation is fully syn-
chronous. An address is presented, and the read operation
is enabled by control signals WEA and WEB in addition to
ENA or ENB. Then, depending on clock polarity, a rising or
falling clock edge causes the stored data to be loaded into
output registers.
The write operation is also fully synchronous. Data and
address are presented, and the write operation is enabled
by control signals WEA or WEB in addition to ENA or ENB.
Then, again depending on the clock input mode, a rising or
falling clock edge causes the data to be loaded into the
memory cell addressed.
Table 19: Dual-Port Mode Configurations
Port A 16K x 1 16K x 1 16K x 1 16K x 1 16K x 1 16K x 1
Port B 16K x 1 8K x 2 4K x 4 2K x 9 1K x 18 512 x 36
Port A 8K x 2 8K x 2 8K x 2 8K x 2 8K x 2
Port B 8K x 2 4K x 4 2K x 9 1K x 18 512 x 36
Port A 4K x 4 4K x 4 4K x 4 4K x 4
Port B 4K x 4 2K x 9 1K x 18 512 x 36
Port A 2K x 9 2K x 9 2K x 9
Port B 2K x 9 1K x 18 512 x 36
Port A 1K x 18 1K x 18
Port B 1K x 18 512 x 36
Port A 512 x 36
Port B 512 x 36
Figure 31: 18 Kbit Block SelectRAM in Dual-Port Mode
DOPA
DOPB
DIPA
ADDRA
WEA
ENA
SSRA
CLKA
DIPB
ADDRB
WEB
ENB
SSRB
CLKB
18 Kbit Block SelectRAM
DS031_11_071602
DOB
DOA
DIA
DIB
Table 20: 18 Kbit Block SelectRAM Port Aspect Ratio
Width Depth Address Bus Data Bus Parity Bus
1 16,384 ADDR[13:0] DATA[0] N/A
2 8,192 ADDR[12:0] DATA[1:0] N/A
4 4,096 ADDR[11:0] DATA[3:0] N/A
9 2,048 ADDR[10:0] DATA[7:0] Parity[0]
18 1,024 ADDR[9:0] DATA[15:0] Parity[1:0]
36 512 ADDR[8:0] DATA[31:0] Parity[3:0]
ds122_1_1.fm Page 28 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 29
Product Specification 1-800-255-7778
R
A write operation performs a simultaneous read operation.
Three different options are available, selected by configura-
tion:
1. “WRITE_FIRST”
The “WRITE_FIRST” option is a transparent mode. The
same clock edge that writes the data input (DI) into the
memory also transfers DI into the output registers DO
as shown in Figure 32.
2. “READ_FIRST”
The “READ_FIRST” option is a read-before-write mode.
The same clock edge that writes data input (DI) into the
memory also transfers the prior content of the memory
cell addressed into the data output registers DO, as
shown in Figure 33.
3. “NO_CHANGE”
The “NO_CHANGE” option maintains the content of the
output registers, regardless of the write operation. The
clock edge during the write mode has no effect on the
content of the data output register DO. When the port is
configured as “NO_CHANGE”, only a read operation
loads a new value in the output register DO, as shown in
Figure 34.
Figure 32: WRITE_FIRST Mode
CLK
WE
Data_in
Data_in
New
aa
Address
Internal
Memory DO Data_out = Data_in
Data_out
DI
DS031_14_102000
New
RAM Contents New
Old
Figure 33: READ_FIRST Mode
CLK
WE
Data_in
Data_in
New
aa
Old
Address
Internal
Memory DO Prior stored data
Data_out
DI
DS031_13_102000
RAM Contents New
Old
ds122_1_1.fm Page 29 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
30 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Control Pins and Attributes
Virtex-II SelectRAM memory has two independent ports
with the control signals described in Table 21. All control
inputs including the clock have an optional inversion.
Initial memory content is determined by the INIT_xx
attributes. Separate attributes determine the output register
value after device configuration (INIT) and SSR is asserted
(SRVAL). Both attributes (INIT_B and SRVAL) are available
for each port when a block SelectRAM resource is config-
ured as dual-port RAM.
Locations
Virtex-II SelectRAM memory blocks are located in either
four or six columns. The number of blocks per column
depends of the device array size and is equivalent to the
number of CLBs in a column divided by four. Column loca-
tions are shown in Ta bl e 2 2 .
Figure 34: NO_CHANGE Mode
CLK
WE
Data_in
Data_in
New
aa
Last Read Cycle Content (no change)
Address
Internal
Memory DO No change during write
Data_out
DI
DS031_12_102000
RAM Contents New
Old
Table 21: Control Functions
Control Signal Function
CLK Read and Write Clock
EN Enable affects Read, Write, Set, Reset
WE Write Enable
SSR Set DO register to SRVAL (attribute)
Table 22: SelectRAM Memory Floor Plan
Device Columns
SelectRAM Blocks
Per Column Total
XQ2V1000 4 10 40
XQ2V3000 6 16 96
XQ2V6000 6 24 144
ds122_1_1.fm Page 30 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 31
Product Specification 1-800-255-7778
R
Total Amount of SelectRAM Memory
Ta b le 2 3 shows the amount of block SelectRAM memory
available for each Virtex-II device. The 18 Kbit SelectRAM
blocks are cascadable to implement deeper or wider single- or
dual-port memory resources.
18-Bit x 18-Bit Multipliers
Introduction
A Virtex-II multiplier block is an 18-bit by 18-bit 2’s comple-
ment signed multiplier. Virtex-II devices incorporate many
embedded multiplier blocks. These multipliers can be asso-
ciated with an 18 Kbit block SelectRAM resource or can be
used independently. They are optimized for high-speed
operations and have a lower power consumption compared
to an 18-bit x 18-bit multiplier in slices.
Each SelectRAM memory and multiplier block is tied to four
switch matrices, as shown in Figure 36.
Figure 35: Block SelectRAM (2-column, 4-column, and 6-column)
2 CLB columns
2 CLB columns
2 CLB columns
n CLB columns
2 CLB columns
n CLB columns
2 CLB columns
2 CLB columns
2 CLB columns
n CLB columns
n CLB columns
n CLB columns
2 CLB columns
n CLB columns
SelectRAM Blocks
SelectRAM Blocks
ds031_38_110403
2 CLB columns
2 CLB columns
SelectRAM Blocks
2 CLB columns
2 CLB columns
Table 23: Virtex-II SelectRAM Memory Available
Device
Total SelectRAM Memory
Blocks in Kbits in Bits
XQ2V1000 40 720 737,280
XQ2V3000 96 1,728 1,769,472
XQ2V6000 144 2,592 2,654,208
ds122_1_1.fm Page 31 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
32 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Association with Block SelectRAM Memory
The interconnect is designed to allow SelectRAM memory
and multiplier blocks to be used at the same time, but some
interconnect is shared between the SelectRAM and the
multiplier. Thus, SelectRAM memory can be used only up to
18 bits wide when the multiplier is used, because the multi-
plier shares inputs with the upper data bits of the
SelectRAM memory.
This sharing of the interconnect is optimized for an
18-bit-wide block SelectRAM resource feeding the multi-
plier. The use of SelectRAM memory and the multiplier with
an accumulator in LUTs allows for implementation of a digi-
tal signal processor (DSP) multiplier-accumulator (MAC)
function, which is commonly used in finite and infinite
impulse response (FIR and IIR) digital filters.
Configuration
The multiplier block is an 18-bit by 18-bit signed multiplier
(2's complement). Both A and B are 18-bit-wide inputs, and
the output is 36 bits. Figure 37 shows a multiplier block.
Locations/Organization
Multiplier organization is identical to the 18 Kbit SelectRAM
organization, because each multiplier is associated with an
18 Kbit block SelectRAM resource.
In addition to the built-in multiplier blocks, the CLB elements
have dedicated logic to implement efficient multipliers in
logic. (Refer to Configurable Logic Blocks (CLBs)).
Figure 36: SelectRAM and Multiplier Blocks
Switch
Matrix
Switch
Matrix
18-Kbit block
SelectRAM
18 x 18 Multiplier
Switch
Matrix
Switch
Matrix
DS031_33_101000
Figure 37: Multiplier Block
Table 24: Multiplier Floor Plan
Device Columns
Multipliers
Per Column Total
XQ2V1000 4 10 40
XQ2V3000 6 16 96
XQ2V6000 6 24 144
MULT 18 x 18
A[17:0]
P[35:0]
B[17:0]
Multiplier Block
DS031_40_100400
ds122_1_1.fm Page 32 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 33
Product Specification 1-800-255-7778
R
Global Clock Multiplexer Buffers
Virtex-II devices have 16 clock input pins that can also be
used as regular user I/Os. Eight clock pads are on the top
edge of the device, in the middle of the array, and eight are
on the bottom edge, as illustrated in Figure 39.
The global clock multiplexer buffer represents the input to
dedicated low-skew clock tree distribution in Virtex-II
devices. Like the clock pads, eight global clock multiplexer
buffers are on the top edge of the device and eight are on
the bottom edge.
Figure 38: Multipliers (2-column, 4-column, and 6-column)
DS031_39_110403
2 CLB columns
2 CLB columns
2 CLB columns
n CLB columns
2 CLB columns
n CLB columns
2 CLB columns
2 CLB columns
2 CLB columns
n CLB columns
n CLB columns
n CLB columns
2 CLB columns
n CLB columns
Multiplier Blocks
Multiplier Blocks
2 CLB columns
2 CLB columns
Multiplier Blocks
2 CLB columns
2 CLB columns
Figure 39: Virtex-II Clock Pads
8 clock pads
8 clock pads
Virtex-II
Device
DS031_42_101000
ds122_1_1.fm Page 33 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
34 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Each global clock buffer can be driven by either the clock
pad to distribute a clock directly to the device, or the Digital
Clock Manager (DCM), discussed in Digital Clock Man-
ager (DCM), page 36. Each global clock buffer can also be
driven by local interconnects. The DCM has clock output(s)
that can be connected to global clock buffer inputs, as
shown in Figure 40.
Global clock buffers are used to distribute the clock to some
or all synchronous logic elements (such as registers in
CLBs and IOBs, and SelectRAM blocks).
Eight global clocks can be used in each quadrant of the
Virtex-II device. Designers should consider the clock distri-
bution detail of the device prior to pin-locking and floorplan-
ning (see the Virtex-II User Guide, UG002).
Figure 42 shows clock distribution in Virtex-II devices.
In each quadrant, up to eight clocks are organized in clock
rows. A clock row supports up to 16 CLB rows (eight up and
eight down). For the largest devices a new clock row is
added, as necessary.
To reduce power consumption, any unused clock branches
remain static.
Global clocks are driven by dedicated clock buffers (BUFG),
which can also be used to gate the clock (BUFGCE) or to
multiplex between two independent clock inputs (BUFG-
MUX).
The most common configuration option of this element is as
a buffer. A BUFG function in this (global buffer) mode, is
shown in Figure 41.
The Virtex-II global clock buffer BUFG can also be config-
ured as a clock enable/disable circuit (Figure 43), as well as
a two-input clock multiplexer (Figure 44). A functional
description of these two options is provided below. Each of
them can be used in either of two modes, selected by con-
figuration: rising clock edge or falling clock edge.
Figure 40: Virtex-II Clock Distribution Configurations
Clock
Pad
Clock
Buffer
I
0
Clock Distribution
Clock
Pad
Clock
Buffer
I
0
Clock Distribution
CLKIN
CLKOUT
DCM
DS031_43_101000 Figure 41: Virtex-II BUFG Function
O
I
BUFG
DS031_61_101200
Figure 42: Virtex-II Clock Distribution
8
8
8
8
NW
NW NE
SW SE
NE
SW SE
DS031_45_120200
8 BUFGMUX
8 BUFGMUX
8 max
8 BUFGMUX
8 BUFGMUX
16 Clocks 16 Clocks
ds122_1_1.fm Page 34 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 35
Product Specification 1-800-255-7778
R
This section describes the rising clock edge option. For the
opposite option, falling clock edge, just change all "rising"
references to "falling" and all "High" references to "Low",
except for the description of the CE or S levels. The rising
clock edge option uses the BUFGCE and BUFGMUX prim-
itives. The falling clock edge option uses the BUFGCE_1
and BUFGMUX_1 primitives.
BUFGCE
If the CE input is active (High) prior to the incoming rising
clock edge, this Low-to-High-to-Low clock pulse passes
through the clock buffer. Any level change of CE during the
incoming clock High time has no effect.
If the CE input is inactive (Low) prior to the incoming rising
clock edge, the following clock pulse does not pass through
the clock buffer, and the output stays Low. Any level change
of CE during the incoming clock High time has no effect. CE
must not change during a short setup window just prior to
the rising clock edge on the BUFGCE input I. Violating this
setup time requirement can result in an undefined runt
pulse output.
BUFGMUX
BUFGMUX can switch between two unrelated, even asyn-
chronous clocks. Basically, a Low on S selects the I0 input,
and a High on S selects the I1 input. Switching from one
clock to the other is done in such a way that the output High
and Low time is never shorter than the shortest High or Low
time of either input clock. As long as the presently selected
clock is High, any level change of S has no effect.
If the presently selected clock is Low while S changes, or if
it goes Low after S has changed, the output is kept Low until
the other ("to-be-selected") clock has made a transition
from High to Low. At that instant, the new clock starts driv-
ing the output.
The two clock inputs can be asynchronous with regard to
each other, and the S input can change at any time, except
for a short setup time prior to the rising edge of the presently
selected clock, that is, prior to the rising edge of the
BUFGMUX output O. Violating this setup time requirement
can result in an undefined runt pulse output.
All Virtex-II devices have 16 global clock multiplexer buffers.
Figure 45 shows a switchover from CLK0 to CLK1.
In Figure 45:
The current clock is CLK0.
S is activated High.
If CLK0 is currently High, the multiplexer waits for CLK0
to go Low.
Once CLK0 is Low, the multiplexer output stays Low
until CLK1 transitions High to Low.
When CLK1 transitions from High to Low, the output
switches to CLK1.
No glitches or short pulses can appear on the output.
Local Clocking
In addition to global clocks, there are local clock resources
in the Virtex-II devices. There are more than 72 local clocks
in the Virtex-II family. These resources can be used for
many different applications, including but not limited to
memory interfaces. For example, even using only the left
and right I/O banks, Virtex-II FPGAs can support up to 50
local clocks for DDR SDRAM. These interfaces can operate
beyond 200 MHz on Virtex-II devices.
Figure 43: Virtex-II BUFGCE Function
Figure 44: Virtex-II BUFGMUX Function
O
I
CE
BUFGCE
DS031_62_101200
O
I0
I1
S
BUFGMUX
DS031_63_112900
Figure 45: Clock Multiplexer Waveform Diagram
S
CLK0
CLK1
OUT
Wait for Low
Switch
DS031_46_112900
ds122_1_1.fm Page 35 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
36 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Digital Clock Manager (DCM)
The Virtex-II DCM offers a wide range of powerful clock
management features:
Clock De-skew: The DCM generates new system
clocks (either internally or externally to the FPGA),
which are phase-aligned to the input clock, thus
eliminating clock distribution delays.
Frequency Synthesis: The DCM generates a wide
range of output clock frequencies, performing very
flexible clock multiplication and division.
Phase Shifting: The DCM provides both coarse phase
shifting and fine-grained phase shifting with dynamic
phase shift control.
The DCM utilizes fully digital delay lines allowing robust
high-precision control of clock phase and frequency. It also
utilizes fully digital feedback systems, operating dynamically
to compensate for temperature and voltage variations dur-
ing operation.
Up to four of the nine DCM clock outputs can drive inputs to
global clock buffers or global clock multiplexer buffers simul-
taneously (see Figure 46). All DCM clock outputs can simul-
taneously drive general routing resources, including routes
to output buffers.
The DCM can be configured to delay the completion of the
Virtex-II configuration process until after the DCM has
achieved lock. This guarantees that the chip does not begin
operating until after the system clocks generated by the
DCM have stabilized.
The DCM has the following general control signals:
RST input pin: resets the entire DCM.
LOCKED output pin: asserted High when all enabled
DCM circuits have locked.
STATUS output pins (active High): shown in Table 25.
Clock De-Skew
The DCM de-skews the output clocks relative to the input
clock by automatically adjusting a digital delay line. Addi-
tional delay is introduced so that clock edges arrive at inter-
nal registers and block RAMs simultaneously with the clock
edges arriving at the input clock pad. Alternatively, external
clocks, which are also de-skewed relative to the input clock,
can be generated for board-level routing. All DCM output
clocks are phase-aligned to CLK0 and, therefore, are also
phase-aligned to the input clock.
To achieve clock de-skew, the CLKFB input must be con-
nected, and its source must be either CLK0 or CLK2X.
CLKFB must always be connected, unless only the CLKFX
or CLKFX180 outputs are used and de-skew is not required.
Frequency Synthesis
The DCM provides flexible methods for generating new
clock frequencies. Each method has a different operating
frequency range and different AC characteristics. The
CLK2X and CLK2X180 outputs double the clock frequency.
The CLKDV output creates divided output clocks with divi-
sion options of 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5,
8, 9, 10, 11, 12, 13, 14, 15, and 16.
The CLKFX and CLKFX180 outputs can be used to pro-
duce clocks at the following frequency:
FREQCLKFX = (M/D) * FREQCLKIN
where M and D are two integers. Specifications for M and D
are provided under DCM Timing Parameters. By default,
M=4 and D=1, which results in a clock output frequency four
times faster than the clock input frequency (CLKIN).
CLK2X180 is phase shifted 180 degrees relative to CLK2X.
CLKFX180 is phase shifted 180 degrees relative to CLKFX.
All frequency synthesis outputs automatically have 50/50
duty cycles (with the exception of the CLKDV output when
performing a non-integer divide in high-frequency mode).
Note that CLK2X and CLK2X180 are not available in
high-frequency mode.
Figure 46: Digital Clock Manager
CLKIN
CLKFB CLK180
CLK270
CLK0
CLK90
CLK2X
CLK2X180
CLKDV
DCM
DS031_67_110403
CLKFX
CLKFX180
LOCKED
STATUS[7:0]
PSDONE
RST
DSSEN
PSINCDEC
PSEN
PSCLK
clock signal
control signal
Table 25: DCM Status Pins
Status Pin Function
0 Phase Shift Overflow
1 CLKIN Stopped
2 CLKFX Stopped
3N/A
4N/A
5N/A
6N/A
7N/A
ds122_1_1.fm Page 36 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 37
Product Specification 1-800-255-7778
R
Phase Shifting
The DCM provides additional control over clock skew
through either coarse- or fine-grained phase shifting. The
CLK0, CLK90, CLK180, and CLK270 outputs are each
phase shifted by ¼ of the input clock period relative to each
other, providing coarse phase control. Note that CLK90 and
CLK270 are not available in high-frequency mode.
Fine-phase adjustment affects all nine DCM output clocks.
When activated, the phase shift between the rising edges of
CLKIN and CLKFB is a specified fraction of the input clock
period.
In variable mode, the PHASE_SHIFT value can also be
dynamically incremented or decremented as determined by
PSINCDEC synchronously to PSCLK, when the PSEN
input is active. Figure 47 illustrates the effects of fine-phase
shifting. For more information on DCM features, see the
Virtex-II User Guide (UG002).
Table 2 6 lists fine-phase shifting control pins, when used in
variable mode.
Two separate components of the phase shift range must be
understood:
PHASE_SHIFT attribute range
FINE_SHIFT_RANGE DCM timing parameter range
The PHASE_SHIFT attribute is the numerator in the following
equation:
Phase Shift (ns) = (PHASE_SHIFT/256) * PERIODCLKIN
The full range of this attribute is always -255 to +255, but its
practical range varies with CLKIN frequency, as constrained
by the FINE_SHIFT_RANGE component, which represents
the total delay achievable by the phase shift delay line. Total
delay is a function of the number of delay taps used in the
circuit. Across process, voltage, and temperature, this abso-
lute range is guaranteed to be as specified under DCM Tim-
ing Parameters.
Absolute range (fixed mode) = ± FINE_SHIFT_RANGE
Absolute range (variable mode) = ± FINE_SHIFT_RANGE/2
The reason for the difference between fixed and variable
modes is as follows. For variable mode to allow symmetric,
dynamic sweeps from -255/256 to +255/256, the DCM sets
the "zero phase skew" point as the middle of the delay line,
thus dividing the total delay line range in half. In fixed mode,
since the PHASE_SHIFT value never changes after configu-
ration, the entire delay line is available for insertion into
either the CLKIN or CLKFB path (to create either positive or
negative skew).
Taking both of these components into consideration, the fol-
lowing are some usage examples:
If PERIODCLKIN = 2 * FINE_SHIFT_RANGE, then
PHASE_SHIFT in fixed mode is limited to ± 128, and in
variable mode it is limited to ± 64.
If PERIODCLKIN = FINE_SHIFT_RANGE, then
PHASE_SHIFT in fixed mode is limited to ± 255, and in
variable mode it is limited to ± 128.
If PERIODCLKIN 0.5 * FINE_SHIFT_RANGE, then
PHASE_SHIFT is limited to ± 255 in either mode.
Table 26: Fine-Phase Shifting Control Pins
Control Pin Direction Function
PSINCDEC in Increment or decrement
PSEN in Enable ± phase shift
PSCLK in Clock for phase shift
PSDONE out Active when completed
Figure 47: Fine-Phase Shifting Effects
CLKOUT_PHASE_SHIFT
= FIXED
CLKOUT_PHASE_SHIFT
= VARIABLE
CLKOUT_PHASE_SHIFT
= NONE
CLKIN
CLKIN
CLKIN
CLKFB
(PS/256) x PERIODCLKIN
(PS negative)
(PS/256) x PERIODCLKIN
(PS positive)
(PS/256) x PERIODCLKIN
(PS negative)
(PS/256) x PERIODCLKIN
(PS positive) DS031_48_101201
CLKFB
CLKFB
ds122_1_1.fm Page 37 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
38 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Operating Modes
The frequency ranges of DCM input and output clocks
depend on the operating mode specified, either
low-frequency mode or high-frequency mode, according to
Ta b l e 2 7 . (For actual values, see QPro Virtex-II Switching
Characteristics.) The CLK2X, CLK2X180, CLK90, and
CLK270 outputs are not available in high-frequency mode.
High or low-frequency mode is selected by an attribute.
Locations/Organization
Virtex-II DCMs are placed on the top and the bottom of each
block RAM and multiplier column. The number of DCMs
depends on the device size, as shown in Ta b l e 2 8 .
Table 27: DCM Frequency Ranges
Output Clock
Low-Frequency Mode High-Frequency Mode
CLKIN Input CLK Output CLKIN Input CLK Output
CLK0, CLK180 CLKIN_FREQ_DLL_LF CLKOUT_FREQ_1X_LF CLKIN_FREQ_DLL_HF CLKOUT_FREQ_1X_HF
CLK90, CLK270 CLKIN_FREQ_DLL_LF CLKOUT_FREQ_1X_LF NA NA
CLK2X, CLK2X180 CLKIN_FREQ_DLL_LF CLKOUT_FREQ_2X_LF NA NA
CLKDV CLKIN_FREQ_DLL_LF CLKOUT_FREQ_DV_LF CLKIN_FREQ_DLL_HF CLKOUT_FREQ_DV_HF
CLKFX, CLKFX180 CLKIN_FREQ_FX_LF CLKOUT_FREQ_FX_LF CLKIN_FREQ_FX_HF CLKOUT_FREQ_FX_HF
Table 28: DCM Organization
Device Columns DCMs
XQ2V1000 4 8
XQ2V3000 6 12
XQ2V6000 6 12
ds122_1_1.fm Page 38 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 39
Product Specification 1-800-255-7778
R
Active Interconnect Technology
Local and global Virtex-II routing resources are optimized
for speed and timing predictability, as well as to facilitate IP
cores implementation. Virtex-II Active Interconnect Technol-
ogy is a fully buffered programmable routing matrix. All rout-
ing resources are segmented to offer the advantages of a
hierarchical solution. Virtex-II logic features like CLBs,
IOBs, block RAM, multipliers, and DCMs are all connected
to an identical switch matrix for access to global routing
resources, as shown in Figure 48.
Each Virtex-II device can be represented as an array of
switch matrices with logic blocks attached, as illustrated in
Figure 49.
Figure 48: Active Interconnect Technology
Switch
Matrix
Switch
Matrix
Switch
Matrix
Switch
Matrix
Switch
Matrix
CLB
18Kb
BRAM
MULT
18 x 18
Switch
Matrix IOB
Switch
Matrix DCM
DS031_55_101000
Figure 49: Routing Resources
Switch
Matrix IOB Switch
Matrix IOB Switch
Matrix IOB Switch
Matrix DCM Switch
Matrix
Switch
Matrix IOB Switch
Matrix CLB Switch
Matrix CLB Switch
Matrix
Switch
Matrix
Switch
Matrix IOB Switch
Matrix CLB Switch
Matrix CLB Switch
Matrix
Switch
Matrix
Switch
Matrix IOB Switch
Matrix CLB Switch
Matrix CLB Switch
Matrix
Switch
Matrix
Switch
Matrix IOB Switch
Matrix CLB Switch
Matrix CLB Switch
Matrix
Switch
Matrix
SelectRAM
Multiplier
DS031_34_110300
ds122_1_1.fm Page 39 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
40 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Place-and-route software takes advantage of this regular
array to deliver optimum system performance and fast com-
pile times. The segmented routing resources are essential
to guarantee IP cores portability and to efficiently handle an
incremental design flow that is based on modular imple-
mentations. Total design time is reduced due to fewer and
shorter design iterations.
Hierarchical Routing Resources
Most Virtex-II signals are routed using the global routing
resources, which are located in horizontal and vertical rout-
ing channels between each switch matrix.
As shown in Figure 50, Virtex-II devices have fully buffered
programmable interconnections, with a number of
resources counted between any two adjacent switch matrix
rows or columns. Fanout has minimal impact on the perfor-
mance of each net.
In Figure 50:
Long lines are bidirectional wires that distribute signals
across the device. Vertical and horizontal long lines
span the full height and width of the device.
Hex lines route signals to every third or sixth block
away in all four directions. Organized in a staggered
pattern, hex lines can only be driven from one end.
Hex-line signals can be accessed either at the
endpoints or at the midpoint (three blocks from the
source).
Double lines route signals to every first or second block
away in all four directions. Organized in a staggered
pattern, double lines can be driven only at their
endpoints. Double-line signals can be accessed either
at the endpoints or at the midpoint (one block from the
source).
Direct connect lines route signals to neighboring
blocks: vertically, horizontally, and diagonally.
Fast connect lines are the internal CLB local
interconnections from LUT outputs to LUT inputs.
Dedicated Routing
In addition to the global and local routing resources, dedi-
cated signals are available:
There are eight global clock nets per quadrant (see
Global Clock Multiplexer Buffers).
Horizontal routing resources are provided for on-chip
3-state buses. Four partitionable bus lines are provided
per CLB row, permitting multiple buses within a row.
(See 3-State Buffers.)
Two dedicated carry-chain resources per slice column
(two per CLB column) propagate carry-chain MUXCY
Figure 50: Hierarchical Routing Resources
24 Horizontal Long Lines
24 Vertical Long Lines
120 Horizontal Hex Lines
120 Vertical Hex Lines
40 Horizontal Double Lines
40 Vertical Double Lines
16 Direct Connections
(total in all four directions)
8 Fast Connects
DS031_60_110403
ds122_1_1.fm Page 40 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 41
Product Specification 1-800-255-7778
R
output signals vertically to the adjacent slice. (See
CLB/Slice Configurations.)
One dedicated SOP chain per slice row (two per CLB
row) propagates ORCY output logic signals
horizontally to the adjacent slice. (See Sum of
Products.)
One dedicated shift chain per CLB connects the output
of LUTs in shift-register mode to the input of the next
LUT in shift-register mode (vertically) inside the CLB.
(See Shift Registers, page 22.)
Creating a Design
Creating Virtex-II designs is easy with Xilinx Integrated Syn-
thesis Environment (ISE) development systems, which sup-
port advanced design capabilities, including ProActive
Timing Closure, integrated logic analysis, and the fastest
place and route runtimes in the industry. ISE solutions
enable designers to get the performance they need, quickly
and easily.
As a result of the ongoing cooperative development efforts
between Xilinx and EDA Alliance partners, designers can
take advantage of the benefits provided by EDA technolo-
gies in the programmable logic design process. Xilinx devel-
opment systems are available in a number of easy to use
configurations, collectively known as the ISE Series.
ISE Alliance
The ISE Alliance solution is designed to plug and play within
an existing design environment. Built using industry stan-
dard data formats and netlists, these stable, flexible prod-
ucts enable Alliance EDA partners to deliver their best
design automation capabilities to Xilinx customers, along
with the time to market benefits of ProActive Timing Clo-
sure.
ISE Foundation
The ISE Foundation solution delivers the benefits of true
HDL-based design in a seamlessly integrated design envi-
ronment. An intuitive project navigator, as well as powerful
HDL design and two HDL synthesis tools, ensure that
high-quality results are achieved quickly and easily. The ISE
Foundation product includes:
State Diagram entry using Xilinx StateCAD
Automatic HDL Testbench generation using Xilinx
HDLBencher
HDL Simulation using ModelSim XE
Design Flow
Virtex-II design flow proceeds as follows:
Design Entry
Synthesis
Implementation
Verification
Most programmable logic designers iterate through these
steps several times in the process of completing a design.
Design Entry
All Xilinx ISE development systems support the mainstream
EDA design entry capabilities, ranging from schematic
design to advanced HDL design methodologies. Given the
high densities of the Virtex-II family, designs are created
most efficiently using HDLs. To further improve their time to
market, many Xilinx customers employ incremental, modu-
lar, and Intellectual Property (IP) design techniques. When
properly used, these techniques further accelerate the logic
design process.
To enable designers to leverage existing investments in
EDA tools and to ensure high-performance design flows,
Xilinx jointly develops tools with leading EDA vendors,
including:
Aldec
Cadence
•Exemplar
Mentor Graphics
Model Technology
Synopsys
Synplicity
Complete information on Alliance Series partners and their
associated design flows is available at http://www.xilinx.com
on the Xilinx Alliance Series web page.
The ISE Foundation product offers schematic entry and
HDL design capabilities as part of an integrated design
solution, enabling one-stop shopping. These capabilities
are powerful, easy to use, and they support the full portfolio
of Xilinx programmable logic devices. HDL design capabil-
ities include a color-coded HDL editor with integrated lan-
guage templates, state diagram entry, and Core generation
capabilities.
Synthesis
The ISE Alliance product is engineered to support
advanced design flows with the industry's best synthesis
tools. Advanced design methodologies include:
Physical Synthesis
Incremental synthesis
RTL floorplanning
Direct physical mapping
The ISE Foundation product seamlessly integrates synthe-
sis capabilities purchased directly from Exemplar, Synop-
sys, and Synplicity. In addition, it includes the capabilities of
Xilinx Synthesis Technology.
A benefit of having two seamlessly integrated synthesis
engines within an ISE design flow is the ability to apply alter-
native sets of optimization techniques on designs, helping
to ensure that designers can meet even the toughest timing
requirements.
ds122_1_1.fm Page 41 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
42 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Design Implementation
The ISE Series development systems include Xilinx tim-
ing-driven implementation tools, frequently called “place
and route” or “fitting” software. This robust suite of tools
enables the creation of an intuitive, flexible, tightly inte-
grated design flow that efficiently bridges “logical” and
“physical” design domains. This simplifies the task of defin-
ing a design, including its behavior, timing requirements,
and optional layout (or floorplanning), as well as simplifying
the task of analyzing reports generated during the imple-
mentation process.
The Virtex-II implementation process is comprised of Syn-
thesis, translation, mapping, place and route, and configu-
ration file generation. While the tools can be run individually,
many designers choose to run the entire implementation
process with the click of a button. To assist those who prefer
to script their design flows, Xilinx provides Xflow, an auto-
mated single command line process.
Design Verification
In addition to conventional design verification using static
timing analysis or simulation techniques, Xilinx offers pow-
erful in-circuit debugging techniques using ChipScope ILA
(Integrated Logic Analysis). The reconfigurable nature of
Xilinx FPGAs means that designs can be verified in real
time without the need for extensive sets of software simula-
tion vectors.
For simulation, the system extracts post-layout timing infor-
mation from the design database, and back-annotates this
information into the netlist for use by the simulator. The back
annotation features a variety of patented Xilinx techniques,
resulting in the industry’s most powerful simulation flows.
Alternatively, timing-critical portions of a design can be ver-
ified using the Xilinx static timing analyzer or a third party
static timing analysis tool like Synopsys Prime Time, by
exporting timing data in the STAMP data format.
For in-circuit debugging, ChipScope ILA enables designers
to analyze the real-time behavior of a device while operating
at full system speeds. Logic analysis commands and cap-
tured data are transferred between the ChipScope software
and ILA cores within the Virtex-II FPGA, using industry
standard JTAG protocols. These JTAG transactions are
driven over an optional download cable (MultiLINX or
JTAG), connecting the Virtex device in the target system to
a PC or workstation.
ChipScope ILA was designed to look and feel like a logic
analyzer, making it easy to begin debugging a design imme-
diately. Modifications to the desired logic analysis can be
downloaded directly into the system in a matter of minutes.
Other Unique Features of Virtex-II Design
Flow
Xilinx design flows feature a number of unique capabilities.
Among these are efficient incremental HDL design flows,
which are robust capabilities enabled by Xilinx exclusive
hierarchical floorplanning capabilities. Another powerful
design capability only available in the Xilinx design flow is
“Modular Design”, part of the Xilinx suite of team design
tools, which enables autonomous design, implementation,
and verification of design modules.
Incremental Synthesis
Xilinx unique hierarchical floorplanning capabilities enable
designers to create a programmable logic design by isolat-
ing design changes within one hierarchical “logic block”,
and perform synthesis, verification, and implementation
processes on that specific logic block. By preserving the
logic in unchanged portions of a design, Xilinx incremental
design makes the high-density design process more effi-
cient.
Xilinx hierarchical floorplanning capabilities can be speci-
fied using the high-level floorplanner or a preferred RTL
floorplanner (see the Xilinx website for a list of supported
EDA partners). When used in conjunction with one of the
EDA partners’ floorplanners, higher performance results
can be achieved, as many synthesis tools use this more
predictable detailed physical implementation information to
establish more aggressive and accurate timing estimates
when performing their logic optimizations.
Modular Design
Xilinx innovative modular design capabilities take the incre-
mental design process one step further by enabling the
designer to delegate responsibility for completing the
design, synthesis, verification, and implementation of a hier-
archical “logic block” to an arbitrary number of designers -
assigning a specific region within the target FPGA for exclu-
sive use by each of the team members.
This team design capability enables an autonomous
approach to design modules, changing the hand-off point to
the lead designer or integrator from “my module works in
simulation” to “my module works in the FPGA”. This unique
design methodology also leverages the Xilinx hierarchical
floorplanning capabilities and enables the Xilinx (or EDA
partner) floorplanner to manage the efficient implementa-
tion of very high-density FPGAs.
Configuration
Virtex-II devices are configured by loading application-spe-
cific configuration data into the internal configuration mem-
ory. Configuration is carried out using a subset of the device
pins, some of which are dedicated, while others can be
re-used as general purpose inputs and outputs once config-
uration is complete.
Depending on the system design, several configuration
modes are supported, selectable via mode pins. The mode
pins M2, M1, and M0 are dedicated pins. An additional pin,
HSWAP_EN, is used in conjunction with the mode pins to
select whether user I/O pins have pull-ups during configura-
ds122_1_1.fm Page 42 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 43
Product Specification 1-800-255-7778
R
tion. By default, HSWAP_EN is tied High (internal pull-up),
which shuts off the pull-ups on the user I/O pins during con-
figuration. When HSWAP_EN is tied Low, user I/Os have
pull-ups during configuration. Other dedicated pins are
CCLK (the configuration clock pin), DONE, PROG_B, and
the boundary-scan pins: TDI, TDO, TMS, and TCK.
Depending on the configuration mode chosen, CCLK can
be an output generated by the FPGA, or an input accepting
an externally generated clock. The configuration pins and
boundary-scan pins are independent of the VCCO. The aux-
iliary power supply (VCCAUX) of 3.3V is used for these pins.
All configuration pins are LVTTL 12 mA. (See QPro Virtex-II
DC Characteristics.)
A persist option is available which can be used to force the
configuration pins to retain their configuration function even
after device configuration is complete. If the persist option is
not selected, then the configuration pins with the exception
of CCLK, PROG_B, and DONE can be used as user I/O in
normal operation. The persist option does not apply to the
boundary-scan related pins. The persist feature is valuable
in applications which employ partial reconfiguration or
reconfiguration on the fly.
Configuration Modes
Virtex-II supports the following five configuration modes:
Slave-serial mode
Master-serial mode
Slave SelectMAP mode
Master SelectMAP mode
Boundary-Scan mode (IEEE 1532/IEEE 1149)
A detailed description of configuration modes is provided in
the Virtex-II User Guide (UG002).
Slave-Serial Mode
In slave-serial mode, the FPGA receives configuration data
in bit-serial form from a serial PROM or other serial source
of configuration data. The CCLK pin on the FPGA is an
input in this mode. The serial bitstream must be setup at the
DIN input pin a short time before each rising edge of the
externally generated CCLK.
Multiple FPGAs can be daisy chained for configuration from
a single source. After a particular FPGA has been config-
ured, the data for the next device is routed internally to the
DOUT pin. The data on the DOUT pin changes on the rising
edge of CCLK.
Slave-serial mode is selected by applying <111> to the
mode pins (M2, M1, M0). A weak pull-up on the mode pins
makes slave serial the default mode if the pins are left
unconnected.
Master-Serial Mode
In master-serial mode, the CCLK pin is an output pin. It is
the Virtex-II FPGA device that drives the configuration clock
on the CCLK pin to a Xilinx Serial PROM, which in turn
feeds bit-serial data to the DIN input. The FPGA accepts
this data on each rising CCLK edge. After the FPGA has
been loaded, the data for the next device in a daisy chain is
presented on the DOUT pin after the rising CCLK edge.
The interface is identical to slave serial except that an inter-
nal oscillator is used to generate the configuration clock
(CCLK). A wide range of frequencies can be selected for
CCLK, which always starts at a slow default frequency. Con-
figuration bits then switch CCLK to a higher frequency for
the remainder of the configuration.
Slave SelectMAP Mode
The SelectMAP mode is the fastest configuration option.
Byte-wide data is written into the Virtex-II FPGA device with
a BUSY flag controlling the flow of data. An external data
source provides a byte stream, CCLK, an active-Low Chip
Select (CS_B) signal, and a Write signal (RDWR_B). If
BUSY is asserted (High) by the FPGA, the data must be
held until BUSY goes Low. Data can also be read using the
SelectMAP mode. If RDWR_B is asserted, configuration
data is read out of the FPGA as part of a readback opera-
tion.
After configuration, the pins of the SelectMAP port can be
used as additional user I/O. Alternatively, the port can be
retained to permit high-speed 8-bit readback using the per-
sist option.
Multiple Virtex-II FPGAs can be configured using the
SelectMAP mode, and can be made to start-up simulta-
neously. To configure multiple devices in this way, wire the
individual CCLK, Data, RDWR_B, and BUSY pins of all the
devices in parallel. The individual devices are loaded sepa-
rately by deasserting the CS_B pin of each device in turn
and writing the appropriate data.
Master SelectMAP Mode
This mode is a master version of the SelectMAP mode. The
device is configured byte-wide on a CCLK supplied by the
Virtex-II FPGA. Timing is similar to the Slave SerialMAP
mode except that CCLK is supplied by the Virtex-II FPGA.
Boundary-Scan (JTAG, IEEE 1532) Mode
In boundary-scan mode, dedicated pins are used for config-
uring the Virtex-II device. The configuration is done entirely
through the IEEE 1149.1 Test Access Port (TAP). Virtex-II
device configuration using boundary scan is compliant with
IEEE 1149.1-1993 standard and the new IEEE 1532 stan-
dard for In-System Configurable (ISC) devices. The IEEE
1532 standard is backward compliant with the IEEE
1149.1-1993 TAP and state machine. The IEEE Standard
1532 for In-System Configurable (ISC) devices is intended
to be programmed, reprogrammed, or tested on the board
via a physical and logical protocol.
Configuration through the boundary-scan port is always
available, independent of the mode selection. Selecting the
boundary-scan mode simply turns off the other modes.
ds122_1_1.fm Page 43 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
44 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Ta b l e 3 0 lists the total number of bits required to configure
each device.
Configuration Sequence
The configuration of Virtex-II devices is a three-phase pro-
cess after Power On Reset or POR. POR occurs when
VCCINT is greater than 1.2V, VCCAUX is greater than 2.5V,
and VCCO (bank 4) is greater than 1.5V. Once the POR volt-
ages have been reached, the three-phase process begins.
First, the configuration memory is cleared. Next, con-
figuration data is loaded into the memory, and finally, the
logic is activated by a start-up process.
Configuration is automatically initiated on power-up unless
it is delayed by the user. The INIT_B pin can be held Low
using an open-drain driver. An open-drain is required since
INIT_B is a bidirectional open-drain pin that is held Low by a
Virtex-II FPGA device while the configuration memory is
being cleared. Extending the time that the pin is Low causes
the configuration sequencer to wait. Thus, configuration is
delayed by preventing entry into the phase where data is
loaded.
The configuration process can also be initiated by asserting
the PROG_B pin. The end of the memory-clearing phase is
signaled by the INIT_B pin going High, and the completion
of the entire process is signaled by the DONE pin going
High. The Global Set/Reset (GSR) signal is pulsed after the
last frame of configuration data is written but before the
start-up sequence. The GSR signal resets all flip-flops on
the device.
The default start-up sequence is that one CCLK cycle after
DONE goes High, the global 3-state signal (GTS) is
released. This permits device outputs to turn on as neces-
sary. One CCLK cycle later, the Global Write Enable (GWE)
signal is released. This permits the internal storage ele-
ments to begin changing state in response to the logic and
the user clock.
The relative timing of these events can be changed via con-
figuration options in software. In addition, the GTS and
GWE events can be made dependent on the DONE pins of
multiple devices all going High, forcing the devices to start
synchronously. The sequence can also be paused at any
stage, until lock has been achieved on any or all DCMs, as
well as the DCI.
Readback
In this mode, configuration data from the Virtex-II FPGA
device can be read back. Readback is supported only in the
SelectMAP (master and slave) and Boundary Scan modes.
Along with the configuration data, it is possible to read back
the contents of all registers, distributed SelectRAM, and
block RAM resources. This capability is used for real-time
debugging. For more detailed configuration information, see
the Virtex-II User Guide (UG002).
Bitstream Encryption
Virtex-II devices have an on-chip decryptor using one or two
sets of three keys for triple-key Data Encryption Standard
(DES) operation. Xilinx software tools offer an optional
encryption of the configuration data (bitstream) with a tri-
ple-key DES determined by the designer.
The keys are stored in the FPGA by JTAG instruction and
retained by a battery connected to the VBATT pin, when the
device is not powered. Virtex-II devices can be configured
with the corresponding encrypted bitstream, using any of
the configuration modes described previously.
Table 29: Virtex-II Configuration Mode Pin Settings
Configuration Mode(1) M2 M1 M0 CCLK Direction Data Width Serial DOUT(2)
Master Serial 0 0 0 Out 1 Yes
Slave Serial 1 1 1 In 1 Yes
Master SelectMAP 0 1 1 Out 8 No
Slave SelectMAP 1 1 0 In 8 No
Boundary Scan 1 0 1 N/A 1 No
Notes:
1. The HSWAP_EN pin controls the pullups. Setting M2, M1, and M0 selects the configuration mode, while the HSWAP_EN pin
controls whether or not the pullups are used.
2. Daisy chaining is possible only in modes where Serial DOUT is used. For example, in SelectMAP modes, the first device does NOT
support daisy chaining of downstream devices.
Table 30: Virtex-II Bitstream Lengths
Device # of Configuration Bits
XQ2V1000 3,753,432
XQ2V3000 9,595,304
XQ2V6000 19,760,560
Notes:
1. These values are only valid for STEPPING LEVEL 1.
2. Only STEPPING LEVEL 1 should be used with QPro
devices.
ds122_1_1.fm Page 44 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 45
Product Specification 1-800-255-7778
R
A detailed description of how to use bitstream encryption is
provided in the Virtex-II User Guide. Your local FAE can also
provide specific information on this feature.
Partial Reconfiguration
Partial reconfiguration of Virtex-II devices can be accom-
plished in either Slave SelectMAP mode or Boundary-Scan
mode. Instead of resetting the chip and doing a full configu-
ration, new data is loaded into a specified area of the chip,
while the rest of the chip remains in operation. Data is
loaded on a column basis, with the smallest load unit being
a configuration “frame” of the bitstream (device size depen-
dent).
Partial reconfiguration is useful for applications that require
different designs to be loaded into the same area of a chip,
or that require the ability to change portions of a design
without having to reset or reconfigure the entire chip.
ds122_1_1.fm Page 45 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
46 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
QPro Virtex-II Electrical Characteristics
QPro Virtex-II devices are only available with the 4 speed
grade. QPro Virtex-II DC and AC characteristics are speci-
fied for military grade. Except for the operating temperature
range, or unless otherwise noted, all the DC and AC electri-
cal parameters are the same for a particular speed grade
(that is, the timing characteristics of a 4 speed grade mili-
tary device are the same as for a 4 speed grade commer-
cial device). All supply voltage and junction temperature
specifications are representative of worst-case conditions.
The parameters included are common to popular designs
and typical applications. Contact Xilinx for design consider-
ations requiring more detailed information.
All specifications are subject to change without notice.
QPro Virtex-II DC Characteristics
Table 31: Absolute Maximum Ratings
Symbol Description(1) Units
VCCINT Internal supply voltage relative to GND 0.5 to 1.65 V
VCCAUX Auxiliary supply voltage relative to GND 0.5 to 4.0 V
VCCO Output drivers supply voltage relative to GND 0.5 to 4.0 V
VBATT Key memory battery backup supply 0.5 to 4.0 V
VREF Input reference voltage 0.5 to VCCO + 0.5 V
VIN (3) Input voltage relative to GND (user and dedicated I/Os) 0.5 to VCCO + 0.5 V
VTS Voltage applied to 3-state output (user and dedicated I/Os) 0.5 to 4.0 V
TSTG Storage temperature (ambient) 65 to +150 °C
TSOL Maximum soldering temperature +220 °C
TJOperating junction temperature (2) +125 °C
Notes:
1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress
ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions
is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.
2. For soldering guidelines and thermal considerations, see the Device Packaging information on the Xilinx website.
3. Inputs configured as PCI are fully PCI compliant. This statement takes precedence over any specification that would imply that the
device is not PCI compliant.
ds122_1_1.fm Page 46 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 47
Product Specification 1-800-255-7778
R
Table 32: Recommended Operating Conditions
Symbol Description Package Min Max Units
VCCINT
Internal supply voltage relative to GND, TC= –55°C to +125°C Ceramic 1.425 1.575 V
Internal supply voltage relative to GND, TJ= –55°C to +125°C Plastic 1.425 1.575 V
VCCAUX
Auxiliary supply voltage relative to GND, TC= –55°C to +125°C Ceramic 3.135 3.465 V
Auxiliary supply voltage relative to GND, TJ= –55°C to +125°C Plastic 3.135 3.465 V
VCCO
Supply voltage relative to GND, TC= –55°C to +125°C Ceramic 1.2 3.6 V
Supply voltage relative to GND, TJ= –55°C to +125°CPlastic1.23.6V
VBATT
Battery voltage relative to GND, TC= –55°C to +125°C Ceramic 1.0 3.6 V
Battery voltage relative to GND, TJ= –55°C to +125°CPlastic1.03.6V
Notes:
1. If battery is not used, do not connect VBATT
.
2. Recommended maximum voltage droop for VCCAUX is 10 mV/ms.
3. The thresholds for Power On Reset are VCCINT > 1.2V, VCCAUX > 2.5V, and VCCO (Bank 4) > 1.5 V.
4. Limit the noise at the power supply to be within 200 mV peak-to-peak.
5. For power bypassing guidelines, see Xilinx Application Note XAPP623.
Table 33: DC Characteristics Over Recommended Operating Conditions
Symbol Description Device Min Max Units
VDRINT Data retention VCCINT voltage All 1.2 V
VDRI Data retention VCCAUX voltage All 2.5 V
IREF VREF current per bank All 10 +10 µA
ILInput leakage current All 10 +10 µA
CIN Input capacitance All 10 pF
IRPU Pad pull-up (when selected) @ VIN = 0 V, VCCO = 3.3 V (sample tested) All Note 1 250 µA
IRPD Pad pull-down (when selected) @ VIN = 3.6 V (sample tested) All Note 1 250 µA
IBATT Battery supply current All 100 nA
Notes:
1. Internal pull-up and pull-down resistors guarantee valid logic levels at unconnected input pins. These pull-up and pull-down resistors
do not guarantee valid logic levels when input pins are connected to other circuits.
ds122_1_1.fm Page 47 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
48 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Power-On Power Supply Requirements
Xilinx FPGAs require a certain amount of supply current
during power-on to ensure proper device operation. The
actual current consumed depends on the power-on ramp
rate of the power supply.
The VCCINT
, VCCAUX, and VCCO power supplies shall each
ramp on no faster than 200 µs and no slower than 50 ms.
Ramp on is defined as: 0 VDC to minimum supply voltages.
Ta b l e 3 5 shows the minimum current required by QPro
Virtex-II devices for proper power on and configuration.
Power supplies can be turned on in any sequence.
If any VCCO bank powers up before VCCAUX, then each bank
draws up to 300 mA, worst case, until the VCCAUX powers
on1. This does not harm the device. If the current is limited
to the minimum value above, or larger, the device powers on
properly after all three supplies have passed through their
power on reset threshold voltages.
Once initialized and configured, use the power calculator to
estimate current drain on these supplies.
General Power Supply Requirements
Proper decoupling of all FPGA power supplies is essential.
Consult Xilinx Application Note XAPP623 for detailed infor-
mation on power distribution system design.
VCCAUX powers critical resources in the FPGA. Thus,
VCCAUX is especially susceptible to power supply noise.
Changes in VCCAUX voltage outside of 200 mV peak to peak
should take place at a rate no faster than 10 mV per milli-
second. Techniques to help reduce jitter and period distor-
tion are provided in Xilinx Answer Record 13756, available
at www.support.xilinx.com.
VCCAUX can share a power plane with 3.3V VCCO, but only if
VCCO does not have excessive noise. Using simultaneously
switching output (SSO) limits are essential for keeping
power supply noise to a minimum. Refer to XAPP689,
“Managing Ground Bounce in Large FPGAs,” to determine
the number of simultaneously switching outputs allowed per
bank at the package level.
Table 34: Quiescent Supply Current
Symbol Description Device Min Typical Max Units
ICCINTQ
Quiescent VCCINT supply current XQ2V1000
XQ2V3000
XQ2V6000
-
100
200
250
0.50
1.30
1.50
A
ICCOQ
Quiescent VCCO supply current(1,2) XQ2V1000
XQ2V3000
XQ2V6000
-
1.0
2.0
2.0
6.25
6.25
6.25
mA
ICCAUXQ
Quiescent VCCAUX supply current(1,2) XQ2V1000
XQ2V3000
XQ2V6000
-
10
20
25
30
95
95
mA
Notes:
1. With no output current loads and no active input pull-up resistors. All I/O pins are 3-stated and floating.
2. If DCI or differential signaling is used, more accurate values can be obtained by using the Power Estimator or XPOWER.
3. Data are retained even if VCCO drops to 0 V.
4. Values specified for quiescent supply current parameters are Military Grade.
1. The 300 mA is transient current (peak). It eventually disappears even if VCCAUX does not power up.
Table 35: Maximum Power On Current Required for
QPro Virtex-II Devices
Current
Device (mA)
XQ2V1000 XQ2V3000 XQ2V6000
ICCINTMAX 500 1300 1500
ICCAUXMAX 30 95 95
ICCOMAX 6.25 6.25 6.25
Notes:
1. Values specified for power on current parameters are Military
Grade.
2. ICCOMAX values listed here apply to the entire device (all
banks).
ds122_1_1.fm Page 48 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 49
Product Specification 1-800-255-7778
R
DC Input and Output Levels
Values for VIL and VIH are recommended input voltages.
Values for IOL and IOH are guaranteed over the recom-
mended operating conditions at the VOL and VOH test
points. Only selected standards are tested. These are cho-
sen to ensure that all standards meet their specifications.
The selected standards are tested at minimum VCCO with
the respective VOL and VOH voltage levels shown. Other
standards are sample tested.
Table 36: DC Input and Output Levels
Input/Output
Standard
VIL VIH VOL VOH IOL IOH
V, Min V, Max V, Min V, Max V, Max V, Min mA mA
LV T T L (1) 0.5 0.8 2.0 3.6 0.4 2.4 24 24
LVCMOS33 0.5 0.8 2.0 3.6 0.4 VCCO 0.4 24 24
LVCMOS25 0.5 0.7 1.7 2.7 0.4 VCCO –0.4 24 –24
LVCMOS18 0.5 35% VCCO 65% VCCO 1.95 0.4 VCCO –0.4 16 –16
LVCMOS15 0.5 35% VCCO 65% VCCO 1.7 0.4 VCCO –0.4 16 –16
PCI33_3 0.5 30% VCCO 50% VCCO VCCO + 0.5 10% VCCO 90% VCCO Note 2 Note 2
PCI66_3 0.5 30% VCCO 50% VCCO VCCO + 0.5 10% VCCO 90% VCCO Note 2 Note 2
PCI–X 0.5 Note 2 Note 2 Note 2 Note 2 Note 2 Note 2 Note 2
GTLP 0.5 VREF –0.1 V
REF + 0.1 VCCO + 0.5 0.6 n/a 36 n/a
GTL 0.5 VREF –0.05 V
REF + 0.05 VCCO + 0.5 0.4 n/a 40 n/a
HSTL I 0.5 VREF –0.1 V
REF + 0.1 VCCO + 0.5 0.4 VCCO –0.4 8 8
HSTL II 0.5 VREF –0.1 V
REF + 0.1 VCCO + 0.5 0.4 VCCO –0.4 16 16
HSTL III 0.5 VREF –0.1 V
REF + 0.1 VCCO + 0.5 0.4 VCCO –0.4 24 –8
HSTL IV 0.5 VREF –0.1 V
REF + 0.1 VCCO + 0.5 0.4 VCCO –0.4 48 –8
SSTL3 I 0.5 VREF –0.2 V
REF + 0.2 VCCO + 0.5 VREF –0.6 V
REF + 0.6 8 8
SSTL3 II 0.5 VREF –0.2 V
REF + 0.2 VCCO + 0.5 VREF –0.8 V
REF + 0.8 16 16
SSTL2 I 0.5 VREF –0.15 V
REF + 0.15 VCCO + 0.5 VREF –0.65 V
REF + 0.65 7.6 7.6
SSTL2 II 0.5 VREF –0.15 V
REF + 0.15 VCCO + 0.5 VREF –0.80 V
REF + 0.80 15.2 15.2
AGP 0.5 VREF –0.2 V
REF + 0.2 VCCO + 0.5 10% VCCO 90% VCCO Note 2 Note 2
Notes:
1. VOL and VOH for lower drive currents are sample tested. The DONE pin is always LVTTL 12 mA.
2. Tested according to the relevant specifications.
3. LVTTL and LVCMOS inputs have approximately 100 mV of hysteresis.
ds122_1_1.fm Page 49 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
50 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
LDT Differential Signal DC Specifications (LDT_25)
LVDS DC Specifications (LVDS_33 and LVDS_25)
Extended LVDS DC Specifications (LVDSEXT_33 and LVDSEXT_25)
Table 37: LDT DC Specifications
DC Parameter Symbol Conditions Min Typ Max Units
Differential Output Voltage VOD RT = 100 across Q and Q signals 500 600 700 mV
Change in VOD Magnitude VOD 15 15 mV
Output Common Mode Voltage VOCM RT = 100 across Q and Q signals 560 600 640 mV
Change in VOS Magnitude VOCM 15 15 mV
Input Differential Voltage VID 200 600 1000 mV
Change in VID Magnitude VID 15 15 mV
Input Common Mode Voltage VICM 500 600 700 mV
Change in VICM Magnitude VICM 15 15 mV
Table 38: LVDS DC Specifications
DC Parameter Symbol Conditions Min Typ Max Units
Supply Voltage VCCO 3.3 or 2.5 V
Output High Voltage for Q and Q VOH RT = 100 across Q and Q signals 1.575 V
Output Low Voltage for Q and Q VOL RT = 100 across Q and Q signals 0.925 V
Differential Output Voltage (Q Q),
Q = High (Q –Q), Q = High VODIFF RT = 100 across Q and Q signals 250 350 400 mV
Output Common-Mode Voltage VOCM RT = 100 across Q and Q signals 1.125 1.2 1.375 V
Differential Input Voltage (Q Q),
Q = High (Q –Q), Q = High VIDIFF Common-mode input voltage = 1.25 V 100 350 N/A mV
Input Common-Mode Voltage VICM Differential input voltage = ±350 mV 0.2 1.25 VCCO – 0.5 V
Table 39: Extended LVDS DC Specifications
DC Parameter Symbol Conditions Min Typ Max Units
Supply Voltage VCCO 3.3 or 2.5 V
Output High voltage for Q and Q VOH RT = 100 across Q and Q signals 1.785 V
Output Low voltage for Q and Q VOL RT = 100 across Q and Q signals 0.705 V
Differential output voltage (Q Q),
Q = High (Q –Q), Q = High VODIFF RT = 100 across Q and Q signals 440 820 mV
Output common-mode voltage VOCM RT = 100 across Q and Q signals 1.125 1.200 1.375 V
Differential input voltage (Q Q),
Q = High (Q –Q), Q = High VIDIFF Common-mode input voltage = 1.25 V 100 350 N/A mV
Input common-mode voltage VICM Differential input voltage = ±350 mV 0.2 1.25 VCCO – 0.5 V
ds122_1_1.fm Page 50 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 51
Product Specification 1-800-255-7778
R
LVPECL DC Specifications
These values are valid when driving a 100 differential
load only, i.e., a 100 resistor between the two receiver
pins. The VOH levels are 200 mV below standard LVPECL
levels and are compatible with devices tolerant of lower
common-mode ranges. Ta ble 40 summarizes the DC output
specifications of LVPECL. For more information on using
LVPECL, see the Virtex-II User Guide.
QPro Virtex-II Switching Characteristics
Switching characteristics in this document are specified on
a per-speed-grade basis and can be designated as
Advance, Preliminary, or Production. Each designation is
defined as follows:
Advance: These speed files are based on simulations only
and are typically available soon after device design specifi-
cations are frozen. Although speed grades with this desig-
nation are considered relatively stable and conservative,
some under-reporting might still occur.
Preliminary: These speed files are based on complete ES
(engineering sample) silicon characterization. Devices and
speed grades with this designation are intended to give a
better indication of the expected performance of production
silicon. The probability of under-reporting delays is greatly
reduced as compared to Advance data.
Production: These speed files are released once enough
production silicon of a particular device family member has
been characterized to provide full correlation between
speed files and devices over numerous production lots.
There is no under-reporting of delays, and customers
receive formal notification of any subsequent changes. Typ-
ically, the slowest speed grades transition to Production
before faster speed grades.
Since individual family members are produced at different
times, the migration from one category to another depends
completely on the status of the fabrication process for each
device. Ta bl e 4 1 correlates the current status of each QPro
Virtex-II device with a corresponding speed grade designa-
tion.
All specifications are always representative of worst-case
supply voltage and junction temperature conditions.
Testing of Switching Characteristics
All devices are 100% functionally tested. Internal timing
parameters are derived from measuring internal test pat-
terns. Listed below are representative values. For more
specific, more precise, and worst-case guaranteed data,
use the values reported by the Xilinx static timing analyzer
and back-annotate to the simulation net list. Unless other-
wise noted, values apply to all QPro Virtex-II devices.
Table 40: LVPECL DC Specifications
DC Parameter Min Max Min Max Min Max Units
VCCO 3.0 3.3 3.6 V
VOH 1.8 2.11 1.92 2.28 2.13 2.41 V
VOL 0.96 1.27 1.06 1.43 1.30 1.57 V
VIH 1.49 2.72 1.49 2.72 1.49 2.72 V
VIL 0.86 2.125 0.86 2.125 0.86 2.125 V
Differential Input Voltage 0.3 0.3 0.3 V
Table 41: QPro Virtex-II Device Speed Grade
Designations
Device
Speed Grade Designations
Advance Preliminary Production
XQ2V1000 –4
XQ2V3000 –4
XQ2V6000 –4
ds122_1_1.fm Page 51 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
52 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
IOB Input Switching Characteristics
Input delays associated with the pad are specified for
LVTTL levels. For other standards, adjust the delays with
the values shown in IOB Input Switching Characteristics
Standard Adjustments, page 53.
Table 42: IOB Input Switching Characteristics
Description Symbol Device Min Max Units
Propagation Delays
Pad to I output, no delay TIOPI All -0.88 ns
Pad to I output, with delay TIOPID XQ2V1000 -2.43 ns
XQ2V3000 -2.49 ns
XQ2V6000 -2.66 ns
Propagation Delays
Pad to output IQ via transparent latch, no delay TIOPLI All -1.05 ns
Pad to output IQ via transparent latch, with delay TIOPLID XQ2V1000 -4.09 ns
XQ2V3000 -4.20 ns
XQ2V6000 -4.55 ns
Clock CLK to output IQ TIOCKIQ All -0.77 ns
Setup and Hold Times with Respect to Clock at IOB Input Register
Pad, no delay TIOPICK/TIOICKP All 1.06/–0.45 -ns
Pad, with delay TIOPICKD/TIOICK
PD
XQ2V1000 4.10/–2.58 -ns
XQ2V3000 4.22/–2.66 -ns
XQ2V6000 4.56/–2.90 -ns
ICE input TIOICECK/TIOCKI
CE
All 0.24/ 0.04 -ns
SR input (IFF, synchronous) TIOSRCKI All 0.34 -ns
Set/Reset Delays
SR input to IQ (asynchronous) TIOSRIQ All 1.40 ns
GSR to output IQ TGSRQ All 6.88 ns
Notes:
1. Input timing for LVTTL is measured at 1.4 V. For other I/O standards, see Ta bl e 4 6 .
ds122_1_1.fm Page 52 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 53
Product Specification 1-800-255-7778
R
IOB Input Switching Characteristics Standard Adjustments
Table 43: IOB Input Switching Characteristics Standard Adjustments
Description Symbol Standard Value Units
Data Input Delay Adjustments
Standard-specific data input delay adjustments TILVTTL LVTTL 0.00 ns
TILVCMOS33 LV C M O S3 3 0.00 ns
TILVCMOS25 LV C M O S2 5 0.12 ns
TILVCMOS18 LV C M O S1 8 0.49 ns
TILVCMOS15 LV C M O S1 5 1.15 ns
TILVDS_25 LVDS_25 0.69 ns
TILVDS_33 LVDS_33 0.69 ns
TILVPECL_33 LV P E C L 0.69 ns
TIPCI33_3 PCI, 33 MHz, 3.3 V 0.00 ns
TIPCI66_3 PCI, 66 MHz, 3.3 V 0.00 ns
TIPCIX PCIX, 133 MHz, 3.3 V 0.00 ns
TIGTL GTL 0.48 ns
TIGTLP GTLP 0.48 ns
TIHSTL_I HSTL I 0.48 ns
TIHSTL_II HSTL II 0.48 ns
TIHSTL_III HSTL III 0.48 ns
TIHSTL_IV HSTL IV 0.48 ns
TIHSTL_I_18 HSTL I_18 0.48 ns
TIHSTL_II_18 HSTL II_18 0.48 ns
TIHSTL_III_18 HSTL III_18 0.48 ns
TIHSTL_IV_18 HSTL IV_18 0.48 ns
TISSTL2_I SSTL2 I 0.48 ns
TISSTL2_II SSTL2 II 0.48 ns
TISSTL3_I SSTL3 I 0.40 ns
TISSTL3_II SSTL3 II 0.40 ns
TIAGP AGP 0.40 ns
TILVDCI_33 LVDCI_33 0.00 ns
TILVDCI_25 LVDCI_25 0.12 ns
TILVDCI_18 LVDCI_18 0.49 ns
TILVDCI_15 LVDCI_15 1.14 ns
TILVDCI_DV2_33 LVDCI_DV2_33 0.00 ns
TILVDCI_DV2_25 LVDCI_DV2_25 0.12 ns
TILVDCI_DV2_18 LVDCI_DV2_18 0.49 ns
ds122_1_1.fm Page 53 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
54 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Standard-specific data input delay adjustments TILVDCI_DV2_15 LVDCI_DV2_15 1.14 ns
TIGTL_DCI GTL_DCI 0.48 ns
TIGTLP_DCI GTLP_DCI 0.48 ns
TIHSTL_I_DCI HSTL_I_DCI 0.48 ns
TIHSTL_II_DCI HSTL_II_DCI 0.48 ns
TIHSTL_III_DCI HSTL_III_DCI 0.48 ns
TIHSTL_IV_DCI HSTL_IV_DCI 0.48 ns
TIHSTL_I_DCI_18 HSTL_I_DCI_18 0.48 ns
TIHSTL_II_DCI_18 HSTL_II_DCI_18 0.48 ns
TIHSTL_III_DCI_18 HSTL_III_DCI_18 0.48 ns
TIHSTL_IV_DCI_18 HSTL_IV_DCI_18 0.48 ns
TISSTL2_I_DCI SSTL2_I_DCI 0.48 ns
TISSTL2_II_DCI SSTL2_II_DCI 0.48 ns
TISSTL3_I_DCI SSTL3_I_DCI 0.40 ns
TISSTL3_II_DCI SSTL3_II_DCI 0.40 ns
TILDT_25 LDT_25 0.56 ns
TIULVDS_25 ULVDS_25 0.56 ns
Notes:
1. Input timing for LVTTL is measured at 1.4 V. For other I/O standards, see Ta bl e 4 6 .
Table 43: IOB Input Switching Characteristics Standard Adjustments (Continued)
Description Symbol Standard Value Units
ds122_1_1.fm Page 54 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 55
Product Specification 1-800-255-7778
R
IOB Output Switching Characteristics
Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust
the delays with the values shown in IOB Output Switching Characteristics Standard Adjustments, page 56.
Table 44: IOB Output Switching Characteristics
Description Symbol Min Max Units
Propagation Delays
O input to Pad TIOOP 1.74 ns
O input to Pad via transparent latch TIOOLP 2.11 ns
3-State Delays
T input to Pad high-impedance(1) TIOTHZ 0.64 ns
T input to valid data on Pad TIOTON 1.67 ns
T input to Pad high-impedance via transparent latch(1) TIOTLPHZ 1.01 ns
T input to valid data on Pad via transparent latch TIOTLPON 2.04 ns
GTS to Pad high-impedance(1) TGTS 5.98 ns
Sequential Delays
Clock CLK to Pad TIOCKP 2.15 ns
Clock CLK to Pad high-impedance (synchronous)(1) TIOCKHZ 1.20 ns
Clock CLK to valid data on Pad (synchronous) TIOCKON 2.22 ns
Setup and Hold Times Before/After Clock CLK
O input TIOOCK/TIOCKO 0.39/–0.11 ns
OCE input TIOOCECK/TIOCKOCE 0.24/–0.08 ns
SR input (OFF) TIOSRCKO/TIOCKOSR 0.34/–0.07 ns
3State Setup Times, T input TIOTCK/TIOCKT 0.35/–0.08 ns
3State Setup Times, TCE input TIOTCECK/TIOCKTCE 0.24/–0.08 ns
3State Setup Times, SR input (TFF) TIOSRCKT/TIOCKTSR 0.34/–0.07 ns
Set/Reset Delays
SR input to Pad (asynchronous) TIOSRP 2.98 ns
SR input to Pad high-impedance (asynchronous)(1) TIOSRHZ 1.92 ns
SR input to valid data on Pad (asynchronous) TIOSRON 2.95 ns
GSR to Pad TIOGSRQ 6.88 ns
Notes:
1. The 3-state turn-off delays should not be adjusted.
ds122_1_1.fm Page 55 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
56 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
IOB Output Switching Characteristics Standard Adjustments
Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust
the delays by the values shown.
Table 45: IOB Output Switching Characteristics Standard Adjustments
Description Symbol Standard Value Units
Output Delay Adjustments
Standard-specific adjustments for output delays terminating
at pads (based on standard capacitive load, Csl)
TOLVTTL_S2 LVTTL, Slow, 2 mA 10.68 ns
TOLVTTL_S4 4 mA 6.55 ns
TOLVTTL_S6 6 mA 4.66 ns
TOLVTTL_S8 8 mA 3.26 ns
TOLVTTL_S12 12 mA 2.63 ns
TOLVTTL_S16 16 mA 1.93 ns
TOLVTTL_S24 24 mA 1.43 ns
TOLVTTL_F2 LVTTL, Fast, 2 mA 7.39 ns
TOLVTTL_F4 4 mA 3.17 ns
TOLVTTL_F6 6 mA 1.78 ns
TOLVTTL_F8 8 mA 0.52 ns
TOLVTTL_F12 12 mA 0.00 ns
TOLVTTL_F16 16 mA –0.15 ns
TOLVTTL_F24 24 mA –0.26 ns
TOLVDS_25 LV D S 0 .36 n s
TOLVDS_33 LV D S 0 .29 n s
TOLVDSEXT_25 LVD S0 .21 n s
TOLVDSEXT_33 LVD S0 .19 n s
TOLDT_25 LDT –0.23 ns
TOBLVDS_25 BLVDS 0.76 ns
TOULVDS_25 ULVDS –0.23 ns
TOLVPECL_33 LVPECL 0.33 ns
TOPCI33_3 PCI, 33 MHz, 3.3 V 1.31 ns
TOPCI66_3 PCI, 66 MHz, 3.3 V –0.01 ns
TOPCIX PCI–X, 133 MHz, 3.3 V –0.01 ns
TOGTL GTL –0.36 ns
TOGTLP GTLP –0.20 ns
TOHSTL_I HSTL I 0.29 ns
TOHSTL_II HSTL II –0.17 ns
TOHSTL_III HSTL III –0.19 ns
TOHSTL_IV HSTL IV –0.45 ns
TOHSTL_I_18 HSTL I_18 –0.04 ns
TOHSTL_II_18 HSTL II_18 –0.20 ns
TOHSTL_III_18 HSTL III_18 –0.18 ns
ds122_1_1.fm Page 56 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 57
Product Specification 1-800-255-7778
R
Standard-specific adjustments for output delays terminating
at pads (based on standard capacitive load, Csl)
TOHSTL_IV_18 HSTL IV_18 –0.44 ns
TOSSTL2_I SSTL2 I 0.24 ns
TOSSTL2_II SSTL2 II –0.18 ns
TOSSTL3_I SSTL3 I 0.33 ns
TOSSTL3_II SSTL3 II –0.05 ns
TOAGP AGP –0.31 ns
TOLVCMOS33_S2 LVCMOS33, Slow, 2 mA 8.70 ns
TOLVCMOS33_S4 4 mA 4.95 ns
TOLVCMOS33_S6 6 mA 3.78 ns
TOLVCMOS33_S8 8 mA 2.60 ns
TOLVCMOS33_S12 12 mA 2.16 ns
TOLVCMOS33_S16 16 mA 1.40 ns
TOLVCMOS33_S24 24 mA 1.34 ns
TOLVCMOS33_F2 LVCMOS33, Fast, 2 mA 6.60 ns
TOLVCMOS33_F4 4 mA 2.81 ns
TOLVCMOS33_F6 6 mA 1.45 ns
TOLVCMOS33_F8 8 mA 0.54 ns
TOLVCMOS33_F12 12 mA 0.31 ns
TOLVCMOS33_F16 16 mA –0.15 ns
TOLVCMOS33_F24 24 mA –0.23 ns
TOLVCMOS25_S2 LVCMOS25, Slow, 2 mA 10.33 ns
TOLVCMOS25_S4 4 mA 5.67 ns
TOLVCMOS25_S6 6 mA 5.13 ns
TOLVCMOS25_S8 8 mA 4.38 ns
TOLVCMOS25_S12 12 mA 3.22 ns
TOLVCMOS25_S16 16 mA 2.67 ns
TOLVCMOS25_S24 24 mA 2.27 ns
TOLVCMOS25_F2 LVCMOS25, Fast, 2 mA 4.60 ns
TOLVCMOS25_F4 4 mA 1.30 ns
TOLVCMOS25_F6 6 mA 0.81 ns
TOLVCMOS25_F8 8 mA 0.37 ns
TOLVCMOS25_F12 12 mA 0.03 ns
TOLVCMOS25_F16 16 mA –0.21 ns
TOLVCMOS25_F24 24 mA –0.40 ns
TOLVCMOS18_S2 LVCMOS18, Slow, 2 mA 17.71 ns
TOLVCMOS18_S4 4 mA 11.57 ns
TOLVCMOS18_S6 6 mA 8.53 ns
TOLVCMOS18_S8 8 mA 7.78 ns
Table 45: IOB Output Switching Characteristics Standard Adjustments (Continued)
Description Symbol Standard Value Units
ds122_1_1.fm Page 57 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
58 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Standard-specific adjustments for output delays terminating
at pads (based on standard capacitive load, Csl)
TOLVCMOS18_S12 12 mA 6.28 ns
TOLVCMOS18_S16 16 mA 6.02 ns
TOLVCMOS18_F2 LVCMOS18, Fast, 2 mA 6.30 ns
TOLVCMOS18_F4 4 mA 2.15 ns
TOLVCMOS18_F6 6 mA 0.94 ns
TOLVCMOS18_F8 8 mA 0.80 ns
TOLVCMOS18_F12 12 mA 0.30 ns
TOLVCMOS18_F16 16 mA 0.26 ns
TOLVCMOS15_S2 LVCMOS15, Slow, 2 mA 21.50 ns
TOLVCMOS15_S4 4 mA 14.48 ns
TOLVCMOS15_S6 6 mA 13.66 ns
TOLVCMOS15_S8 8 mA 11.06 ns
TOLVCMOS15_S12 12 mA 10.25 ns
TOLVCMOS15_S16 16 mA 9.31 ns
TOLVCMOS15_F2 LVCMOS15, Fast, 2 mA 5.78 ns
TOLVCMOS15_F4 4 mA 2.27 ns
TOLVCMOS15_F6 6 mA 1.66 ns
TOLVCMOS15_F8 8 mA 1.05 ns
TOLVCMOS15_F12 12 mA 0.84 ns
TOLVCMOS15_F16 16 mA 0.75 ns
TOLVDCI_33 LVDCI_33 0.84 ns
TOLVDCI_25 LVDCI_25 0.88 ns
TOLVDCI_18 LVDCI_18 0.95 ns
TOLVDCI_15 LVDCI_15 2.06 ns
TOLVDCI_DV2_33 LVDCI_DV2_33 0.13 ns
TOLVDCI_DV2_25 LVDCI_DV2_25 0.03 ns
TOLVDCI_DV2_18 LVDCI_DV2_18 0.48 ns
TOLVDCI_DV2_15 LVDCI_DV2_15 1.36 ns
TOGTL_DCI GTL_DCI –0.35 ns
TOGTLP_DCI GTLP_DCI –0.17 ns
TOHSTL_I_DCI HSTL_I_DCI 0.26 ns
TOHSTL_II_DCI HSTL_II_DCI 0.07 ns
TOHSTL_III_DCI HSTL_III_DCI –0.20 ns
TOHSTL_IV_DCI HSTL_IV_DCI –0.52 ns
TOHSTL_I_DCI_18 HSTL_I_DCI_18 0.06 ns
TOHSTL_II_DCI_18 HSTL_II_DCI_18 –0.03 ns
TOHSTL_III_DCI_18 HSTL_III_DCI_18 –0.16 ns
TOHSTL_IV_DCI_18 HSTL_IV_DCI_18 –0.47 ns
Table 45: IOB Output Switching Characteristics Standard Adjustments (Continued)
Description Symbol Standard Value Units
ds122_1_1.fm Page 58 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 59
Product Specification 1-800-255-7778
R
Standard-specific adjustments for output delays terminating
at pads (based on standard capacitive load, Csl)
TOSSTL2_I_DCI SSTL2_I_DCI 0.14 ns
TOSSTL2_II_DCI SSTL2_II_DCI –0.11 ns
TOSSTL3_I_DCI SSTL3_I_DCI 0.17 ns
TOSSTL3_II_DCI SSTL3_II_DCI 0.09 ns
Table 45: IOB Output Switching Characteristics Standard Adjustments (Continued)
Description Symbol Standard Value Units
ds122_1_1.fm Page 59 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
60 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
I/O Standard Adjustment Measurement Methodology
Input Delay Measurements
Ta b l e 4 6 shows the test setup parameters used for measur-
ing Input standard adjustments (see Table 43, page 53).
Output Delay Measurements
Output delays are measured using a Tektronix P6245
TDS500/600 probe (< 1 pf) across approximately 4" of FR4
microstrip trace. Standard termination was used for all test-
ing. (See Virtex-II Platform FPGA User Guide for details.)
The propagation delay of the 4" trace is characterized sep-
arately and subtracted from the final measurement, and is
therefore not included in the generalized test setup shown in
Figure 51.
Measurements and test conditions are reflected in the IBIS
models except where the IBIS format precludes it. (IBIS
models can be found on the web at http://support.xil-
inx.com/support/sw_ibis.htm.) Parameters VREF, RREF,
CREF, and VMEAS fully describe the test conditions for each
I/O standard. The most accurate prediction of propagation
delay in any given application can be obtained through IBIS
simulation, using the following method:
1. Simulate the output driver of choice into the generalized
test setup, using values from Ta bl e 4 7 .
2. Record the time to VMEAS.
3. Simulate the output driver of choice into the actual PCB
trace and load, using the appropriate IBIS model or
capacitance value to represent the load.
4. Record the time to VMEAS.
5. Compare the results of steps 2 and 4. The increase or
decrease in delay should be added to or subtracted
from the I/O Output Standard Adjustment value
(Table 45) to yield the actual worst-case propagation
delay (clock-to-input) of the PCB trace.
Table 46: Input Delay Measurement Methodology
Standard VL(1) VH(1) VMEAS
(3,4)
VREF
(2,4)
LV T T L 0 3 . 0 1 . 4
LVCMOS33 0 3.3 1.65
LVCMOS25 0 2.5 1.25
LVCMOS18 0 1.8 0.9
LVCMOS15 0 1.5 0.75
PCI33_3 Per PCI Specification
PCI66_3 Per PCI Specification
PCI-X Per PCI-X Specification
GTL VREF –0.2 V
REF +0.2 V
REF 0.80
GTLP VREF –0.2 V
REF +0.2 V
REF 1.0
HSTL Class I VREF –0.5 V
REF +0.5 V
REF 0.75
HSTL Class II VREF –0.5 V
REF +0.5 V
REF 0.75
HSTL Class III VREF –0.5 V
REF +0.5 V
REF 0.90
HSTL Class IV VREF –0.5 V
REF +0.5 V
REF 0.90
SSTL3
Class I & II VREF –1.00 V
REF +1.00 V
REF 1.5
SSTL2
Class I & II VREF –0.75 V
REF +0.75 V
REF 1.25
AGP-2X VREF
(0.2 xVCCO)
VREF +
(0.2 xVCCO)VREF
Per
AGP
Spec
LVDS25 1.2 0.125 1.2 + 0.125 1.2
LVDS33 1.2 0.125 1.2 + 0.125 1.2
LVDSEXT25 1.2 0.125 1.2 + 0.125 1.2
LVDSEXT33 1.2 0.125 1.2 + 0.125 1.2
ULVDS25 0.6 0.125 0.6 + 0.125 0.6
LDT25 0.6 0.125 0.6 + 0.125 0.6
LVPECL 1.6 0.3 1.6 + 0.3 1.6
Notes:
1. Input waveform switches between VLand VH.
2. Measurements are made at typical, minimum, and maximum VREF
values. Reported delays reflect worst case of these measurements.
VREF values listed are typical. See Virtex-II Platform FPGA User
Guide for min/max specifications.
3. Input voltage level from which measurement starts.
4. Note that this is an input voltage reference that bears no relation to
the VREF / VMEAS parameters found in IBIS models and/or noted in
Figure 51.
Figure 51: Generalized Test Setup
VREF
RREF
VMEAS
(voltage level at which
delay measurement is taken)
CREF
(probe capacitance)
FPGA Output
ds083-3_06a_092503
ds122_1_1.fm Page 60 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 61
Product Specification 1-800-255-7778
R
Table 47: Output Delay Measurement Methodology
Standard RREF
(ohms)
CREF(1)
(pF)
VMEAS
(V)
VREF
(V)
LVTTL (all) 1M 0 1.4 0
LVCMOS33 1M 0 1.65 0
LVCMOS25 1M 0 1.25 0
LVCMOS18 1M 0 0.9 0
LVCMOS15 1M 0 0.75 0
PCI33_3 - rising edge 25 0 0.94 0
PCI33_3 - falling edge 25 0 2.03 3.3
PCI66_3 - rising edge 25 0 0.94 0
PCI66_3 - falling edge 25 0 2.03 3.3
PCI-X - rising edge 25 0 0.94
PCI-X - falling edge 25 0 2.03 3.3
GTL 25 0 0.8 1.2
GTLP 25 0 1.0 1.5
HSTL Class I 50 0 VREF 0.75
HSTL Class II 25 0 VREF 0.75
HSTL Class III 50 0 0.9 1.5
HSTL Class IV 25 0 0.9 1.5
HSTL18 Class I 50 0 VREF 0.9
HSTL18 Class II 25 0 VREF 0.9
HSTL18 Class III 50 0 1.1 1.8
HSTL18 Class IV 25 0 1.1 1.8
SSTL3 Class I 50 0 VREF 1.5
SSTL3 Class II 25 0 VREF 1.5
SSTL2 Class I 50 0 VREF 1.25
SSTL2 Class II 25 0 VREF 1.25
SSTL18 Class I 50 0 VREF 0.9
SSTL18 Class II 25 0 VREF 0.9
AGP-2X - rising edge 50 0 0.94 0
AGP-2X - falling edge 50 0 2.03 3.3
LVDS25 50 0 VREF 1.2
LVDSEXT25 50 0 VREF 1.2
LVDS33 50 0 VREF 1.2
LVDSEXT33 50 0 VREF 1.2
BLVDS 1M 0 1.2 0
LDT_25 50 0 VREF 0.6
LVPECL25 1M 0 1.23 0
LVDCI33 1M 0 1.65 0
LVDCI25 1M 0 1.25 0
LV D C I1 8 1 M 0 0 . 9 0
LVDCI15 1M 0 0.75 0
HSTL DCI Class I 50 0 VREF 0.75
HSTL DCI C0lass II 50 0 VREF 0.75
HSTL DCI Class III 50 0 0.9 1.5
HSTL DCI Class IV 50 0 0.9 1.5
HSTL18 DCI Class I 50 0 VREF 0.9
HSTL18 DCI Class II 50 0 VREF 0.9
HSTL18 DCI Class III 50 0 1.1 1.8
HSTL18 DCI Class IV 50 0 1.1 1.8
SSTL3 DCI Class I 50 0 VREF 1.5
SSTL3 DCI Class II 50 0 VREF 1.5
SSTL2 DCI Class I 50 0 VREF 1.25
SSTL2 DCI Class II 50 0 VREF 1.25
SSTL18 DCI Class I 50 0 VREF 0.9
SSTL18 DCI Class II 50 0 VREF 0.9
GTL DCI 50 0 0.8 1.2
GTLP DCI 50 0 1.0 1.5
Notes:
1. CREF is the capacitance of the probe, nominally 0 pF.
Table 47: Output Delay Measurement Methodology
Standard RREF
(ohms)
CREF(1)
(pF)
VMEAS
(V)
VREF
(V)
ds122_1_1.fm Page 61 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
62 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Clock Distribution Switching Characteristics
CLB Switching Characteristics
Delays originating at F/G inputs vary slightly according to the input used (see Figure 49). The values listed below are
worst-case. Precise values are provided by the timing analyzer.
Table 48: Clock Distribution Switching Characteristics
Description Symbol Value Units
Global Clock Buffer I input to O output TGIO 0.59 ns
Table 49: CLB Switching Characteristics
Description Symbol Min Max Units
Combinatorial Delays
4-input function: F/G inputs to X/Y outputs TILO -0.44ns
5-input function: F/G inputs to F5 output TIF5 -0.72ns
5-input function: F/G inputs to X output TIF5X -0.95ns
FXINA or FXINB inputs to Y output via MUXFX TIFXY -0.45ns
FXINA input to FX output via MUXFX TINAFX -0.32ns
FXINB input to FX output via MUXFX TINBFX -0.32ns
SOPIN input to SOPOUT output via ORCY TSOPSOP -0.44ns
Incremental delay routing through transparent latch to XQ/YQ
outputs TIFNCTL -0.51ns
Sequential Delays
FF Clock CLK to XQ/YQ outputs TCKO -0.57ns
Latch Clock CLK to XQ/YQ outputs TCKLO -0.68ns
Setup and Hold Times Before/After Clock CLK
BX/BY inputs TDICK/TCKDI 0.37/–0.09 - ns
DY inputs TDYCK/TCKDY 0.37/–0.09 - ns
DX inputs TDXQK/TCKDX 0.37/–0.09 - ns
CE input TCECK/TCKCE 0.24/–0.08 - ns
SR/BY inputs (synchronous) TSRCK/TSCKR 0.26/–0.03 - ns
Clock CLK
Minimum Pulse Width, High TCH 0.77 - ns
Minimum Pulse Width, Low TCL 0.77 - ns
Set/Reset
Minimum Pulse Width, SR/BY inputs TRPW 0.77 - ns
Delay from SR/BY inputs to XQ/YQ outputs (asynchronous) TRQ -1.34ns
Toggle Frequency (MHz) (for export control) FTOG - 650 MHz
ds122_1_1.fm Page 62 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 63
Product Specification 1-800-255-7778
R
CLB Distributed RAM Switching Characteristics
CLB Shift Register Switching Characteristics
Table 50: CLB Distributed RAM Switching Characteristics
Description Symbol Min Max Units
Sequential Delays
Clock CLK to X/Y outputs (WE active) in 16 x 1 mode TSHCKO16 -2.05ns
Clock CLK to X/Y outputs (WE active) in 32 x 1 mode TSHCKO32 -2.49ns
Clock CLK to F5 output TSHCKOF5 -2.23ns
Setup and Hold Times Before/After Clock CLK
BX/BY data inputs (DIN) TDS/TDH 0.67/–0.11 - ns
F/G address inputs TAS/TAH 0.50/ 0.00 - ns
SR input (WS) TWES/TWEH 0.53/–0.01 - ns
Clock CLK
Minimum Pulse Width, High TWPH 0.72 - ns
Minimum Pulse Width, Low TWPL 0.72 - ns
Minimum clock period to meet address write cycle time TWC 1.44 - ns
Table 51: CLB Shift Register Switching Characteristics
Description Symbol Min Max Units
Sequential Delays
Clock CLK to X/Y outputs TREG -2.92ns
Clock CLK to X/Y outputs TREG32 -3.35ns
Clock CLK to XB output via MC15 LUT output TREGXB -2.82ns
Clock CLK to YB output via MC15 LUT output TREGYB -2.75ns
Clock CLK to Shiftout TCKSH -2.43ns
Clock CLK to F5 output TREGF5 -3.09ns
Setup and Hold Times Before/After Clock CLK
BX/BY data inputs (DIN) TSRLDS/TSRLDH 0.67/–0.09 - ns
SR input (WS) TWSS/TWSH 0.24/–0.08 - ns
Clock CLK
Minimum Pulse Width, High TSRPH 0.72 - ns
Minimum Pulse Width, Low TSRPL 0.72 - ns
ds122_1_1.fm Page 63 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
64 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Multiplier Switching Characteristics
Ta bl e 5 2 and Tab l e 5 3 provide timing information for QPro Virtex-II multiplier blocks, available in stepping revisions of QPro
Virtex-II devices. For more information on stepping revisions, availability, and ordering instructions, see your local sales
representative.
Table 52: Enhanced Multiplier Switching Characteristics
Description Symbol Min Max Units
Propagation Delay to Output Pin
Input to Pin 35 TMULT_P35 -5.91 ns
Input to Pin 34 TMULT_P34 -5.79 ns
Input to Pin 33 TMULT_P33 -5.66 ns
Input to Pin 32 TMULT_P32 -5.54 ns
Input to Pin 31 TMULT_P31 -5.42 ns
Input to Pin 30 TMULT_P30 -5.29 ns
Input to Pin 29 TMULT_P29 -5.17 ns
Input to Pin 28 TMULT_P28 -5.05 ns
Input to Pin 27 TMULT_P27 -4.92 ns
Input to Pin 26 TMULT_P26 -4.80 ns
Input to Pin 25 TMULT_P25 -4.68 ns
Input to Pin 24 TMULT_P24 -4.56 ns
Input to Pin 23 TMULT_P23 -4.43 ns
Input to Pin 22 TMULT_P22 -4.31 ns
Input to Pin 21 TMULT_P21 -4.19 ns
Input to Pin 20 TMULT_P20 -4.06 ns
Input to Pin 19 TMULT_P19 -3.94 ns
Input to Pin 18 TMULT_P18 -3.82 ns
Input to Pin 17 TMULT_P17 -3.69 ns
Input to Pin 16 TMULT_P16 -3.57 ns
Input to Pin 15 TMULT_P15 -3.45 ns
Input to Pin 14 TMULT_P14 -3.33 ns
Input to Pin 13 TMULT_P13 -3.20 ns
Input to Pin 12 TMULT_P12 -3.08 ns
Input to Pin 11 TMULT_P11 -2.96 ns
Input to Pin 10 TMULT_P10 -2.83 ns
Input to Pin 9 TMULT_P9 -2.71 ns
Input to Pin 8 TMULT_P8 -2.59 ns
Input to Pin 7 TMULT_P7 -2.46 ns
Input to Pin 6 TMULT_P6 -2.34 ns
Input to Pin 5 TMULT_P5 -2.22 ns
Input to Pin 4 TMULT_P4 -2.10 ns
Input to Pin 3 TMULT_P3 -1.97 ns
Input to Pin 2 TMULT_P2 -1.85 ns
Input to Pin 1 TMULT_P1 -1.73 ns
Input to Pin 0 TMULT_P0 -1.60 ns
ds122_1_1.fm Page 64 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 65
Product Specification 1-800-255-7778
R
Table 53: Pipelined Multiplier Switching Characteristics
Description Symbol Min Max Units
Setup and Hold Times Before/After Clock
Data Inputs TMULIDCK/TMULCKID - 3.89/0.00 ns
Clock Enable TMULIDCK_CE/TMULCKID_CE - 0.86/0.00 ns
Reset TMULIDCK_RST/TMULCKID_RST - 0.86/0.00 ns
Clock to Output Pin
Clock to Pin 35 TMULTCK_P35 -3.74ns
Clock to Pin 34 TMULTCK_P34 -3.61ns
Clock to Pin 33 TMULTCK_P33 -3.49ns
Clock to Pin 32 TMULTCK_P32 -3.37ns
Clock to Pin 31 TMULTCK_P31 -3.25ns
Clock to Pin 30 TMULTCK_P30 -3.12ns
Clock to Pin 29 TMULTCK_P29 -3.00ns
Clock to Pin 28 TMULTCK_P28 -2.88ns
Clock to Pin 27 TMULTCK_P27 -2.75ns
Clock to Pin 26 TMULTCK_P26 -2.63ns
Clock to Pin 25 TMULTCK_P25 -2.51ns
Clock to Pin 24 TMULTCK_P24 -2.38ns
Clock to Pin 23 TMULTCK_P23 -2.26ns
Clock to Pin 22 TMULTCK_P22 -2.14ns
Clock to Pin 21 TMULTCK_P21 -2.02ns
Clock to Pin 20 TMULTCK_P20 -1.89ns
Clock to Pin 19 TMULTCK_P19 -1.77ns
Clock to Pin 18 TMULTCK_P18 -1.65ns
Clock to Pin 17 TMULTCK_P17 -1.52ns
Clock to Pin 16 TMULTCK_P16 -1.40ns
Clock to Pin 15 TMULTCK_P15 -1.28ns
Clock to Pin 14 TMULTCK_P14 -1.15ns
Clock to Pin 13 TMULTCK_P13 -1.15ns
Clock to Pin 12 TMULTCK_P12 -1.15ns
Clock to Pin 11 TMULTCK_P11 -1.15ns
Clock to Pin 10 TMULTCK_P10 -1.15ns
Clock to Pin 9 TMULTCK_P9 -1.15ns
Clock to Pin 8 TMULTCK_P8 -1.15ns
Clock to Pin 7 TMULTCK_P7 -1.15ns
Clock to Pin 6 TMULTCK_P6 -1.15ns
Clock to Pin 5 TMULTCK_P5 -1.15ns
Clock to Pin 4 TMULTCK_P4 -1.15ns
Clock to Pin 3 TMULTCK_P3 -1.15ns
Clock to Pin 2 TMULTCK_P2 -1.15ns
Clock to Pin 1 TMULTCK_P1 -1.15ns
Clock to Pin 0 TMULTCK_P0 -1.15ns
ds122_1_1.fm Page 65 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
66 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Block SelectRAM Switching Characteristics
TBUF Switching Characteristics
JTAG Test Access Port Switching Characteristics
Table 54: Block SelectRAM Switching Characteristics
Description Symbol Min Min Units
Sequential Delays
Clock CLK to DOUT output TBCKO -2.65ns
Setup and Hold Times Before Clock CLK
ADDR inputs TBACK/TBCKA 0.36/ 0.00 - ns
DIN inputs TBDCK/TBCKD 0.36/ 0.00 - ns
EN input TBECK/TBCKE 1.20/–0.58 - ns
RST input TBRCK/TBCKR 1.65/–0.90 - ns
WEN input TBWCK/TBCKW 0.72/–0.25 - ns
Clock CLK
Minimum Pulse Width, High TBPWH 1.48 - ns
Minimum Pulse Width, Low TBPWL 1.48 - ns
Table 55: TBUF Switching Characteristics
Description Symbol Min Max Units
Combinatorial Delays
IN input to OUT output TIO -0.58 ns
TRI input to OUT output high-impedance TOFF -0.55 ns
TRI input to valid data on OUT output TON -0.55 ns
Table 56: JTAG Test Access Port Switching Characteristics
Description Symbol Min Max Units
TMS and TDI Setup times before TCK TTA P TK 5.5 - ns
TMS and TDI Hold times after TCK TTCKTAP 0.0 - ns
Output delay from clock TCK to output TDO TTCKTDO - 10.0 ns
Maximum TCK clock frequency FTCK -33MHz
ds122_1_1.fm Page 66 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 67
Product Specification 1-800-255-7778
R
QPro Virtex-II Pin-to-Pin Output Parameter Guidelines
All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock
loading. Values are expressed in nanoseconds unless otherwise noted.
Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, with DCM
Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, without DCM
Table 57: Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, with DCM
Description Symbol Device Value Units
LVTTL Global Clock Input to Output delay using Output flip-flop,
12 mA, Fast Slew Rate, with DCM.
For data output with different standards, adjust the delays with the
values shown in IOB Output Switching Characteristics Standard
Adjustments, page 56.
Global Clock and OFF with DCM TICKOFDCM XQ2V1000 2.76 ns
XQ2V3000 2.88 ns
XQ2V6000 3.45 ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and
where all accessible IOB and CLB flip-flops are clocked by the global clock net.
2. Output timing is measured with a 35 pF external capacitive load. The only time it is not 50% of VCC threshold is with LVCMOS. For
other I/O standards and different loads, see Ta bl e 4 7 .
3. DCM output jitter is included in the measurement.
Table 58: Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, without DCM
Description Symbol Device Value Units
LVTTL Global Clock Input to Output Delay using Output flip-flop,
12 mA, Fast Slew Rate, without DCM.
For data output with different standards, adjust the delays with the
values shown in IOB Output Switching Characteristics Standard
Adjustments, page 56.
Global Clock and OFF without DCM TICKOF XQ2V1000 5.90 ns
XQ2V3000 6.62 ns
XQ2V6000 7.22 ns
Notes:
1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and
where all accessible IOB and CLB flip-flops are clocked by the global clock net.
2. Output timing is measured at 50% VCC threshold with 35 pF external capacitive load. For other I/O standards and different loads, see
Table 47.
ds122_1_1.fm Page 67 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
68 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
QPro Virtex-II Pin-to-Pin Input Parameter Guidelines
All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock
loading. Values are expressed in nanoseconds unless otherwise noted.
Global Clock Setup and Hold for LVTTL Standard, with DCM
Global Clock Setup and Hold for LVTTL Standard, without DCM
Table 59: Global Clock Setup and Hold for LVTTL Standard, with DCM
Description Symbol Device Value Units
Input Setup and Hold Time Relative to Global Clock Input
Signal for LVTTL Standard.
For data input with different standards, adjust the setup time
delay by the values shown in IOB Input Switching
Characteristics Standard Adjustments, page 53.
No Delay
Global Clock and IFF with DCM
TPSDCM/TPHDCM XQ2V1000 1.84/–0.76 ns
XQ2V3000 1.96/–0.76 ns
XQ2V6000 1.96/–0.76 ns
Notes:
1. IFF = Input Flip-Flop or Latch
2. Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured
relative to the Global Clock input signal with the slowest route and heaviest load.
Table 60: Global Clock Setup and Hold for LVTTL Standard, without DCM
Description Symbol Device Value Units
Input Setup and Hold Time Relative to Global Clock Input
Signal for LVTTL Standard.(1)
For data input with different standards, adjust the setup time
delay by the values shown in IOB Input Switching
Characteristics Standard Adjustments, page 53.
Full Delay
Global Clock and IFF(2) without DCM
TPSFD/TPHFD XQ2V1000 2.21/ 0.00 ns
XQ2V3000 2.21/ 0.00 ns
XQ2V6000 2.21/ 0.50 ns
Notes:
1. Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured
relative to the Global Clock input signal with the slowest route and heaviest load.
2. IFF = Input Flip-Flop or Latch
3. These values are parametrically measured.
ds122_1_1.fm Page 68 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 69
Product Specification 1-800-255-7778
R
DCM Timing Parameters
All devices are 100% functionally tested. Because of the dif-
ficulty in directly measuring many internal timing parame-
ters, those parameters are derived from benchmark timing
patterns. The following guidelines reflect worst-case values
across the recommended operating conditions. All output
jitter and phase specifications are determined through sta-
tistical measurement at the package pins.
Operating Frequency Ranges
Table 61: Operating Frequency Ranges
Description Symbol Constraints Value Units
Output Clocks (Low Frequency Mode)
CLK0, CLK90, CLK180, CLK270 CLKOUT_FREQ_1X_LF_Min 24.00 MHz
CLKOUT_FREQ_1X_LF_Max 180.00 MHz
CLK2X, CLK2X180 CLKOUT_FREQ_2X_LF_Min 48.00 MHz
CLKOUT_FREQ_2X_LF_Max 360.00 MHz
CLKDV CLKOUT_FREQ_DV_LF_Min 1.50 MHz
CLKOUT_FREQ_DV_LF_Max 120.00 MHz
CLKFX, CLKFX180 CLKOUT_FREQ_FX_LF_Min 24.00 MHz
CLKOUT_FREQ_FX_LF_Max 210.00 MHz
Input Clocks (Low Frequency Mode)
CLKIN (using DLL outputs) (1), (3) CLKIN_FREQ_DLL_LF_Min 24.00 MHz
CLKIN_FREQ_DLL_LF_Max 180.00 MHz
CLKIN (using CLKFX outputs) (2), (3) CLKIN_FREQ_FX_LF_Min 1.00 MHz
CLKIN_FREQ_FX_LF_Max 210.00 MHz
PSCLK PSCLK_FREQ_LF_Min 0.01 MHz
PSCLK_FREQ_LF_Max 360.00 MHz
Output Clocks (High Frequency Mode)
CLK0, CLK180 CLKOUT_FREQ_1X_HF_Min 48.00 MHz
CLKOUT_FREQ_1X_HF_Max 360.00 MHz
CLKDV CLKOUT_FREQ_DV_HF_Min 3.00 MHz
CLKOUT_FREQ_DV_HF_Max 240.00 MHz
CLKFX, CLKFX180 CLKOUT_FREQ_FX_HF_Min 210.00 MHz
CLKOUT_FREQ_FX_HF_Max 270.00 MHz
Input Clocks (High Frequency Mode)
CLKIN (using DLL outputs) (1), (3) CLKIN_FREQ_DLL_HF_Min 48.00 MHz
CLKIN_FREQ_DLL_HF_Max 360.00 MHz
CLKIN (using CLKFX outputs) (2), (3) CLKIN_FRQ_FX_HF_Min 50.00 MHz
CLKIN_FRQ_FX_HF_Max 270.00 MHz
PSCLK PSCLK_FREQ_HF_Min 0.01 MHz
PSCLK_FREQ_HF_Max 360.00 MHz
Notes:
1. “DLL outputs” is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.
2. If both DLL and CLKFX outputs are used, follow the more restrictive specification.
3. If the CLKIN_DIVIDE_BY_2 attribute of the DCM is used, then double these values.
ds122_1_1.fm Page 69 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
70 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Input Clock Tolerances
Table 62: Input Clock Tolerances
Description Symbol
Constraints
FCLKIN Min Max Units
Input Clock Low/High Pulse Width
PSCLK PSCLK_PULSE < 1MHz 25.00 ns
PSCLK and CLKIN(2) PSCLK_PULSE and
CLKIN_PULSE
1 – 10 MHz 25.00 ns
10 – 25 MHz 10.00 ns
25 – 50 MHz 5.00 ns
50 – 100 MHz 3.00 ns
100 – 150 MHz 2.40 ns
150 – 200 MHz 2.00 ns
200 – 250 MHz 1.80 ns
250 – 300 MHz 1.50 ns
300 – 350 MHz 1.30 ns
350 – 400 MHz 1.15 ns
> 400 MHz 1.05 ns
Input Clock Cycle-Cycle Jitter (Low Frequency Mode)
CLKIN (using DLL outputs)(1) CLKIN_CYC_JITT_DLL_LF ±300 ps
CLKIN (using CLKFX outputs)(2) CLKIN_CYC_JITT_FX_LF ±300 ps
Input Clock Cycle-Cycle Jitter (High Frequency Mode)
CLKIN (using DLL outputs)(1) CLKIN_CYC_JITT_DLL_HF ±150 ps
CLKIN (using CLKFX outputs)(2) CLKIN_CYC_JITT_FX_HF ±150 ps
Input Clock Period Jitter (Low Frequency Mode)
CLKIN (using DLL outputs)(1) CLKIN_PER_JITT_DLL_LF ±1 ns
CLKIN (using CLKFX outputs)(2) CLKIN_PER_JITT_FX_LF ±1 ns
Input Clock Period Jitter (High Frequency Mode)
CLKIN (using DLL outputs)(1) CLKIN_PER_JITT_DLL_HF ±1 ns
CLKIN (using CLKFX outputs)(2) CLKIN_PER_JITT_FX_HF ±1 ns
Feedback Clock Path Delay Variation
CLKFB off-chip feedback CLKFB_DELAY_VAR_EXT ±1 ns
Notes:
1. “”DLL outputs” is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.
2. If both DLL and CLKFX outputs are used, follow the more restrictive specification.
3. If the DCM phase shift feature is used and the CLKIN frequency > 200 MHz, the CLKIN duty cycle must be within ±5% (45/55 to
55/45).
ds122_1_1.fm Page 70 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 71
Product Specification 1-800-255-7778
R
Output Clock Jitter
Output Clock Phase Alignment
Table 63: Output Clock Jitter
Description Symbol Constraints Value Units
Clock Synthesis Period Jitter
CLK0 CLKOUT_PER_JITT_0 ±100 ps
CLK90 CLKOUT_PER_JITT_90 ±150 ps
CLK180 CLKOUT_PER_JITT_180 ±150 ps
CLK270 CLKOUT_PER_JITT_270 ±150 ps
CLK2X, CLK2X180 CLKOUT_PER_JITT_2X ±200 ps
CLKDV (integer division) CLKOUT_PER_JITT_DV1 ±150 ps
CLKDV (non-integer division) CLKOUT_PER_JITT_DV2 ±300 ps
CLKFX, CLKFX180 CLKOUT_PER_JITT_FX Note 1 ps
Notes:
1. Values for this parameter are available at http://www.xilinx.com.
Table 64: Output Clock Phase Alignment
Description Symbol Constraints Value Units
Phase Offset Between CLKIN and CLKFB
CLKIN/CLKFB CLKIN_CLKFB_PHASE ±50 ps
Phase Offset Between Any DCM Outputs
All CLK* outputs CLKOUT_PHASE ±140 ps
Duty Cycle Precision
DLL outputs(1) CLKOUT_DUTY_CYCLE_DLL(2) ±150 ps
CLKFX outputs CLKOUT_DUTY_CYCLE_FX ±100 ps
Notes:
1. “”DLL outputs” is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.
2. CLKOUT_DUTY_CYCLE_DLL applies to the 1X clock outputs (CLK0, CLK90, CLK180, and CLK270) only if
DUTY_CYCLE_CORRECTION = TRUE.
3. Specification also applies to PSCLK.
ds122_1_1.fm Page 71 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
72 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Miscellaneous Timing Parameters
Frequency Synthesis
Parameter Cross Reference
Table 65: Miscellaneous Timing Parameters
Description Symbol
Constraints
FCLKIN Value Units
Time Required to Achieve LOCK
Using DLL outputs(1) LOCK_DLL
LOCK_DLL_60 > 60MHz 20.0 µs
LOCK_DLL_50_60 50 - 60 MHz 25.0 µs
LOCK_DLL_40_50 40 - 50 MHz 50.0 µs
LOCK_DLL_30_40 30 - 40 MHz 90.0 µs
LOCK_DLL_24_30 24 - 30 MHz 120.0 µs
Using CLKFX outputs LOCK_FX_MIN 10.0 ms
LOCK_FX_MAX 10.0 ms
Additional lock time with fine-phase shifting LOCK_DLL_FINE_SHIFT 50.0 µs
Fine-Phase Shifting
Absolute shifting range FINE_SHIFT_RANGE 10.0 ns
Delay Lines
Tap delay resolution DCM_TAP_MIN 30.0 ps
DCM_TAP_MAX 60.0 ps
Notes:
1. “”DLL outputs” is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.
2. Specification also applies to PSCLK.
Table 66: Frequency Synthesis
Attribute Min Max
CLKFX_MULTIPLY 2 32
CLKFX_DIVIDE 1 32
Table 67: Parameter Cross Reference
Libraries Guide Data Sheet
DLL_CLKOUT_{MIN|MAX}_LF CLKOUT_FREQ_{1X|2X|DV}_LF
DFS_CLKOUT_{MIN|MAX}_LF CLKOUT_FREQ_FX_LF
DLL_CLKIN_{MIN|MAX}_LF CLKIN_FREQ_DLL_LF
DFS_CLKIN_{MIN|MAX}_LF CLKIN_FREQ_FX_LF
DLL_CLKOUT_{MIN|MAX}_HF CLKOUT_FREQ_{1X|DV}_HF
DFS_CLKOUT_{MIN|MAX}_HF CLKOUT_FREQ_FX_HF
DLL_CLKIN_{MIN|MAX}_HF CLKIN_FREQ_DLL_HF
DFS_CLKIN_{MIN|MAX}_HF CLKIN_FREQ_FX_HF
ds122_1_1.fm Page 72 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 73
Product Specification 1-800-255-7778
R
Source-Synchronous Switching Characteristics
The parameters in this section provide the necessary values for calculating timing budgets for QPro Virtex-II
source-synchronous transmitter and receiver data-valid windows.
Table 68: Duty Cycle Distortion and Clock-Tree Skew
Description Symbol Device Value Units
Duty Cycle Distortion(1) TDCD_CLK0 All 140 ps
TDCD_CLK180 All 50 ps
Clock Tree Skew(2) TCKSKEW XQ2V1000 90 ps
XQ2V3000 110 ps
XQ2V6000 550 ps
Notes:
1. These parameters represent the worst-case duty cycle distortion observable at the pins of the device using LVDS output buffers. For
cases where other I/O standards are used, IBIS can be used to calculate any additional duty cycle distortion that might be caused
by asymmetrical rise/fall times.
TDCD_CLK0 applies to cases where local (IOB) inversion is used to provide the negative-edge clock to the DDR element in the I/O.
TDCD_CLK180 applies to cases where the CLK180 output of the DCM is used to provide the negative-edge clock to the DDR element
in the I/O.
2. This value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree
skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx
FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application.
Table 69: Package Skew
Description Symbol Device/Package Value Units
Package Skew(1) TPKGSKEW XQ2V6000/CF1144 90 ps
Notes:
1. These values represent the worst-case skew between any two balls of the package: shortest flight time to longest flight time from Pad
to Ball (7.1ps per mm).
2. Package trace length information is available for these device/package combinations. This information can be used to deskew the
package.
Table 70: Sample Window
Description Symbol Device Value Units
Sampling Error at Receiver Pins(1) TSAMP XQ2V1000 TBD ps
XQ2V3000 TBD ps
XQ2V6000 TBD ps
Notes:
1. This parameter indicates the total sampling error of QPro Virtex-II DDR input registers across voltage, temperature, and process.
The characterization methodology uses the DCM to capture the DDR input registers’ edges of operation. These measurements
include:
- CLK0 and CLK180 DCM jitter
- Worst-case Duty-Cycle Distortion - TDCD_CLK180
- DCM accuracy (phase offset)
- DCM phase shift resolution.
These measurements do not include package or clock tree skew.
ds122_1_1.fm Page 73 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
74 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Source Synchronous Timing Budgets
This section describes how to use the parameters provided
in the Source-Synchronous Switching Characteristics
section to develop system-specific timing budgets. The fol-
lowing analysis provides information necessary for deter-
mining QPro Virtex-II contributions to an overall system
timing analysis. No assumptions are made about the effects
of Inter-Symbol Interference or PCB skew.
Table 71: Pin-to-Pin Setup/Hold: Source-Synchronous Configuration
Description Symbol Device Value Units
Data Input Set-Up and Hold Times Relative to a Forwarded Clock Input Pin,
Using DCM and Global Clock Buffer.
For situations where clock and data inputs conform to different standards,
adjust the setup and hold values accordingly using the values shown in IOB
Input Switching Characteristics Standard Adjustments, page 53.
No Delay
Global Clock and IFF with DCM
TPSDCM/TPHDCM XQ2V1000 TBD ns
XQ2V3000 TBD ns
XQ2V6000 TBD ns
Notes:
1. IFF = Input Flip-Flop
2. The timing values were measured using the fine-phase adjustment feature of the DCM.
3. The worst-case duty-cycle distortion and DCM jitter on CLK0 and CLK180 is included in these measurements.
QPro Virtex-II Transmitter Data-Valid Window (TX)
TX is the minimum aggregate valid data period for a
source-synchronous data bus at the pins of the device and
is calculated as follows:
TX = Data Period - [Jitter(1) + Duty Cycle Distortion(2) +
TCKSKEW(3) + TPKGSKEW(4)]
Notes:
1. Jitter values and accumulation methodology to be provided in
a future release of this document. The absolute period jitter
values found in the DCM Timing Parameters section of the
particular DCM output clock used to clock the IOB FF can be
used for a best-case analysis.
2. This value depends on the clocking methodology used. See
Note 1 for Table 6 8.
3. This value represents the worst-case clock-tree skew
observable between sequential I/O elements. Significantly
less clock-tree skew exists for I/O registers that are close to
each other and fed by the same or adjacent clock-tree
branches. Use the Xilinx FPGA_Editor and Timing Analyzer
tools to evaluate clock skew specific to your application.
4. These values represent the worst-case skew between any
two balls of the package: shortest flight time to longest flight
time from Pad to Ball.
QPro Virtex-II Receiver Data-Valid Window (RX)
RX is the required minimum aggregate valid data period for
a source-synchronous data bus at the pins of the device
and is calculated as follows:
RX = [TSAMP(1) + TCKSKEW(2) + TPKGSKEW(3)]
Notes:
1. This parameter indicates the total sampling error of QPro
Virtex-II DDR input registers across voltage, temperature,
and process. The characterization methodology uses the
DCM to capture the DDR input registers’ edges of operation.
These measurements include:
- CLK0 and CLK180 DCM jitter in a quiet system
- Worst-case duty-cycle distortion
- DCM accuracy (phase offset)
- DCM phase shift resolution
These measurements do not include package or clock tree
skew.
2. This value represents the worst-case clock-tree skew
observable between sequential I/O elements. Significantly
less clock-tree skew exists for I/O registers that are close to
each other and fed by the same or adjacent clock-tree
branches. Use the Xilinx FPGA_Editor and Timing Analyzer
tools to evaluate clock skew specific to your application.
3. These values represent the worst-case skew between any
two balls of the package: shortest flight time to longest flight
time from Pad to Ball.
ds122_1_1.fm Page 74 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 75
Product Specification 1-800-255-7778
R
QPro Virtex-II Device/Package Combinations and Maximum I/Os Available
This section provides QPro Virtex-II Device/Package
Combinations and Maximum I/Os Available and QPro
Virtex-II Pin Definitions, followed by pinout tables for the
following packages:
FG456 Fine-Pitch BGA Package
BG575 Standard BGA Package
BG728 Standard BGA and CG717 Ceramic CGA
Packages
CF1144 Ceramic Flip-Chip Fine-Pitch CGA Package
QPro Virtex-II devices are available in both wire-bond and
flip-chip packages. The basic package dimensions are
listed in Ta b l e 7 2 . See Figure 52 through Figure 56 for a
more complete mechanical description of each available
package. Ta ble 73 shows the maximum number of user I/Os
possible for each available package. There are four pack-
age type definitions:
FG denotes plastic wire-bond fine-pitch BGA (1.00 mm
pitch).
BG denotes plastic wire-bond ball grid array (1.27 mm
pitch).
CG denotes hermetic ceramic wire-bond column grid
array (1.27 mm pitch).
CF denotes non-hermetic ceramic flip-chip column grid
array (1.00 mm pitch).
The number of I/Os per package include all user I/Os except
the 15 control pins (CCLK, DONE, M0, M1, M2, PROG_B,
PWRDWN_B, TCK, TDI, TDO, TMS, HSWAP_EN, DXN,
DXP, AND RSVD).
QPro Virtex-II Pin Definitions
This section describes the pinouts for QPro Virtex-II devices
in the following packages:
FG456: wire-bond fine-pitch BGA of 1.00 mm pitch
BG575 and BG728: wire-bond BGA of 1.27 mm pitch
CG717: wire-bond ceramic column grid of 1.27 mm
pitch
CF1144: Ceramic flip-chip fine-pitch column grid of
1.00 mm pitch
Each device is split into eight I/O banks to allow for flexibility
in the choice of I/O standards (see the QPro Virtex-II Data
Sheet). Global pins, including JTAG, configuration, and
power/ground pins, are listed at the end of each table.
Table 7 4 provides definitions for all pin types.
All QPro Virtex-II pinout tables are available on the distribu-
tion CD-ROM, or on the web (at http://www.xilinx.com).
Table 72: Package Information
Package FG456 BG575 BG728 & CG717 CF1144
Pitch (mm) 1.00 1.27 1.27 1.00
Size (mm) 23 x 23 31 x 31 35 x 35 35 x 35
Table 73: QPro Virtex-II Device/Package Combinations and Maximum Number of Available I/Os (Advance
Information)
Package
Available I/Os
XQ2V1000 XQ2V3000 XQ2V6000
FG456 324 - -
BG575 328 - -
BG728 - 516 -
CG717 - 516 -
CF1144 - - 824
Notes:
1. The BG728 and CG717 packages are pinout (footprint) compatible.
ds122_1_1.fm Page 75 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
76 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
Pin Definitions
Ta b l e 7 4 provides a description of each pin type listed in QPro Virtex-II pinout tables.
Table 74: QPro Virtex-II Pin Definitions
Pin Name Direction Description
User I/O Pins
IO_LXXY_# Input/Output All user I/O pins are capable of differential signalling and can implement LVDS, ULVDS,
BLVDS, LVPECL, or LDT pairs. Each user I/O is labeled “IO_LXXY_#”, where:
IO indicates a user I/O pin.
LXXY indicates a differential pair, with XX a unique pair in the bank and Y = P/N
for the positive and negative sides of the differential pair.
# indicates the bank number (0 through 7).
Dual-Function Pins
IO_LXXY_#/ZZZ The dual-function pins are labelled “IO_LXXY_#/ZZZ”, where ZZZ can be one of the
following pins:
Per Bank - VRP, VRN, or VREF
Globally - GCLKX(S/P), BUSY/DOUT, INIT_B, DIN/D0 – D7, RDWR_B, or CS_B
With /ZZZ
DIN/D0, D1, D2,
D3, D4, D5, D6,
D7
Input/Output In SelectMAP mode, D0 through D7 are configuration data pins. These pins become
user I/Os after configuration, unless the SelectMAP port is retained.
In bit-serial modes, DIN (D0) is the single-data input. This pin becomes a user I/O after
configuration.
CS_B Input In SelectMAP mode, this is the active-Low Chip Select signal. This pin becomes a user
I/O after configuration, unless the SelectMAP port is retained.
RDWR_B Input In SelectMAP mode, this is the active-Low Write Enable signal. This pin becomes a
user I/O after configuration, unless the SelectMAP port is retained.
BUSY/DOUT Output In SelectMAP mode, BUSY controls the rate at which configuration data is loaded. This
pin becomes a user I/O after configuration, unless the SelectMAP port is retained.
In bit-serial modes, DOUT provides preamble and configuration data to downstream
devices in a daisy chain. This pin becomes a user I/O after configuration.
INIT_B Bidirectional
(open-drain)
When Low, this pin indicates that the configuration memory is being cleared. When held
Low, the start of configuration is delayed. During configuration, a Low on this output
indicates that a configuration data error has occurred. This pin becomes a user I/O after
configuration.
GCLKx (S/P) Input/Output These are clock input pins that connect to Global Clock Buffers. These pins become
regular user I/Os when not needed for clocks.
VRP Input This pin is for the DCI voltage reference resistor of the P transistor (per bank).
VRN Input This pin is for the DCI voltage reference resistor of the N transistor (per bank).
ALT_VRP Input This is the alternative pin for the DCI voltage reference resistor of the P transistor.
ALT_VRN Input This is the alternative pin for the DCI voltage reference resistor of the N transistor.
VREF Input These are input threshold voltage pins. They become user I/Os when an external
threshold voltage is not needed (per bank).
Dedicated Pins(1)
CCLK Input/Output Configuration clock. Output in Master mode or Input in Slave mode.
ds122_1_1.fm Page 76 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 77
Product Specification 1-800-255-7778
R
PROG_B Input Active Low asynchronous reset to configuration logic. This pin has a permanent weak
pull-up resistor.
DONE Input/Output DONE is a bidirectional signal with an optional internal pull-up resistor. As an output,
this pin indicates completion of the configuration process. As an input, a Low level on
DONE can be configured to delay the start-up sequence.
M2, M1, M0 Input Configuration mode selection.
HSWAP_EN Input Enable I/O pullups during configuration.
TCK Input Boundary Scan Clock.
TDI Input Boundary Scan Data Input.
TDO Output Boundary Scan Data Output.
TMS Input Boundary Scan Mode Select.
PWRDWN_B Input
(unsupported)
Active Low power-down pin (unsupported). Driving this pin Low can adversely affect
device operation and configuration. PWRDWN_B is internally pulled High, which is its
default state. It does not require an external pull-up.
Other Pins
DXN, DXP N/A Temperature-sensing diode pins (Anode: DXP, Cathode: DXN).
VBATT Input Decryptor key memory backup supply. (Do not connect if battery is not used.)
RSVD N/A Reserved pin - do not connect.
VCCO Input Power-supply pins for the output drivers (per bank).
VCCAUX Input Power-supply pins for auxiliary circuits.
VCCINT Input Power-supply pins for the internal core logic.
GND Input Ground.
Notes:
1. All dedicated pins (JTAG and configuration) are powered by VCCAUX (independent of the bank VCCO voltage).
Table 74: QPro Virtex-II Pin Definitions (Continued)
Pin Name Direction Description
ds122_1_1.fm Page 77 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
78 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
FG456 Fine-Pitch BGA Package
As shown in Ta b l e 7 5 , the XQ2V1000 QPro Virtex-II device
is available in the FG456 fine-pitch BGA package. Pins def-
initions are identical to the commercial grade
XC2V1000-FG456. Following this table are the FG456
Fine-Pitch BGA Package Specifications (1.00mm pitch).
Table 75: FG456 BGA — XQ2V1000
Bank Pin Description
Pin
Number
0 IO_L01N_0 B4
0 IO_L01P_0 A4
0 IO_L02N_0 C4
0 IO_L02P_0 C5
0 IO_L03N_0/VRP_0 B5
0 IO_L03P_0/VRN_0 A5
0 IO_L04N_0/VREF_0 D6
0 IO_L04P_0 C6
0 IO_L05N_0 B6
0 IO_L05P_0 A6
0 IO_L06N_0 E7
0 IO_L06P_0 E8
0 IO_L21N_0 D7
0 IO_L21P_0/VREF_0 C7
0 IO_L22N_0 B7
0 IO_L22P_0 A7
0 IO_L24N_0 D8
0 IO_L24P_0 C8
0 IO_L49N_0 B8
0 IO_L49P_0 A8
0 IO_L51N_0 E9
0 IO_L51P_0/VREF_0 F9
0 IO_L52N_0 D9
0 IO_L52P_0 C9
0 IO_L54N_0 B9
0 IO_L54P_0 A9
0 IO_L91N_0/VREF_0 E10
0 IO_L91P_0 F10
0 IO_L92N_0 D10
0 IO_L92P_0 C10
0 IO_L93N_0 B10
0 IO_L93P_0 A10
0 IO_L94N_0/VREF_0 E11
0 IO_L94P_0 F11
0 IO_L95N_0/GCLK7P D11
0 IO_L95P_0/GCLK6S C11
0 IO_L96N_0/GCLK5P B11
0 IO_L96P_0/GCLK4S A11
1 IO_L96N_1/GCLK3P F12
1 IO_L96P_1/GCLK2S F13
1 IO_L95N_1/GCLK1P E12
1 IO_L95P_1/GCLK0S D12
1 IO_L94N_1 C12
1 IO_L94P_1/VREF_1 B12
1 IO_L93N_1 A13
1 IO_L93P_1 B13
1 IO_L92N_1 C13
1 IO_L92P_1 D13
1 IO_L91N_1 E13
1 IO_L91P_1/VREF_1 E14
1 IO_L54N_1 A14
1 IO_L54P_1 B14
1 IO_L52N_1 C14
1 IO_L52P_1 D14
1 IO_L51N_1/VREF_1 A15
1 IO_L51P_1 B15
1 IO_L49N_1 C15
1 IO_L49P_1 D15
1 IO_L24N_1 F14
Table 75: FG456 BGA — XQ2V1000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 78 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 79
Product Specification 1-800-255-7778
R
1 IO_L24P_1 E15
1 IO_L22N_1 A16
1 IO_L22P_1 B16
1 IO_L21N_1/VREF_1 C16
1 IO_L21P_1 D16
1 IO_L06N_1 E16
1 IO_L06P_1 E17
1 IO_L05N_1 A17
1 IO_L05P_1 B17
1 IO_L04N_1 C17
1 IO_L04P_1/VREF_1 D17
1 IO_L03N_1/VRP_1 A18
1 IO_L03P_1/VRN_1 B18
1 IO_L02N_1 C18
1 IO_L02P_1 D18
1 IO_L01N_1 A19
1 IO_L01P_1 B19
2 IO_L01N_2 C21
2 IO_L01P_2 C22
2 IO_L02N_2/VRP_2 E18
2 IO_L02P_2/VRN_2 F18
2 IO_L03N_2 D21
2 IO_L03P_2/VREF_2 D22
2 IO_L04N_2 E19
2 IO_L04P_2 E20
2 IO_L06N_2 E21
2 IO_L06P_2 E22
2 IO_L19N_2 F19
2 IO_L19P_2 F20
2 IO_L21N_2 F21
2 IO_L21P_2/VREF_2 F22
2 IO_L22N_2 G18
2 IO_L22P_2 H18
2 IO_L24N_2 G19
Table 75: FG456 BGA — XQ2V1000
Bank Pin Description
Pin
Number
2 IO_L24P_2 G20
2 IO_L43N_2 G21
2 IO_L43P_2 G22
2 IO_L45N_2 H19
2 IO_L45P_2/VREF_2 H20
2 IO_L46N_2 H21
2 IO_L46P_2 H22
2 IO_L48N_2 J17
2 IO_L48P_2 J18
2 IO_L49N_2 J19
2 IO_L49P_2 J20
2 IO_L51N_2 J21
2 IO_L51P_2/VREF_2 J22
2 IO_L52N_2 K17
2 IO_L52P_2 K18
2 IO_L54N_2 K19
2 IO_L54P_2 K20
2 IO_L91N_2 K21
2 IO_L91P_2 K22
2 IO_L93N_2 L17
2 IO_L93P_2/VREF_2 L18
2 IO_L94N_2 L19
2 IO_L94P_2 L20
2 IO_L96N_2 L21
2 IO_L96P_2 L22
3 IO_L96N_3 M21
3 IO_L96P_3 M20
3 IO_L94N_3 M19
3 IO_L94P_3 M18
3 IO_L93N_3/VREF_3 M17
3 IO_L93P_3 N17
3 IO_L91N_3 N22
3 IO_L91P_3 N21
3 IO_L54N_3 N20
Table 75: FG456 BGA — XQ2V1000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 79 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
80 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
3 IO_L54P_3 N19
3 IO_L52N_3 N18
3 IO_L52P_3 P18
3 IO_L51N_3/VREF_3 P22
3 IO_L51P_3 P21
3 IO_L49N_3 P20
3 IO_L49P_3 P19
3 IO_L48N_3 R22
3 IO_L48P_3 R21
3 IO_L46N_3 R20
3 IO_L46P_3 R19
3 IO_L45N_3/VREF_3 R18
3 IO_L45P_3 P17
3 IO_L43N_3 T22
3 IO_L43P_3 T21
3 IO_L24N_3 T20
3 IO_L24P_3 T19
3 IO_L22N_3 U22
3 IO_L22P_3 U21
3 IO_L21N_3/VREF_3 U20
3 IO_L21P_3 U19
3 IO_L19N_3 T18
3 IO_L19P_3 U18
3 IO_L06N_3 V22
3 IO_L06P_3 V21
3 IO_L04N_3 V20
3 IO_L04P_3 V19
3 IO_L03N_3/VREF_3 W22
3 IO_L03P_3 W21
3 IO_L02N_3/VRP_3 Y22
3 IO_L02P_3/VRN_3 Y21
3 IO_L01N_3 W20
3 IO_L01P_3 AA20
4 IO_L01N_4/DOUT AB19
Table 75: FG456 BGA — XQ2V1000
Bank Pin Description
Pin
Number
4 IO_L01P_4/INIT_B AA19
4 IO_L02N_4/D0 V18
4 IO_L02P_4/D1 V17
4 IO_L03N_4/D2/ALT_VRP_4 W18
4 IO_L03P_4/D3/ALT_VRN_4 Y18
4 IO_L04N_4/VREF_4 AA18
4 IO_L04P_4 AB18
4 IO_L05N_4/VRP_4 W17
4 IO_L05P_4/VRN_4 Y17
4 IO_L06N_4 AA17
4 IO_L06P_4 AB17
4 IO_L19N_4 V16
4 IO_L19P_4 V15
4 IO_L21N_4 W16
4 IO_L21P_4/VREF_4 Y16
4 IO_L22N_4 AA16
4 IO_L22P_4 AB16
4 IO_L24N_4 W15
4 IO_L24P_4 Y15
4 IO_L49N_4 AA15
4 IO_L49P_4 AB15
4 IO_L51N_4 U14
4 IO_L51P_4/VREF_4 V14
4 IO_L52N_4 W14
4 IO_L52P_4 Y14
4 IO_L54N_4 AA14
4 IO_L54P_4 AB14
4 IO_L91N_4/VREF_4 U13
4 IO_L91P_4 V13
4 IO_L92N_4 W13
4 IO_L92P_4 Y13
4 IO_L93N_4 AA13
4 IO_L93P_4 AB13
4 IO_L94N_4/VREF_4 U12
4 IO_L94P_4 V12
Table 75: FG456 BGA — XQ2V1000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 80 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 81
Product Specification 1-800-255-7778
R
4 IO_L95N_4/GCLK3S W12
4 IO_L95P_4/GCLK2P Y12
4 IO_L96N_4/GCLK1S AA12
4 IO_L96P_4/GCLK0P AB12
5 IO_L96N_5/GCLK7S AA11
5 IO_L96P_5/GCLK6P Y11
5 IO_L95N_5/GCLK5S W11
5 IO_L95P_5/GCLK4P V11
5 IO_L94N_5 U11
5 IO_L94P_5/VREF_5 U10
5 IO_L93N_5 AB10
5 IO_L93P_5 AA10
5 IO_L92N_5 Y10
5 IO_L92P_5 W10
5 IO_L91N_5 V10
5 IO_L91P_5/VREF_5 V9
5 IO_L54N_5 AB9
5 IO_L54P_5 AA9
5 IO_L52N_5 Y9
5 IO_L52P_5 W9
5 IO_L51N_5/VREF_5 AB8
5 IO_L51P_5 AA8
5 IO_L49N_5 Y8
5 IO_L49P_5 W8
5 IO_L24N_5 U9
5 IO_L24P_5 V8
5 IO_L22N_5 AB7
5 IO_L22P_5 AA7
5 IO_L21N_5/VREF_5 Y7
5 IO_L21P_5 W7
5 IO_L19N_5 AB6
5 IO_L19P_5 AA6
5 IO_L06N_5 Y6
5 IO_L06P_5 W6
Table 75: FG456 BGA — XQ2V1000
Bank Pin Description
Pin
Number
5 IO_L05N_5/VRP_5 V7
5 IO_L05P_5/VRN_5 V6
5 IO_L04N_5 AB5
5 IO_L04P_5/VREF_5 AA5
5 IO_L03N_5/D4/ALT_VRP_5 Y5
5 IO_L03P_5/D5/ALT_VRN_5 W5
5 IO_L02N_5/D6 AB4
5 IO_L02P_5/D7 AA4
5 IO_L01N_5/RDWR_B Y4
5 IO_L01P_5/CS_B AA3
6 IO_L01P_6 V5
6 IO_L01N_6 U5
6 IO_L02P_6/VRN_6 Y2
6 IO_L02N_6/VRP_6 Y1
6 IO_L03P_6 V4
6 IO_L03N_6/VREF_6 V3
6 IO_L04P_6 W2
6 IO_L04N_6 W1
6 IO_L06P_6 U4
6 IO_L06N_6 U3
6 IO_L19P_6 V2
6 IO_L19N_6 V1
6 IO_L21P_6 U2
6 IO_L21N_6/VREF_6 U1
6 IO_L22P_6 T5
6 IO_L22N_6 R5
6 IO_L24P_6 T4
6 IO_L24N_6 T3
6 IO_L43P_6 T2
6 IO_L43N_6 T1
6 IO_L45P_6 R4
6 IO_L45N_6/VREF_6 R3
6 IO_L46P_6 R2
6 IO_L46N_6 R1
Table 75: FG456 BGA — XQ2V1000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 81 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
82 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
6 IO_L48P_6 P6
6 IO_L48N_6 P5
6 IO_L49P_6 P4
6 IO_L49N_6 P3
6 IO_L51P_6 P2
6 IO_L51N_6/VREF_6 P1
6 IO_L52P_6 N6
6 IO_L52N_6 N5
6 IO_L54P_6 N4
6 IO_L54N_6 N3
6 IO_L91P_6 N2
6 IO_L91N_6 N1
6 IO_L93P_6 M6
6 IO_L93N_6/VREF_6 M5
6 IO_L94P_6 M4
6 IO_L94N_6 M3
6 IO_L96P_6 M2
6 IO_L96N_6 M1
7 IO_L96P_7 L2
7 IO_L96N_7 L3
7 IO_L94P_7 L4
7 IO_L94N_7 L5
7 IO_L93P_7/VREF_7 K1
7 IO_L93N_7 K2
7 IO_L91P_7 K3
7 IO_L91N_7 K4
7 IO_L54P_7 L6
7 IO_L54N_7 K6
7 IO_L52P_7 K5
7 IO_L52N_7 J5
7 IO_L51P_7/VREF_7 J1
7 IO_L51N_7 J2
7 IO_L49P_7 J3
7 IO_L49N_7 J4
Table 75: FG456 BGA — XQ2V1000
Bank Pin Description
Pin
Number
7 IO_L48P_7 H1
7 IO_L48N_7 H2
7 IO_L46P_7 H3
7 IO_L46N_7 H4
7 IO_L45P_7/VREF_7 J6
7 IO_L45N_7 H5
7 IO_L43P_7 G1
7 IO_L43N_7 G2
7 IO_L24P_7 G3
7 IO_L24N_7 G4
7 IO_L22P_7 F1
7 IO_L22N_7 F2
7 IO_L21P_7/VREF_7 F3
7 IO_L21N_7 F4
7 IO_L19P_7 G5
7 IO_L19N_7 F5
7 IO_L06P_7 E1
7 IO_L06N_7 E2
7 IO_L04P_7 E3
7 IO_L04N_7 E4
7 IO_L03P_7/VREF_7 D1
7 IO_L03N_7 D2
7 IO_L02P_7/VRN_7 C1
7 IO_L02N_7/VRP_7 C2
7 IO_L01P_7 E5
7 IO_L01N_7 E6
0 VCCO_0 G11
0 VCCO_0 G10
0 VCCO_0 G9
0 VCCO_0 F8
0 VCCO_0 F7
1 VCCO_1 G14
1 VCCO_1 G13
1 VCCO_1 G12
Table 75: FG456 BGA — XQ2V1000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 82 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 83
Product Specification 1-800-255-7778
R
1 VCCO_1 F16
1 VCCO_1 F15
2 VCCO_2 L16
2 VCCO_2 K16
2 VCCO_2 J16
2 VCCO_2 H17
2 VCCO_2 G17
3 VCCO_3 T17
3 VCCO_3 R17
3 VCCO_3 P16
3 VCCO_3 N16
3 VCCO_3 M16
4 VCCO_4 U16
4 VCCO_4 U15
4 VCCO_4 T14
4 VCCO_4 T13
4 VCCO_4 T12
5 VCCO_5 U8
5 VCCO_5 U7
5 VCCO_5 T11
5 VCCO_5 T10
5 VCCO_5 T9
6 VCCO_6 T6
6 VCCO_6 R6
6 VCCO_6 P7
6 VCCO_6 N7
6 VCCO_6 M7
7 VCCO_7 L7
7 VCCO_7 K7
7 VCCO_7 J7
7 VCCO_7 H6
7 VCCO_7 G6
NA CCLK Y19
NA PROG_B A2
Table 75: FG456 BGA — XQ2V1000
Bank Pin Description
Pin
Number
NA DONE AB20
NA M0 AB2
NA M1 W3
NA M2 AB3
NA HSWAP_EN B3
NA TCK C19
NA TDI D3
NA TDO D20
NA TMS B20
NA PWRDWN_B AB21
NA DXN D5
NA DXP A3
NA VBATT A21
NA RSVD A20
NA VCCAUX AB11
NA VCCAUX AA22
NA VCCAUX AA1
NA VCCAUX M22
NA VCCAUX L1
NA VCCAUX B22
NA VCCAUX B1
NA VCCAUX A12
NA VCCINT U17
NA VCCINT U6
NA VCCINT T16
NA VCCINT T15
NA VCCINT T8
NA VCCINT T7
NA VCCINT R16
NA VCCINT R7
NA VCCINT H16
NA VCCINT H7
NA VCCINT G16
NA VCCINT G15
Table 75: FG456 BGA — XQ2V1000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 83 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
84 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
NA VCCINT G8
NA VCCINT G7
NA VCCINT F17
NA VCCINT F6
NA GND AB22
NA GND AB1
NA GND AA21
NA GND AA2
NA GND Y20
NA GND Y3
NA GND W19
NA GND W4
NA GND P14
NA GND P13
NA GND P12
NA GND P11
NA GND P10
NA GND P9
NA GND N14
NA GND N13
NA GND N12
NA GND N11
NA GND N10
NA GND N9
NA GND M14
NA GND M13
NA GND M12
NA GND M11
NA GND M10
NA GND M9
NA GND L14
NA GND L13
NA GND L12
NA GND L11
NA GND L10
Table 75: FG456 BGA — XQ2V1000
Bank Pin Description
Pin
Number
NA GND L9
NA GND K14
NA GND K13
NA GND K12
NA GND K11
NA GND K10
NA GND K9
NA GND J14
NA GND J13
NA GND J12
NA GND J11
NA GND J10
NA GND J9
NA GND D19
NA GND D4
NA GND C20
NA GND C3
NA GND B21
NA GND B2
NA GND A22
NA GND A1
Table 75: FG456 BGA — XQ2V1000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 84 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 85
Product Specification 1-800-255-7778
R
FG456 Fine-Pitch BGA Package Specifications (1.00mm pitch)
Figure 52: FG456 Fine-Pitch BGA Package Specifications
ds122_1_1.fm Page 85 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
86 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
BG575 Standard BGA Package
As shown in Ta b l e 7 6 , the XQ2V1000 QPro Virtex-II device
is available in the BG575 BGA package. Following this table
are the BG575 Standard BGA Package Specifications
(1.27mm pitch).
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
0 IO_L01N_0 A3
0 IO_L01P_0 A4
0 IO_L02N_0 D5
0 IO_L02P_0 C5
0 IO_L03N_0/VRP_0 E6
0 IO_L03P_0/VRN_0 D6
0 IO_L04N_0/VREF_0 F7
0 IO_L04P_0 E7
0 IO_L05N_0 G8
0 IO_L05P_0 H9
0 IO_L06N_0 A5
0 IO_L06P_0 A6
0 IO_L19N_0 B5
0 IO_L19P_0 B6
0 IO_L21N_0 D7
0 IO_L21P_0/VREF_0 C7
0 IO_L22N_0 F8
0 IO_L22P_0 E8
0 IO_L24N_0 G9
0 IO_L24P_0 F9
0 IO_L49N_0 G10
0 IO_L49P_0 H10
0 IO_L51N_0 B7
0 IO_L51P_0/VREF_0 B8
0 IO_L52N_0 D8
0 IO_L52P_0 C8
0 IO_L54N_0 E9
0 IO_L54P_0 D9
0 IO_L67N_0 A8
0 IO_L67P_0 A9
0 IO_L69N_0 C9
0 IO_L69P_0/VREF_0 B9
0 IO_L70N_0 F10
0 IO_L70P_0 E10
0 IO_L72N_0 A10
0 IO_L72P_0 A11
0 IO_L73N_0 C10
0 IO_L73P_0 B10
0 IO_L91N_0/VREF_0 D11
0 IO_L91P_0 C11
0 IO_L92N_0 G11
0 IO_L92P_0 E11
0 IO_L93N_0 C12
0 IO_L93P_0 B12
0 IO_L94N_0/VREF_0 E12
0 IO_L94P_0 D12
0 IO_L95N_0/GCLK7P G12
0 IO_L95P_0/GCLK6S F12
0 IO_L96N_0/GCLK5P H11
0 IO_L96P_0/GCLK4S H12
1 IO_L96N_1/GCLK3P A13
1 IO_L96P_1/GCLK2S A14
1 IO_L95N_1/GCLK1P B13
1 IO_L95P_1/GCLK0S C13
1 IO_L94N_1 D13
1 IO_L94P_1/VREF_1 E13
1 IO_L93N_1 F13
1 IO_L93P_1 G13
1 IO_L92N_1 H13
1 IO_L92P_1 H14
1 IO_L91N_1 C14
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 86 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 87
Product Specification 1-800-255-7778
R
1 IO_L91P_1/VREF_1 D14
1 IO_L73N_1 E14
1 IO_L73P_1 G14
1 IO_L72N_1 A15
1 IO_L72P_1 A16
1 IO_L70N_1 B15
1 IO_L70P_1 C15
1 IO_L69N_1/VREF_1 E15
1 IO_L69P_1 F15
1 IO_L67N_1 G15
1 IO_L67P_1 H15
1 IO_L54N_1 B16
1 IO_L54P_1 C16
1 IO_L52N_1 D16
1 IO_L52P_1 E16
1 IO_L51N_1/VREF_1 F16
1 IO_L51P_1 G16
1 IO_L49N_1 A17
1 IO_L49P_1 A19
1 IO_L24N_1 B17
1 IO_L24P_1 B18
1 IO_L22N_1 C17
1 IO_L22P_1 D17
1 IO_L21N_1/VREF_1 F17
1 IO_L21P_1 E17
1 IO_L19N_1 A20
1 IO_L19P_1 A21
1 IO_L06N_1 B19
1 IO_L06P_1 B20
1 IO_L05N_1 C18
1 IO_L05P_1 D18
1 IO_L04N_1 C20
1 IO_L04P_1/VREF_1 D20
1 IO_L03N_1/VRP_1 D19
1 IO_L03P_1/VRN_1 E19
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
1 IO_L02N_1 E18
1 IO_L02P_1 F18
1 IO_L01N_1 H16
1 IO_L01P_1 G17
2 IO_L01N_2 D22
2 IO_L01P_2 D23
2 IO_L02N_2/VRP_2 E21
2 IO_L02P_2/VRN_2 E22
2 IO_L03N_2 F21
2 IO_L03P_2/VREF_2 F20
2 IO_L04N_2 G20
2 IO_L04P_2 G19
2 IO_L06N_2 H18
2 IO_L06P_2 J17
2 IO_L19N_2 D24
2 IO_L19P_2 E23
2 IO_L21N_2 E24
2 IO_L21P_2/VREF_2 F24
2 IO_L22N_2 F23
2 IO_L22P_2 G23
2 IO_L24N_2 G21
2 IO_L24P_2 G22
2 IO_L43N_2 H19
2 IO_L43P_2 H20
2 IO_L45N_2 J18
2 IO_L45P_2/VREF_2 J19
2 IO_L46N_2 K17
2 IO_L46P_2 K18
2 IO_L48N_2 H23
2 IO_L48P_2 H24
2 IO_L49N_2 H21
2 IO_L49P_2 H22
2 IO_L51N_2 J24
2 IO_L51P_2/VREF_2 K24
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 87 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
88 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
2 IO_L52N_2 J22
2 IO_L52P_2 J23
2 IO_L54N_2 J20
2 IO_L54P_2 J21
2 IO_L67N_2 K19
2 IO_L67P_2 K20
2 IO_L69N_2 L17
2 IO_L69P_2/VREF_2 L18
2 IO_L70N_2 K23
2 IO_L70P_2 L24
2 IO_L72N_2 K22
2 IO_L72P_2 L22
2 IO_L73N_2 L21
2 IO_L73P_2 L20
2 IO_L91N_2 M23
2 IO_L91P_2 N24
2 IO_L93N_2 M21
2 IO_L93P_2/VREF_2 M22
2 IO_L94N_2 M19
2 IO_L94P_2 M20
2 IO_L96N_2 M17
2 IO_L96P_2 M18
3 IO_L96N_3 N23
3 IO_L96P_3 N22
3 IO_L94N_3 N20
3 IO_L94P_3 N21
3 IO_L93N_3/VREF_3 N19
3 IO_L93P_3 N18
3 IO_L91N_3 N17
3 IO_L91P_3 P17
3 IO_L73N_3 P24
3 IO_L73P_3 R24
3 IO_L72N_3 R23
3 IO_L72P_3 R22
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
3 IO_L70N_3 P22
3 IO_L70P_3 P21
3 IO_L69N_3/VREF_3 P20
3 IO_L69P_3 P18
3 IO_L67N_3 T24
3 IO_L67P_3 U24
3 IO_L54N_3 T23
3 IO_L54P_3 T22
3 IO_L52N_3 T21
3 IO_L52P_3 T20
3 IO_L51N_3/VREF_3 R20
3 IO_L51P_3 R19
3 IO_L49N_3 W24
3 IO_L49P_3 W23
3 IO_L48N_3 U23
3 IO_L48P_3 V23
3 IO_L46N_3 U22
3 IO_L46P_3 U21
3 IO_L45N_3/VREF_3 V22
3 IO_L45P_3 V21
3 IO_L43N_3 U19
3 IO_L43P_3 U20
3 IO_L24N_3 T19
3 IO_L24P_3 T18
3 IO_L22N_3 R18
3 IO_L22P_3 R17
3 IO_L21N_3/VREF_3 Y24
3 IO_L21P_3 Y23
3 IO_L19N_3 AA24
3 IO_L19P_3 AB24
3 IO_L06N_3 AA23
3 IO_L06P_3 AA22
3 IO_L04N_3 Y22
3 IO_L04P_3 Y21
3 IO_L03N_3/VREF_3 W21
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 88 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 89
Product Specification 1-800-255-7778
R
3 IO_L03P_3 W20
3 IO_L02N_3/VRP_3 V20
3 IO_L02P_3/VRN_3 V19
3 IO_L01N_3 U18
3 IO_L01P_3 T17
4 IO_L01N_4/DOUT AD22
4 IO_L01P_4/INIT_B AD21
4 IO_L02N_4/D0 AA20
4 IO_L02P_4/D1 AB20
4 IO_L03N_4/D2/ALT_VRP_4 Y19
4 IO_L03P_4/D3/ALT_VRN_4 AA19
4 IO_L04N_4/VREF_4 W18
4 IO_L04P_4 Y18
4 IO_L05N_4/VRP_4 U16
4 IO_L05P_4/VRN_4 V17
4 IO_L06N_4 AD20
4 IO_L06P_4 AD19
4 IO_L19N_4 AC20
4 IO_L19P_4 AC19
4 IO_L21N_4 AA18
4 IO_L21P_4/VREF_4 AB18
4 IO_L22N_4 AC18
4 IO_L22P_4 AC17
4 IO_L24N_4 AA17
4 IO_L24P_4 AB17
4 IO_L49N_4 Y17
4 IO_L49P_4 W17
4 IO_L51N_4 V16
4 IO_L51P_4/VREF_4 W16
4 IO_L52N_4 AD17
4 IO_L52P_4 AD16
4 IO_L54N_4 AB16
4 IO_L54P_4 AC16
4 IO_L67N_4 Y16
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
4 IO_L67P_4 AA16
4 IO_L69N_4 W15
4 IO_L69P_4/VREF_4 Y15
4 IO_L70N_4 U15
4 IO_L70P_4 V15
4 IO_L72N_4 AD15
4 IO_L72P_4 AD14
4 IO_L73N_4 AB15
4 IO_L73P_4 AC15
4 IO_L91N_4/VREF_4 AA14
4 IO_L91P_4 AB14
4 IO_L92N_4 V14
4 IO_L92P_4 Y14
4 IO_L93N_4 AB13
4 IO_L93P_4 AC13
4 IO_L94N_4/VREF_4 Y13
4 IO_L94P_4 AA13
4 IO_L95N_4/GCLK3S V13
4 IO_L95P_4/GCLK2P W13
4 IO_L96N_4/GCLK1S U14
4 IO_L96P_4/GCLK0P U13
5 IO_L96N_5/GCLK7S AD12
5 IO_L96P_5/GCLK6P AD11
5 IO_L95N_5/GCLK5S AC12
5 IO_L95P_5/GCLK4P AB12
5 IO_L94N_5 AA12
5 IO_L94P_5/VREF_5 Y12
5 IO_L93N_5 W12
5 IO_L93P_5 V12
5 IO_L92N_5 U12
5 IO_L92P_5 U11
5 IO_L91N_5 AB11
5 IO_L91P_5/VREF_5 AA11
5 IO_L73N_5 Y11
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 89 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
90 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
5 IO_L73P_5 V11
5 IO_L72N_5 AD10
5 IO_L72P_5 AD9
5 IO_L70N_5 AC10
5 IO_L70P_5 AB10
5 IO_L69N_5/VREF_5 Y10
5 IO_L69P_5 W10
5 IO_L67N_5 V10
5 IO_L67P_5 U10
5 IO_L54N_5 AC9
5 IO_L54P_5 AB9
5 IO_L52N_5 AA9
5 IO_L52P_5 Y9
5 IO_L51N_5/VREF_5 W9
5 IO_L51P_5 V9
5 IO_L49N_5 AD8
5 IO_L49P_5 AD6
5 IO_L24N_5 AC8
5 IO_L24P_5 AC7
5 IO_L22N_5 AB8
5 IO_L22P_5 AA8
5 IO_L21N_5/VREF_5 W8
5 IO_L21P_5 Y8
5 IO_L19N_5 AD5
5 IO_L19P_5 AD4
5 IO_L06N_5 AC6
5 IO_L06P_5 AC5
5 IO_L05N_5/VRP_5 AB7
5 IO_L05P_5/VRN_5 AA7
5 IO_L04N_5 AB5
5 IO_L04P_5/VREF_5 AA5
5 IO_L03N_5/D4/ALT_VRP_5 AA6
5 IO_L03P_5/D5/ALT_VRN_5 Y6
5 IO_L02N_5/D6 Y7
5 IO_L02P_5/D7 W7
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
5 IO_L01N_5/RDWR_B V8
5 IO_L01P_5/CS_B U9
6 IO_L01P_6 AB2
6 IO_L01N_6 AB1
6 IO_L02P_6/VRN_6 AA3
6 IO_L02N_6/VRP_6 AA2
6 IO_L03P_6 Y4
6 IO_L03N_6/VREF_6 Y3
6 IO_L04P_6 W4
6 IO_L04N_6 W5
6 IO_L06P_6 V5
6 IO_L06N_6 V6
6 IO_L19P_6 U7
6 IO_L19N_6 T8
6 IO_L21P_6 AA1
6 IO_L21N_6/VREF_6 Y2
6 IO_L22P_6 Y1
6 IO_L22N_6 W1
6 IO_L24P_6 W2
6 IO_L24N_6 V2
6 IO_L43P_6 V4
6 IO_L43N_6 V3
6 IO_L45P_6 U6
6 IO_L45N_6/VREF_6 U5
6 IO_L46P_6 T7
6 IO_L46N_6 T6
6 IO_L48P_6 R8
6 IO_L48N_6 R7
6 IO_L49P_6 U2
6 IO_L49N_6 U1
6 IO_L51P_6 U4
6 IO_L51N_6/VREF_6 U3
6 IO_L52P_6 T1
6 IO_L52N_6 R1
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 90 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 91
Product Specification 1-800-255-7778
R
6 IO_L54P_6 T3
6 IO_L54N_6 T2
6 IO_L67P_6 T5
6 IO_L67N_6 T4
6 IO_L69P_6 R6
6 IO_L69N_6/VREF_6 R5
6 IO_L70P_6 P8
6 IO_L70N_6 P7
6 IO_L72P_6 R2
6 IO_L72N_6 P1
6 IO_L73P_6 R3
6 IO_L73N_6 P3
6 IO_L91P_6 P5
6 IO_L91N_6 P4
6 IO_L93P_6 N4
6 IO_L93N_6/VREF_6 N3
6 IO_L94P_6 N6
6 IO_L94N_6 N5
6 IO_L96P_6 N8
6 IO_L96N_6 N7
7 IO_L96P_7 N2
7 IO_L96N_7 M1
7 IO_L94P_7 M2
7 IO_L94N_7 M3
7 IO_L93P_7/VREF_7 M4
7 IO_L93N_7 M5
7 IO_L91P_7 M6
7 IO_L91N_7 M7
7 IO_L73P_7 M8
7 IO_L73N_7 L8
7 IO_L72P_7 L1
7 IO_L72N_7 K1
7 IO_L70P_7 K2
7 IO_L70N_7 K3
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
7 IO_L69P_7/VREF_7 L3
7 IO_L69N_7 L4
7 IO_L67P_7 L5
7 IO_L67N_7 L7
7 IO_L54P_7 J1
7 IO_L54N_7 H1
7 IO_L52P_7 J2
7 IO_L52N_7 J3
7 IO_L51P_7/VREF_7 J4
7 IO_L51N_7 J5
7 IO_L49P_7 K5
7 IO_L49N_7 K6
7 IO_L48P_7 F1
7 IO_L48N_7 F2
7 IO_L46P_7 H2
7 IO_L46N_7 G2
7 IO_L45P_7/VREF_7 H3
7 IO_L45N_7 H4
7 IO_L43P_7 G3
7 IO_L43N_7 G4
7 IO_L24P_7 H5
7 IO_L24N_7 H6
7 IO_L22P_7 J6
7 IO_L22N_7 J7
7 IO_L21P_7/VREF_7 K7
7 IO_L21N_7 K8
7 IO_L19P_7 E1
7 IO_L19N_7 E2
7 IO_L06P_7 D2
7 IO_L06N_7 D3
7 IO_L04P_7 E3
7 IO_L04N_7 E4
7 IO_L03P_7/VREF_7 F4
7 IO_L03N_7 F5
7 IO_L02P_7/VRN_7 G5
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 91 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
92 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
7 IO_L02N_7/VRP_7 G6
7 IO_L01P_7 H7
7 IO_L01N_7 J8
0 VCCO_0 J12
0 VCCO_0 J11
0 VCCO_0 J10
0 VCCO_0 F11
0 VCCO_0 C6
0 VCCO_0 B11
1 VCCO_1 J15
1 VCCO_1 J14
1 VCCO_1 J13
1 VCCO_1 F14
1 VCCO_1 C19
1 VCCO_1 B14
2 VCCO_2 M16
2 VCCO_2 L23
2 VCCO_2 L19
2 VCCO_2 L16
2 VCCO_2 K16
2 VCCO_2 F22
3 VCCO_3 W22
3 VCCO_3 R16
3 VCCO_3 P23
3 VCCO_3 P19
3 VCCO_3 P16
3 VCCO_3 N16
4 VCCO_4 AC14
4 VCCO_4 AB19
4 VCCO_4 W14
4 VCCO_4 T15
4 VCCO_4 T14
4 VCCO_4 T13
5 VCCO_5 AC11
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
5 VCCO_5 AB6
5 VCCO_5 W11
5 VCCO_5 T12
5 VCCO_5 T11
5 VCCO_5 T10
6 VCCO_6 W3
6 VCCO_6 R9
6 VCCO_6 P9
6 VCCO_6 P6
6 VCCO_6 P2
6 VCCO_6 N9
7 VCCO_7 M9
7 VCCO_7 L9
7 VCCO_7 L6
7 VCCO_7 L2
7 VCCO_7 K9
7 VCCO_7 F3
NA CCLK AB23
NA PROG_B C1
NA DONE AB21
NA M0 AC4
NA M1 AB4
NA M2 AD3
NA HSWAP_EN C2
NA TCK C23
NA TDI D1
NA TDO C24
NA TMS C21
NA PWRDWN_B AC21
NA DXN B4
NA DXP C4
NA VBATT B21
NA RSVD A22
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 92 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 93
Product Specification 1-800-255-7778
R
NA VCCAUX AD13
NA VCCAUX AC22
NA VCCAUX AC3
NA VCCAUX N1
NA VCCAUX M24
NA VCCAUX B22
NA VCCAUX B3
NA VCCAUX A12
NA VCCINT U17
NA VCCINT U8
NA VCCINT T16
NA VCCINT T9
NA VCCINT R15
NA VCCINT R14
NA VCCINT R13
NA VCCINT R12
NA VCCINT R11
NA VCCINT R10
NA VCCINT P15
NA VCCINT P10
NA VCCINT N15
NA VCCINT N10
NA VCCINT M15
NA VCCINT M10
NA VCCINT L15
NA VCCINT L10
NA VCCINT K15
NA VCCINT K14
NA VCCINT K13
NA VCCINT K12
NA VCCINT K11
NA VCCINT K10
NA VCCINT J16
NA VCCINT J9
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
NA VCCINT H17
NA VCCINT H8
NA GND AD24
NA GND AD23
NA GND AD18
NA GND AD7
NA GND AD2
NA GND AD1
NA GND AC24
NA GND AC23
NA GND AC2
NA GND AC1
NA GND AB22
NA GND AB3
NA GND AA21
NA GND AA15
NA GND AA10
NA GND AA4
NA GND Y20
NA GND Y5
NA GND W19
NA GND W6
NA GND V24
NA GND V18
NA GND V7
NA GND V1
NA GND R21
NA GND R4
NA GND P14
NA GND P13
NA GND P12
NA GND P11
NA GND N14
NA GND N13
NA GND N12
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 93 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
94 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
NA GND N11
NA GND M14
NA GND M13
NA GND M12
NA GND M11
NA GND L14
NA GND L13
NA GND L12
NA GND L11
NA GND K21
NA GND K4
NA GND G24
NA GND G18
NA GND G7
NA GND G1
NA GND F19
NA GND F6
NA GND E20
NA GND E5
NA GND D21
NA GND D15
NA GND D10
NA GND D4
NA GND C22
NA GND C3
NA GND B24
NA GND B23
NA GND B2
NA GND B1
NA GND A24
NA GND A23
NA GND A18
NA GND A7
NA GND A2
Table 76: BG575 BGA — XQ2V1000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 94 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 95
Product Specification 1-800-255-7778
R
BG575 Standard BGA Package Specifications (1.27mm pitch)
Figure 53: BG575 Standard BGA Package Specifications
ds122_1_1.fm Page 95 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
96 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
BG728 Standard BGA and CG717 Ceramic CGA Packages
As shown in Ta b l e 7 8 , the XQ2V3000 QPro Virtex-II device
is available in the BG728 BGA and CG717 CGA packages.
The CG717 has identical pinout as the BG728 (except for
those pins listed as Removed1) and footprint compatibility. A
summary of the removed pins is shown in Tabl e 7 7 . Follow-
ing this table are the BG728 Standard BGA Package
Specifications (1.27mm pitch) and the CG717 Ceramic
Column Grid Array (CGA) Package Specifications
(1.27mm pitch) The CG717 has 11 fewer GND pins than
the BG728. The BG728 GND pin numbers missing on the
CG717 are shown in Table 77.
.
Table 77: BG728 GND Pins not available on the CG7171
BG728 GND Pin Numbers
A2 A27 AG1 AG26
B1 B27 AG2 AG27
A26 AF1 AF27
1. Physical pin does not exist for CG717 package.
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
0 IO_L01N_0 B3
0 IO_L01P_0 A3
0 IO_L02N_0 B4
0 IO_L02P_0 A4
0 IO_L03N_0/VRP_0 C5
0 IO_L03P_0/VRN_0 C6
0 IO_L04N_0/VREF_0 B5
0 IO_L04P_0 A5
0 IO_L05N_0 E6
0 IO_L05P_0 D6
0 IO_L06N_0 B6
0 IO_L06P_0 A6
0 IO_L19N_0 E7
0 IO_L19P_0 D8
0 IO_L21N_0 F8
0 IO_L21P_0/VREF_0 E8
0 IO_L22N_0 C7
0 IO_L22P_0 C8
0 IO_L24N_0 B7
0 IO_L24P_0 A7
0 IO_L25N_0 H9
0 IO_L25P_0 J9
0 IO_L27N_0 F9
0 IO_L27P_0/VREF_0 G9
0 IO_L28N_0 E9
0 IO_L28P_0 D9
0 IO_L30N_0 C9
0 IO_L30P_0 B9
0 IO_L49N_0 A8
0 IO_L49P_0 A9
0 IO_L51N_0 G10
0 IO_L51P_0/VREF_0 H10
0 IO_L52N_0 F10
0 IO_L52P_0 E10
0 IO_L54N_0 D10
0 IO_L54P_0 C10
0 IO_L67N_0 B10
0 IO_L67P_0 A10
0 IO_L69N_0 G11
0 IO_L69P_0/VREF_0 H11
0 IO_L70N_0 F11
0 IO_L70P_0 F12
0 IO_L72N_0 D11
0 IO_L72P_0 C11
0 IO_L73N_0 B11
0 IO_L73P_0 A11
0 IO_L75N_0 H12
0 IO_L75P_0/VREF_0 J12
0 IO_L76N_0 E12
0 IO_L76P_0 D12
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 96 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 97
Product Specification 1-800-255-7778
R
0 IO_L78N_0 B12
0 IO_L78P_0 A12
0 IO_L91N_0/VREF_0 J13
0 IO_L91P_0 H13
0 IO_L92N_0 G13
0 IO_L92P_0 F13
0 IO_L93N_0 E13
0 IO_L93P_0 D13
0 IO_L94N_0/VREF_0 B13
0 IO_L94P_0 A13
0 IO_L95N_0/GCLK7P C13
0 IO_L95P_0/GCLK6S C14
0 IO_L96N_0/GCLK5P F14
0 IO_L96P_0/GCLK4S E14
1 IO_L96N_1/GCLK3P G14
1 IO_L96P_1/GCLK2S H14
1 IO_L95N_1/GCLK1P A15
1 IO_L95P_1/GCLK0S B15
1 IO_L94N_1 C15
1 IO_L94P_1/VREF_1 D15
1 IO_L93N_1 E15
1 IO_L93P_1 F15
1 IO_L92N_1 G15
1 IO_L92P_1 H15
1 IO_L91N_1 J15
1 IO_L91P_1/VREF_1 J16
1 IO_L78N_1 A16
1 IO_L78P_1 B16
1 IO_L76N_1 D16
1 IO_L76P_1 E16
1 IO_L75N_1/VREF_1 F16
1 IO_L75P_1 F17
1 IO_L73N_1 H16
1 IO_L73P_1 H17
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
1 IO_L72N_1 A17
1 IO_L72P_1 B17
1 IO_L70N_1 C17
1 IO_L70P_1 D17
1 IO_L69N_1/VREF_1 G18
1 IO_L69P_1 G17
1 IO_L67N_1 A18
1 IO_L67P_1 B18
1 IO_L54N_1 C18
1 IO_L54P_1 D18
1 IO_L52N_1 E18
1 IO_L52P_1 F18
1 IO_L51N_1/VREF_1 H19
1 IO_L51P_1 H18
1 IO_L49N_1 A19
1 IO_L49P_1 A20
1 IO_L30N_1 B19
1 IO_L30P_1 C19
1 IO_L28N_1 D19
1 IO_L28P_1 E19
1 IO_L27N_1/VREF_1 F19
1 IO_L27P_1 G19
1 IO_L25N_1 J19
1 IO_L25P_1 J20
1 IO_L24N_1 C20
1 IO_L24P_1 C21
1 IO_L22N_1 D20
1 IO_L22P_1 E21
1 IO_L21N_1/VREF_1 E20
1 IO_L21P_1 F20
1 IO_L19N_1 A21
1 IO_L19P_1 B21
1 IO_L06N_1 A22
1 IO_L06P_1 B22
1 IO_L05N_1 C22
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 97 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
98 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
1 IO_L05P_1 C23
1 IO_L04N_1 D22
1 IO_L04P_1/VREF_1 E22
1 IO_L03N_1/VRP_1 A23
1 IO_L03P_1/VRN_1 B23
1 IO_L02N_1 A24
1 IO_L02P_1 B24
1 IO_L01N_1 A25
1 IO_L01P_1 B25
2 IO_L01N_2 C27
2 IO_L01P_2 D27
2 IO_L02N_2/VRP_2 D25
2 IO_L02P_2/VRN_2 D26
2 IO_L03N_2 E24
2 IO_L03P_2/VREF_2 E25
2 IO_L04N_2 E26
2 IO_L04P_2 E27
2 IO_L06N_2 F23
2 IO_L06P_2 F24
2 IO_L19N_2 F25
2 IO_L19P_2 F26
2 IO_L21N_2 F27
2 IO_L21P_2/VREF_2 G27
2 IO_L22N_2 G23
2 IO_L22P_2 H23
2 IO_L24N_2 G25
2 IO_L24P_2 G26
2 IO_L25N_2 H21
2 IO_L25P_2 J21
2 IO_L27N_2 H22
2 IO_L27P_2/VREF_2 J22
2 IO_L28N_2 H24
2 IO_L28P_2 H25
2 IO_L30N_2 H27
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
2 IO_L30P_2 J27
2 IO_L43N_2 J23
2 IO_L43P_2 J24
2 IO_L45N_2 J25
2 IO_L45P_2/VREF_2 J26
2 IO_L46N_2 K20
2 IO_L46P_2 K21
2 IO_L48N_2 K22
2 IO_L48P_2 K23
2 IO_L49N_2 K24
2 IO_L49P_2 K25
2 IO_L51N_2 K26
2 IO_L51P_2/VREF_2 K27
2 IO_L52N_2 L20
2 IO_L52P_2 M20
2 IO_L54N_2 L21
2 IO_L54P_2 L22
2 IO_L67N_2 L24
2 IO_L67P_2 L25
2 IO_L69N_2 L26
2 IO_L69P_2/VREF_2 L27
2 IO_L70N_2 M19
2 IO_L70P_2 N19
2 IO_L72N_2 M22
2 IO_L72P_2 M23
2 IO_L73N_2 M24
2 IO_L73P_2 N24
2 IO_L75N_2 M26
2 IO_L75P_2/VREF_2 M27
2 IO_L76N_2 N20
2 IO_L76P_2 N21
2 IO_L78N_2 N22
2 IO_L78P_2 N23
2 IO_L91N_2 N25
2 IO_L91P_2 P25
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 98 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 99
Product Specification 1-800-255-7778
R
2 IO_L93N_2 N26
2 IO_L93P_2/VREF_2 N27
2 IO_L94N_2 P20
2 IO_L94P_2 P21
2 IO_L96N_2 P22
2 IO_L96P_2 P23
3 IO_L96N_3 R27
3 IO_L96P_3 R26
3 IO_L94N_3 R25
3 IO_L94P_3 R24
3 IO_L93N_3/VREF_3 R23
3 IO_L93P_3 T23
3 IO_L91N_3 R22
3 IO_L91P_3 R21
3 IO_L78N_3 R20
3 IO_L78P_3 R19
3 IO_L76N_3 T27
3 IO_L76P_3 T26
3 IO_L75N_3/VREF_3 T24
3 IO_L75P_3 U24
3 IO_L73N_3 T22
3 IO_L73P_3 U22
3 IO_L72N_3 T20
3 IO_L72P_3 T19
3 IO_L70N_3 U27
3 IO_L70P_3 U26
3 IO_L69N_3/VREF_3 U25
3 IO_L69P_3 V25
3 IO_L67N_3 U21
3 IO_L67P_3 U20
3 IO_L54N_3 V27
3 IO_L54P_3 V26
3 IO_L52N_3 V24
3 IO_L52P_3 V23
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
3 IO_L51N_3/VREF_3 V22
3 IO_L51P_3 W22
3 IO_L49N_3 V21
3 IO_L49P_3 V20
3 IO_L48N_3 W27
3 IO_L48P_3 Y27
3 IO_L46N_3 W26
3 IO_L46P_3 W25
3 IO_L45N_3/VREF_3 W24
3 IO_L45P_3 W23
3 IO_L43N_3 W21
3 IO_L43P_3 W20
3 IO_L28N_3 W19
3 IO_L28P_3 Y19
3 IO_L27N_3/VREF_3 Y25
3 IO_L27P_3 Y24
3 IO_L25N_3 Y23
3 IO_L25P_3 AA23
3 IO_L24N_3 Y22
3 IO_L24P_3 Y21
3 IO_L22N_3 AA27
3 IO_L22P_3 AB27
3 IO_L21N_3/VREF_3 AA26
3 IO_L21P_3 AA25
3 IO_L19N_3 AB26
3 IO_L19P_3 AB25
3 IO_L06N_3 AB24
3 IO_L06P_3 AB23
3 IO_L04N_3 AC27
3 IO_L04P_3 AC26
3 IO_L03N_3/VREF_3 AC25
3 IO_L03P_3 AC24
3 IO_L02N_3/VRP_3 AD27
3 IO_L02P_3/VRN_3 AE27
3 IO_L01N_3 AD26
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 99 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
100 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
3 IO_L01P_3 AD25
4 IO_L01N_4/DOUT AF25
4 IO_L01P_4/INIT_B AG25
4 IO_L02N_4/D0 AF24
4 IO_L02P_4/D1 AG24
4 IO_L03N_4/D2/ALT_VRP_4 AD23
4 IO_L03P_4/D3/ALT_VRN_4 AE23
4 IO_L04N_4/VREF_4 AF23
4 IO_L04P_4 AG23
4 IO_L05N_4/VRP_4 AD22
4 IO_L05P_4/VRN_4 AE22
4 IO_L06N_4 AF22
4 IO_L06P_4 AG22
4 IO_L19N_4 AC21
4 IO_L19P_4 AB21
4 IO_L21N_4 AE21
4 IO_L21P_4/VREF_4 AE20
4 IO_L22N_4 AF21
4 IO_L22P_4 AG21
4 IO_L24N_4 AB20
4 IO_L24P_4 AA20
4 IO_L25N_4 AC20
4 IO_L25P_4 AD20
4 IO_L27N_4 AG20
4 IO_L27P_4/VREF_4 AG19
4 IO_L28N_4 AB19
4 IO_L28P_4 AA19
4 IO_L30N_4 AC19
4 IO_L30P_4 AD19
4 IO_L49N_4 AE19
4 IO_L49P_4 AF19
4 IO_L51N_4 AA18
4 IO_L51P_4/VREF_4 Y18
4 IO_L52N_4 AB18
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
4 IO_L52P_4 AC18
4 IO_L54N_4 AD18
4 IO_L54P_4 AE18
4 IO_L67N_4 AF18
4 IO_L67P_4 AG18
4 IO_L69N_4 AA17
4 IO_L69P_4/VREF_4 Y17
4 IO_L70N_4 AB17
4 IO_L70P_4 AB16
4 IO_L72N_4 AD17
4 IO_L72P_4 AE17
4 IO_L73N_4 AF17
4 IO_L73P_4 AG17
4 IO_L75N_4 Y16
4 IO_L75P_4/VREF_4 W16
4 IO_L76N_4 AC16
4 IO_L76P_4 AD16
4 IO_L78N_4 AF16
4 IO_L78P_4 AG16
4 IO_L91N_4/VREF_4 W15
4 IO_L91P_4 Y15
4 IO_L92N_4 AB15
4 IO_L92P_4 AA15
4 IO_L93N_4 AC15
4 IO_L93P_4 AD15
4 IO_L94N_4/VREF_4 AE15
4 IO_L94P_4 AE14
4 IO_L95N_4/GCLK3S AF15
4 IO_L95P_4/GCLK2P AG15
4 IO_L96N_4/GCLK1S Y14
4 IO_L96P_4/GCLK0P AA14
5 IO_L96N_5/GCLK7S AC14
5 IO_L96P_5/GCLK6P AB14
5 IO_L95N_5/GCLK5S AG13
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 100 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 101
Product Specification 1-800-255-7778
R
5 IO_L95P_5/GCLK4P AF13
5 IO_L94N_5 AE13
5 IO_L94P_5/VREF_5 AD13
5 IO_L93N_5 AC13
5 IO_L93P_5 AB13
5 IO_L92N_5 AA13
5 IO_L92P_5 Y13
5 IO_L91N_5 W13
5 IO_L91P_5/VREF_5 W12
5 IO_L78N_5 AG12
5 IO_L78P_5 AF12
5 IO_L76N_5 AD12
5 IO_L76P_5 AC12
5 IO_L75N_5/VREF_5 AB12
5 IO_L75P_5 AB11
5 IO_L73N_5 Y12
5 IO_L73P_5 Y11
5 IO_L72N_5 AG11
5 IO_L72P_5 AF11
5 IO_L70N_5 AE11
5 IO_L70P_5 AD11
5 IO_L69N_5/VREF_5 AA10
5 IO_L69P_5 AA11
5 IO_L67N_5 AG10
5 IO_L67P_5 AF10
5 IO_L54N_5 AE10
5 IO_L54P_5 AD10
5 IO_L52N_5 AC10
5 IO_L52P_5 AB10
5 IO_L51N_5/VREF_5 Y9
5 IO_L51P_5 Y10
5 IO_L49N_5 AG9
5 IO_L49P_5 AG8
5 IO_L30N_5 AF9
5 IO_L30P_5 AE9
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
5 IO_L28N_5 AD9
5 IO_L28P_5 AC9
5 IO_L27N_5/VREF_5 AB9
5 IO_L27P_5 AA9
5 IO_L25N_5 AE8
5 IO_L25P_5 AE7
5 IO_L24N_5 AD8
5 IO_L24P_5 AC8
5 IO_L22N_5 AB8
5 IO_L22P_5 AA8
5 IO_L21N_5/VREF_5 AG7
5 IO_L21P_5 AF7
5 IO_L19N_5 AC7
5 IO_L19P_5 AB7
5 IO_L06N_5 AG6
5 IO_L06P_5 AF6
5 IO_L05N_5/VRP_5 AE6
5 IO_L05P_5/VRN_5 AD6
5 IO_L04N_5 AG5
5 IO_L04P_5/VREF_5 AF5
5 IO_L03N_5/D4/ALT_VRP_5 AE5
5 IO_L03P_5/D5/ALT_VRN_5 AD5
5 IO_L02N_5/D6 AG4
5 IO_L02P_5/D7 AF4
5 IO_L01N_5/RDWR_B AG3
5 IO_L01P_5/CS_B AF3
6 IO_L01P_6 AE1
6 IO_L01N_6 AD1
6 IO_L02P_6/VRN_6 AD3
6 IO_L02N_6/VRP_6 AD2
6 IO_L03P_6 AC4
6 IO_L03N_6/VREF_6 AC3
6 IO_L04P_6 AC2
6 IO_L04N_6 AC1
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 101 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
102 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
6 IO_L06P_6 AB5
6 IO_L06N_6 AB4
6 IO_L19P_6 AB3
6 IO_L19N_6 AB2
6 IO_L21P_6 AB1
6 IO_L21N_6/VREF_6 AA1
6 IO_L22P_6 AA5
6 IO_L22N_6 AA6
6 IO_L24P_6 AA3
6 IO_L24N_6 AA2
6 IO_L25P_6 Y5
6 IO_L25N_6 Y6
6 IO_L27P_6 Y4
6 IO_L27N_6/VREF_6 Y3
6 IO_L28P_6 Y1
6 IO_L28N_6 W1
6 IO_L43P_6 W8
6 IO_L43N_6 W9
6 IO_L45P_6 W6
6 IO_L45N_6/VREF_6 W7
6 IO_L46P_6 W5
6 IO_L46N_6 W4
6 IO_L48P_6 W3
6 IO_L48N_6 W2
6 IO_L49P_6 V7
6 IO_L49N_6 V8
6 IO_L51P_6 V5
6 IO_L51N_6/VREF_6 V6
6 IO_L52P_6 V4
6 IO_L52N_6 V3
6 IO_L54P_6 V2
6 IO_L54N_6 V1
6 IO_L67P_6 U8
6 IO_L67N_6 T8
6 IO_L69P_6 U6
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
6 IO_L69N_6/VREF_6 U7
6 IO_L70P_6 U4
6 IO_L70N_6 U3
6 IO_L72P_6 U2
6 IO_L72N_6 U1
6 IO_L73P_6 T9
6 IO_L73N_6 R9
6 IO_L75P_6 T5
6 IO_L75N_6/VREF_6 T6
6 IO_L76P_6 T4
6 IO_L76N_6 R4
6 IO_L78P_6 T2
6 IO_L78N_6 T1
6 IO_L91P_6 R7
6 IO_L91N_6 R8
6 IO_L93P_6 R5
6 IO_L93N_6/VREF_6 R6
6 IO_L94P_6 R3
6 IO_L94N_6 P3
6 IO_L96P_6 R2
6 IO_L96N_6 R1
7 IO_L96P_7 P5
7 IO_L96N_7 P6
7 IO_L94P_7 P7
7 IO_L94N_7 P8
7 IO_L93P_7/VREF_7 N1
7 IO_L93N_7 N2
7 IO_L91P_7 N3
7 IO_L91N_7 N4
7 IO_L78P_7 N6
7 IO_L78N_7 N7
7 IO_L76P_7 N9
7 IO_L76N_7 N8
7 IO_L75P_7/VREF_7 N5
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 102 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 103
Product Specification 1-800-255-7778
R
7 IO_L75N_7 M6
7 IO_L73P_7 M1
7 IO_L73N_7 M2
7 IO_L72P_7 M4
7 IO_L72N_7 M5
7 IO_L70P_7 M8
7 IO_L70N_7 M9
7 IO_L69P_7/VREF_7 L1
7 IO_L69N_7 L2
7 IO_L67P_7 L3
7 IO_L67N_7 L4
7 IO_L54P_7 K1
7 IO_L54N_7 K2
7 IO_L52P_7 K4
7 IO_L52N_7 K5
7 IO_L51P_7/VREF_7 L6
7 IO_L51N_7 L7
7 IO_L49P_7 K6
7 IO_L49N_7 K7
7 IO_L48P_7 L8
7 IO_L48N_7 K8
7 IO_L46P_7 J1
7 IO_L46N_7 H1
7 IO_L45P_7/VREF_7 J2
7 IO_L45N_7 J3
7 IO_L43P_7 K3
7 IO_L43N_7 J4
7 IO_L30P_7 H3
7 IO_L30N_7 H4
7 IO_L28P_7 J5
7 IO_L28N_7 J6
7 IO_L27P_7/VREF_7 H5
7 IO_L27N_7 H6
7 IO_L25P_7 J7
7 IO_L25N_7 J8
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
7 IO_L24P_7 G1
7 IO_L24N_7 F1
7 IO_L22P_7 G2
7 IO_L22N_7 G3
7 IO_L21P_7/VREF_7 F2
7 IO_L21N_7 F3
7 IO_L19P_7 G5
7 IO_L19N_7 G6
7 IO_L06P_7 F4
7 IO_L06N_7 F5
7 IO_L04P_7 E1
7 IO_L04N_7 E2
7 IO_L03P_7/VREF_7 D1
7 IO_L03N_7 C1
7 IO_L02P_7/VRN_7 E3
7 IO_L02N_7/VRP_7 E4
7 IO_L01P_7 D2
7 IO_L01N_7 D3
0 VCCO_0 K13
0 VCCO_0 K12
0 VCCO_0 K11
0 VCCO_0 J11
0 VCCO_0 J10
0 VCCO_0 G12
0 VCCO_0 D7
0 VCCO_0 C12
1 VCCO_1 K17
1 VCCO_1 K16
1 VCCO_1 K15
1 VCCO_1 J18
1 VCCO_1 J17
1 VCCO_1 G16
1 VCCO_1 D21
1 VCCO_1 C16
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 103 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
104 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
2 VCCO_2 N18
2 VCCO_2 M25
2 VCCO_2 M21
2 VCCO_2 M18
2 VCCO_2 L19
2 VCCO_2 L18
2 VCCO_2 K19
2 VCCO_2 G24
3 VCCO_3 AA24
3 VCCO_3 V19
3 VCCO_3 U19
3 VCCO_3 U18
3 VCCO_3 T25
3 VCCO_3 T21
3 VCCO_3 T18
3 VCCO_3 R18
4 VCCO_4 AE16
4 VCCO_4 AD21
4 VCCO_4 AA16
4 VCCO_4 W18
4 VCCO_4 W17
4 VCCO_4 V17
4 VCCO_4 V16
4 VCCO_4 V15
5 VCCO_5 AE12
5 VCCO_5 AD7
5 VCCO_5 AA12
5 VCCO_5 W11
5 VCCO_5 W10
5 VCCO_5 V13
5 VCCO_5 V12
5 VCCO_5 V11
6 VCCO_6 AA4
6 VCCO_6 V9
6 VCCO_6 U10
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
6 VCCO_6 U9
6 VCCO_6 T10
6 VCCO_6 T7
6 VCCO_6 T3
6 VCCO_6 R10
7 VCCO_7 M10
7 VCCO_7 M7
7 VCCO_7 M3
7 VCCO_7 L10
7 VCCO_7 L9
7 VCCO_7 K9
7 VCCO_7 G4
7 VCCO_7 N10
NA CCLK AA22
NA PROG_B C4
NA DONE AC22
NA M0 AC6
NA M1 Y7
NA M2 AE4
NA HSWAP_EN D5
NA TCK G20
NA TDI H7
NA TDO G22
NA TMS F21
NA PWRDWN_B AE24
NA DXN G8
NA DXP F7
NA VBATT D23
NA RSVD C24
NA VCCAUX AF14
NA VCCAUX AE26
NA VCCAUX AE2
NA VCCAUX P26
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 104 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 105
Product Specification 1-800-255-7778
R
NA VCCAUX P2
NA VCCAUX C26
NA VCCAUX C2
NA VCCAUX B14
NA VCCINT V18
NA VCCINT V14
NA VCCINT V10
NA VCCINT U17
NA VCCINT U16
NA VCCINT U15
NA VCCINT U14
NA VCCINT U13
NA VCCINT U12
NA VCCINT U11
NA VCCINT T17
NA VCCINT T11
NA VCCINT R17
NA VCCINT R11
NA VCCINT P18
NA VCCINT P17
NA VCCINT P11
NA VCCINT P10
NA VCCINT N17
NA VCCINT N11
NA VCCINT M17
NA VCCINT M11
NA VCCINT L17
NA VCCINT L16
NA VCCINT L15
NA VCCINT L14
NA VCCINT L13
NA VCCINT L12
NA VCCINT L11
NA VCCINT K18
NA VCCINT K14
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
NA VCCINT K10
NA GND AG271
NA GND AG261
NA GND AG14
NA GND AG21
NA GND AG11
NA GND AF271
NA GND AF26
NA GND AF20
NA GND AF8
NA GND AF2
NA GND AF11
NA GND AE25
NA GND AE3
NA GND AD24
NA GND AD14
NA GND AD4
NA GND AC23
NA GND AC17
NA GND AC11
NA GND AC5
NA GND AB22
NA GND AB6
NA GND AA21
NA GND AA7
NA GND Y26
NA GND Y20
NA GND Y8
NA GND Y2
NA GND W14
NA GND U23
NA GND U5
NA GND T16
NA GND T15
NA GND T14
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 105 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
106 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
NA GND T13
NA GND T12
NA GND R16
NA GND R15
NA GND R14
NA GND R13
NA GND R12
NA GND P27
NA GND P24
NA GND P19
NA GND P16
NA GND P15
NA GND P14
NA GND P13
NA GND P12
NA GND P9
NA GND P4
NA GND P1
NA GND N16
NA GND N15
NA GND N14
NA GND N13
NA GND N12
NA GND M16
NA GND M15
NA GND M14
NA GND M13
NA GND M12
NA GND L23
NA GND L5
NA GND J14
NA GND H26
NA GND H20
NA GND H8
NA GND H2
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
NA GND G21
NA GND G7
NA GND F22
NA GND F6
NA GND E23
NA GND E17
NA GND E11
NA GND E5
NA GND D24
NA GND D14
NA GND D4
NA GND C25
NA GND C3
NA GND B271
NA GND B26
NA GND B20
NA GND B8
NA GND B2
NA GND B11
NA GND A271
NA GND A261
NA GND A14
NA GND A2
Table 78: BG728 BGA and CG717 CGA— XQ2V3000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 106 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 107
Product Specification 1-800-255-7778
R
BG728 Standard BGA Package Specifications (1.27mm pitch)
Figure 54: BG728 Standard BGA Package Specifications
ds122_1_1.fm Page 107 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
108 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
CG717 Ceramic Column Grid Array (CGA) Package Specifications (1.27mm pitch)
Figure 55: CG717 Ceramic CGA Package Specifications
ds122_1_1.fm Page 108 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 109
Product Specification 1-800-255-7778
R
CF1144 Ceramic Flip-Chip Fine-Pitch CGA Package
As shown in Tab l e 8 0 , The XQ2V6000 QPro Virtex-II device
is available in the CF1144 flip-chip fine-pitch CGA package.
Pins for this package are the same as the FF1152, except
for those pins shown in Ta bl e 7 9 have been removed. Fol-
lowing this table are the CF1144 Ceramic Flip-Chip
Fine-Pitch CGA Package Specifications (1.00mm pitch).
The CF1144 has eight fewer GND pins than the FF1152.
The FF1152 GND Pin numbers missing on the CF1144 are
shown in Tabl e 7 9 .
Table 79: FF1152 GND Pins not available on the
CF1144
FF1152 GND Pin Numbers
A2 A33 AN1 AN34
B1 B34 AP2 AP33
1. Physical pin does not exist for CF1144 package
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
0 IO_L01N_0 D29
0 IO_L01P_0 C29
0 IO_L02N_0 H26
0 IO_L02P_0 G26
0 IO_L03N_0/VRP_0 E28
0 IO_L03P_0/VRN_0 E27
0 IO_L04N_0/VREF_0 F25
0 IO_L04P_0 F26
0 IO_L05N_0 H25
0 IO_L05P_0 H24
0 IO_L06N_0 E26
0 IO_L06P_0 F27
0 IO_L19N_0 B32
0 IO_L19P_0 C33
0 IO_L20N_0 J24
0 IO_L20P_0 J23
0 IO_L21N_0 C27
0 IO_L21P_0/VREF_0 C28
0 IO_L22N_0 B30
0 IO_L22P_0 B31
0 IO_L23N_0 K23
0 IO_L23P_0 K22
0 IO_L24N_0 C26
0 IO_L24P_0 D27
0 IO_L25N_0 A30
0 IO_L25P_0 A31
0 IO_L26N_0 G24
0 IO_L26P_0 G25
0 IO_L27N_0 E25
0 IO_L27P_0/VREF_0 E24
0 IO_L28N_0 D25
0 IO_L28P_0 D26
0 IO_L29N_0 H23
0 IO_L29P_0 H22
0 IO_L30N_0 F23
0 IO_L30P_0 F24
0 IO_L49N_0 B28
0 IO_L49P_0 B29
0 IO_L50N_0 J22
0 IO_L50P_0 J21
0 IO_L51N_0 A28
0 IO_L51P_0/VREF_0 A29
0 IO_L52N_0 A26
0 IO_L52P_0 B27
0 IO_L53N_0 C24
0 IO_L53P_0 D24
0 IO_L54N_0 D22
0 IO_L54P_0 D23
0 IO_L60N_0 B25
0 IO_L60P_0 B26
0 IO_L67N_0 B23
0 IO_L67P_0 B24
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 109 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
110 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
0 IO_L68N_0 G22
0 IO_L68P_0 G23
0 IO_L69N_0 F22
0 IO_L69P_0/VREF_0 F21
0 IO_L70N_0 A23
0 IO_L70P_0 A24
0 IO_L71N_0 K21
0 IO_L71P_0 K20
0 IO_L72N_0 C22
0 IO_L72P_0 C23
0 IO_L73N_0 E21
0 IO_L73P_0 E22
0 IO_L74N_0 H21
0 IO_L74P_0 H20
0 IO_L75N_0 G20
0 IO_L75P_0/VREF_0 F20
0 IO_L76N_0 B21
0 IO_L76P_0 B22
0 IO_L77N_0 J20
0 IO_L77P_0 K19
0 IO_L78N_0 D20
0 IO_L78P_0 D21
0 IO_L79N_0 A21
0 IO_L79P_0 A22
0 IO_L80N_0 L19
0 IO_L80P_0 L18
0 IO_L81N_0 B19
0 IO_L81P_0/VREF_0 A20
0 IO_L82N_0 A18
0 IO_L82P_0 B18
0 IO_L83N_0 H19
0 IO_L83P_0 H18
0 IO_L84N_0 C20
0 IO_L84P_0 C21
0 IO_L91N_0/VREF_0 D19
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
0 IO_L91P_0 D18
0 IO_L92N_0 G18
0 IO_L92P_0 G19
0 IO_L93N_0 F18
0 IO_L93P_0 F19
0 IO_L94N_0/VREF_0 C19
0 IO_L94P_0 C18
0 IO_L95N_0/GCLK7P K18
0 IO_L95P_0/GCLK6S J18
0 IO_L96N_0/GCLK5P E19
0 IO_L96P_0/GCLK4S E18
1 IO_L96N_1/GCLK3P E17
1 IO_L96P_1/GCLK2S E16
1 IO_L95N_1/GCLK1P H17
1 IO_L95P_1/GCLK0S H16
1 IO_L94N_1 D17
1 IO_L94P_1/VREF_1 D16
1 IO_L93N_1 F16
1 IO_L93P_1 F17
1 IO_L92N_1 G16
1 IO_L92P_1 G17
1 IO_L91N_1 C16
1 IO_L91P_1/VREF_1 C15
1 IO_L84N_1 D14
1 IO_L84P_1 D15
1 IO_L83N_1 J17
1 IO_L83P_1 K17
1 IO_L82N_1 B17
1 IO_L82P_1 A17
1 IO_L81N_1/VREF_1 A15
1 IO_L81P_1 B16
1 IO_L80N_1 L17
1 IO_L80P_1 L16
1 IO_L79N_1 A13
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 110 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 111
Product Specification 1-800-255-7778
R
1 IO_L79P_1 A14
1 IO_L78N_1 C13
1 IO_L78P_1 C14
1 IO_L77N_1 K16
1 IO_L77P_1 K15
1 IO_L76N_1 B13
1 IO_L76P_1 B14
1 IO_L75N_1/VREF_1 F15
1 IO_L75P_1 G15
1 IO_L74N_1 H15
1 IO_L74P_1 H14
1 IO_L73N_1 A11
1 IO_L73P_1 A12
1 IO_L72N_1 E13
1 IO_L72P_1 E14
1 IO_L71N_1 J15
1 IO_L71P_1 J14
1 IO_L70N_1 D12
1 IO_L70P_1 D13
1 IO_L69N_1/VREF_1 F14
1 IO_L69P_1 F13
1 IO_L68N_1 C11
1 IO_L68P_1 C12
1 IO_L67N_1 B11
1 IO_L67P_1 B12
1 IO_L60N_1 F11
1 IO_L60P_1 F12
1 IO_L54N_1 D10
1 IO_L54P_1 D11
1 IO_L53N_1 G12
1 IO_L53P_1 G13
1 IO_L52N_1 B9
1 IO_L52P_1 B10
1 IO_L51N_1/VREF_1 B8
1 IO_L51P_1 A9
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
1 IO_L50N_1 K14
1 IO_L50P_1 K13
1 IO_L49N_1 A6
1 IO_L49P_1 A7
1 IO_L30N_1 D9
1 IO_L30P_1 C9
1 IO_L29N_1 H13
1 IO_L29P_1 H12
1 IO_L28N_1 C7
1 IO_L28P_1 C8
1 IO_L27N_1/VREF_1 E11
1 IO_L27P_1 E10
1 IO_L26N_1 J13
1 IO_L26P_1 K12
1 IO_L25N_1 B6
1 IO_L25P_1 B7
1 IO_L24N_1 E8
1 IO_L24P_1 E9
1 IO_L23N_1 G10
1 IO_L23P_1 G11
1 IO_L22N_1 A4
1 IO_L22P_1 A5
1 IO_L21N_1/VREF_1 F10
1 IO_L21P_1 G9
1 IO_L20N_1 J12
1 IO_L20P_1 J11
1 IO_L19N_1 B4
1 IO_L19P_1 B5
1 IO_L06N_1 D6
1 IO_L06P_1 C6
1 IO_L05N_1 H11
1 IO_L05P_1 J10
1 IO_L04N_1 D8
1 IO_L04P_1/VREF_1 E7
1 IO_L03N_1/VRP_1 F9
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 111 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
112 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
1 IO_L03P_1/VRN_1 F8
1 IO_L02N_1 H10
1 IO_L02P_1 H9
1 IO_L01N_1 C2
1 IO_L01P_1 B3
2 IO_L01N_2 E2
2 IO_L01P_2 D2
2 IO_L02N_2/VRP_2 K11
2 IO_L02P_2/VRN_2 K10
2 IO_L03N_2 F5
2 IO_L03P_2/VREF_2 G5
2 IO_L04N_2 E3
2 IO_L04P_2 D3
2 IO_L05N_2 J9
2 IO_L05P_2 K9
2 IO_L06N_2 F4
2 IO_L06P_2 E4
2 IO_L19N_2 E1
2 IO_L19P_2 D1
2 IO_L20N_2 J8
2 IO_L20P_2 K8
2 IO_L21N_2 H7
2 IO_L21P_2/VREF_2 J7
2 IO_L22N_2 H6
2 IO_L22P_2 G6
2 IO_L23N_2 L10
2 IO_L23P_2 L9
2 IO_L24N_2 G3
2 IO_L24P_2 F3
2 IO_L25N_2 G2
2 IO_L25P_2 F2
2 IO_L26N_2 M10
2 IO_L26P_2 N10
2 IO_L27N_2 J6
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
2 IO_L27P_2/VREF_2 K6
2 IO_L28N_2 J5
2 IO_L28P_2 H5
2 IO_L29N_2 L7
2 IO_L29P_2 K7
2 IO_L30N_2 J4
2 IO_L30P_2 H4
2 IO_L43N_2 G1
2 IO_L43P_2 F1
2 IO_L44N_2 L8
2 IO_L44P_2 M8
2 IO_L45N_2 J1
2 IO_L45P_2/VREF_2 H2
2 IO_L46N_2 J3
2 IO_L46P_2 H3
2 IO_L47N_2 M9
2 IO_L47P_2 N9
2 IO_L48N_2 L5
2 IO_L48P_2 K5
2 IO_L49N_2 K2
2 IO_L49P_2 J2
2 IO_L50N_2 N7
2 IO_L50P_2 M7
2 IO_L51N_2 L6
2 IO_L51P_2/VREF_2 M6
2 IO_L52N_2 M3
2 IO_L52P_2 L3
2 IO_L53N_2 L4
2 IO_L53P_2 K4
2 IO_L54N_2 N4
2 IO_L54P_2 M4
2 IO_L67N_2 M2
2 IO_L67P_2 L2
2 IO_L68N_2 N8
2 IO_L68P_2 P8
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 112 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 113
Product Specification 1-800-255-7778
R
2 IO_L69N_2 N6
2 IO_L69P_2/VREF_2 P6
2 IO_L70N_2 P5
2 IO_L70P_2 N5
2 IO_L71N_2 P10
2 IO_L71P_2 R10
2 IO_L72N_2 P3
2 IO_L72P_2 N3
2 IO_L73N_2 M1
2 IO_L73P_2 L1
2 IO_L74N_2 P9
2 IO_L74P_2 R9
2 IO_L75N_2 P2
2 IO_L75P_2/VREF_2 N2
2 IO_L76N_2 R4
2 IO_L76P_2 P4
2 IO_L77N_2 R8
2 IO_L77P_2 T8
2 IO_L78N_2 T3
2 IO_L78P_2 R3
2 IO_L79N_2 P1
2 IO_L79P_2 N1
2 IO_L80N_2 T11
2 IO_L80P_2 U11
2 IO_L81N_2 R7
2 IO_L81P_2/VREF_2 R6
2 IO_L82N_2 U5
2 IO_L82P_2 T5
2 IO_L83N_2 T10
2 IO_L83P_2 U10
2 IO_L84N_2 U4
2 IO_L84P_2 T4
2 IO_L91N_2 T2
2 IO_L91P_2 R1
2 IO_L92N_2 U7
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
2 IO_L92P_2 T7
2 IO_L93N_2 T6
2 IO_L93P_2/VREF_2 U6
2 IO_L94N_2 U1
2 IO_L94P_2 U2
2 IO_L95N_2 U9
2 IO_L95P_2 U8
2 IO_L96N_2 U3
2 IO_L96P_2 V4
3 IO_L96N_3 V6
3 IO_L96P_3 W6
3 IO_L95N_3 V5
3 IO_L95P_3 W5
3 IO_L94N_3 V7
3 IO_L94P_3 W7
3 IO_L93N_3/VREF_3 V10
3 IO_L93P_3 W10
3 IO_L92N_3 V1
3 IO_L92P_3 V2
3 IO_L91N_3 W3
3 IO_L91P_3 Y3
3 IO_L84N_3 V9
3 IO_L84P_3 V8
3 IO_L83N_3 W4
3 IO_L83P_3 Y4
3 IO_L82N_3 W11
3 IO_L82P_3 V11
3 IO_L81N_3/VREF_3 W8
3 IO_L81P_3 Y8
3 IO_L80N_3 W2
3 IO_L80P_3 Y1
3 IO_L79N_3 AA3
3 IO_L79P_3 AB3
3 IO_L78N_3 Y6
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 113 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
114 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
3 IO_L78P_3 AA6
3 IO_L77N_3 AA4
3 IO_L77P_3 AB4
3 IO_L76N_3 Y7
3 IO_L76P_3 AA8
3 IO_L75N_3/VREF_3 Y10
3 IO_L75P_3 AA10
3 IO_L74N_3 AA1
3 IO_L74P_3 AB1
3 IO_L73N_3 AA5
3 IO_L73P_3 AB5
3 IO_L72N_3 AA9
3 IO_L72P_3 Y9
3 IO_L71N_3 AA2
3 IO_L71P_3 AB2
3 IO_L70N_3 AB6
3 IO_L70P_3 AC6
3 IO_L69N_3/VREF_3 AD1
3 IO_L69P_3 AC1
3 IO_L68N_3 AC3
3 IO_L68P_3 AD3
3 IO_L67N_3 AC4
3 IO_L67P_3 AD4
3 IO_L54N_3 AB7
3 IO_L54P_3 AC7
3 IO_L53N_3 AC2
3 IO_L53P_3 AD2
3 IO_L52N_3 AC8
3 IO_L52P_3 AB8
3 IO_L51N_3/VREF_3 AB10
3 IO_L51P_3 AC10
3 IO_L50N_3 AD5
3 IO_L50P_3 AE5
3 IO_L49N_3 AE4
3 IO_L49P_3 AF4
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
3 IO_L48N_3 AB9
3 IO_L48P_3 AC9
3 IO_L47N_3 AE2
3 IO_L47P_3 AF1
3 IO_L46N_3 AD6
3 IO_L46P_3 AE6
3 IO_L45N_3/VREF_3 AD9
3 IO_L45P_3 AE9
3 IO_L44N_3 AF2
3 IO_L44P_3 AG2
3 IO_L43N_3 AF3
3 IO_L43P_3 AG3
3 IO_L30N_3 AD7
3 IO_L30P_3 AE7
3 IO_L29N_3 AF5
3 IO_L29P_3 AG5
3 IO_L28N_3 AE8
3 IO_L28P_3 AD8
3 IO_L27N_3/VREF_3 AF8
3 IO_L27P_3 AF9
3 IO_L26N_3 AH1
3 IO_L26P_3 AJ1
3 IO_L25N_3 AG4
3 IO_L25P_3 AH5
3 IO_L24N_3 AF6
3 IO_L24P_3 AG6
3 IO_L23N_3 AH3
3 IO_L23P_3 AJ3
3 IO_L22N_3 AF7
3 IO_L22P_3 AG7
3 IO_L21N_3/VREF_3 AL1
3 IO_L21P_3 AK1
3 IO_L20N_3 AH2
3 IO_L20P_3 AJ2
3 IO_L19N_3 AJ4
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 114 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 115
Product Specification 1-800-255-7778
R
3 IO_L19P_3 AK4
3 IO_L06N_3 AE10
3 IO_L06P_3 AD10
3 IO_L05N_3 AK2
3 IO_L05P_3 AL2
3 IO_L04N_3 AH6
3 IO_L04P_3 AJ5
3 IO_L03N_3/VREF_3 AE11
3 IO_L03P_3 AF11
3 IO_L02N_3/VRP_3 AK3
3 IO_L02P_3/VRN_3 AL3
3 IO_L01N_3 AF10
3 IO_L01P_3 AG9
4 IO_L01N_4/DOUT AM4
4 IO_L01P_4/INIT_B AL5
4 IO_L02N_4/D0 AG10
4 IO_L02P_4/D1 AH11
4 IO_L03N_4/D2/ALT_VRP_4 AK7
4 IO_L03P_4/D3/ALT_VRN_4 AK8
4 IO_L04N_4/VREF_4 AL6
4 IO_L04P_4 AM6
4 IO_L05N_4/VRP_4 AK9
4 IO_L05P_4/VRN_4 AJ8
4 IO_L06N_4 AM8
4 IO_L06P_4 AM7
4 IO_L19N_4 AN3
4 IO_L19P_4 AM2
4 IO_L20N_4 AJ10
4 IO_L20P_4 AJ9
4 IO_L21N_4 AH9
4 IO_L21P_4/VREF_4 AH10
4 IO_L22N_4 AN5
4 IO_L22P_4 AN4
4 IO_L23N_4 AE12
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
4 IO_L23P_4 AE13
4 IO_L24N_4 AM9
4 IO_L24P_4 AL8
4 IO_L25N_4 AP5
4 IO_L25P_4 AP4
4 IO_L26N_4 AG11
4 IO_L26P_4 AG12
4 IO_L27N_4 AN7
4 IO_L27P_4/VREF_4 AN6
4 IO_L28N_4 AL10
4 IO_L28P_4 AL9
4 IO_L29N_4 AF12
4 IO_L29P_4 AF13
4 IO_L30N_4 AK10
4 IO_L30P_4 AK11
4 IO_L49N_4 AP7
4 IO_L49P_4 AP6
4 IO_L50N_4 AH13
4 IO_L50P_4 AH12
4 IO_L51N_4 AJ11
4 IO_L51P_4/VREF_4 AJ12
4 IO_L52N_4 AP9
4 IO_L52P_4 AN8
4 IO_L53N_4 AG13
4 IO_L53P_4 AG14
4 IO_L54N_4 AM11
4 IO_L54P_4 AL11
4 IO_L60N_4 AN10
4 IO_L60P_4 AN9
4 IO_L67N_4 AN12
4 IO_L67P_4 AN11
4 IO_L68N_4 AE14
4 IO_L68P_4 AE15
4 IO_L69N_4 AJ13
4 IO_L69P_4/VREF_4 AJ14
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 115 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
116 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
4 IO_L70N_4 AL13
4 IO_L70P_4 AL12
4 IO_L71N_4 AF14
4 IO_L71P_4 AF15
4 IO_L72N_4 AM13
4 IO_L72P_4 AM12
4 IO_L73N_4 AP12
4 IO_L73P_4 AP11
4 IO_L74N_4 AG15
4 IO_L74P_4 AG16
4 IO_L75N_4 AN14
4 IO_L75P_4/VREF_4 AN13
4 IO_L76N_4 AP14
4 IO_L76P_4 AP13
4 IO_L77N_4 AD16
4 IO_L77P_4 AD17
4 IO_L78N_4 AK14
4 IO_L78P_4 AK13
4 IO_L79N_4 AN16
4 IO_L79P_4 AP15
4 IO_L80N_4 AE16
4 IO_L80P_4 AE17
4 IO_L81N_4 AH15
4 IO_L81P_4/VREF_4 AJ15
4 IO_L82N_4 AP17
4 IO_L82P_4 AN17
4 IO_L83N_4 AH17
4 IO_L83P_4 AH16
4 IO_L84N_4 AL15
4 IO_L84P_4 AL14
4 IO_L91N_4/VREF_4 AL16
4 IO_L91P_4 AL17
4 IO_L92N_4 AJ17
4 IO_L92P_4 AJ16
4 IO_L93N_4 AM15
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
4 IO_L93P_4 AM14
4 IO_L94N_4/VREF_4 AM16
4 IO_L94P_4 AM17
4 IO_L95N_4/GCLK3S AF17
4 IO_L95P_4/GCLK2P AG17
4 IO_L96N_4/GCLK1S AK16
4 IO_L96P_4/GCLK0P AK17
5 IO_L96N_5/GCLK7S AK18
5 IO_L96P_5/GCLK6P AK19
5 IO_L95N_5/GCLK5S AG18
5 IO_L95P_5/GCLK4P AF18
5 IO_L94N_5 AL18
5 IO_L94P_5/VREF_5 AL19
5 IO_L93N_5 AJ19
5 IO_L93P_5 AJ18
5 IO_L92N_5 AH19
5 IO_L92P_5 AH18
5 IO_L91N_5 AM19
5 IO_L91P_5/VREF_5 AM20
5 IO_L84N_5 AL21
5 IO_L84P_5 AL20
5 IO_L83N_5 AM22
5 IO_L83P_5 AM21
5 IO_L82N_5 AN18
5 IO_L82P_5 AP18
5 IO_L81N_5/VREF_5 AP20
5 IO_L81P_5 AN19
5 IO_L80N_5 AE18
5 IO_L80P_5 AE19
5 IO_L79N_5 AP22
5 IO_L79P_5 AP21
5 IO_L78N_5 AK22
5 IO_L78P_5 AK21
5 IO_L77N_5 AD18
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 116 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 117
Product Specification 1-800-255-7778
R
5 IO_L77P_5 AD19
5 IO_L76N_5 AN22
5 IO_L76P_5 AN21
5 IO_L75N_5/VREF_5 AJ20
5 IO_L75P_5 AH20
5 IO_L74N_5 AG19
5 IO_L74P_5 AG20
5 IO_L73N_5 AP24
5 IO_L73P_5 AP23
5 IO_L72N_5 AL23
5 IO_L72P_5 AL22
5 IO_L71N_5 AF20
5 IO_L71P_5 AF21
5 IO_L70N_5 AM24
5 IO_L70P_5 AM23
5 IO_L69N_5/VREF_5 AJ21
5 IO_L69P_5 AJ22
5 IO_L68N_5 AJ24
5 IO_L68P_5 AJ23
5 IO_L67N_5 AN24
5 IO_L67P_5 AN23
5 IO_L60N_5 AN26
5 IO_L60P_5 AN25
5 IO_L54N_5 AL25
5 IO_L54P_5 AL24
5 IO_L53N_5 AE20
5 IO_L53P_5 AE21
5 IO_L52N_5 AN27
5 IO_L52P_5 AP26
5 IO_L51N_5/VREF_5 AP29
5 IO_L51P_5 AP28
5 IO_L50N_5 AG21
5 IO_L50P_5 AG22
5 IO_L49N_5 AN29
5 IO_L49P_5 AN28
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
5 IO_L30N_5 AK24
5 IO_L30P_5 AK25
5 IO_L29N_5 AH23
5 IO_L29P_5 AH22
5 IO_L28N_5 AP31
5 IO_L28P_5 AP30
5 IO_L27N_5/VREF_5 AH24
5 IO_L27P_5 AH25
5 IO_L26N_5 AF22
5 IO_L26P_5 AF23
5 IO_L25N_5 AM27
5 IO_L25P_5 AM26
5 IO_L24N_5 AL27
5 IO_L24P_5 AL26
5 IO_L23N_5 AH26
5 IO_L23P_5 AJ25
5 IO_L22N_5 AN31
5 IO_L22P_5 AN30
5 IO_L21N_5/VREF_5 AK26
5 IO_L21P_5 AK27
5 IO_L20N_5 AG23
5 IO_L20P_5 AF24
5 IO_L19N_5 AM33
5 IO_L19P_5 AN32
5 IO_L06N_5 AJ27
5 IO_L06P_5 AJ26
5 IO_L05N_5/VRP_5 AE22
5 IO_L05P_5/VRN_5 AE23
5 IO_L04N_5 AM28
5 IO_L04P_5/VREF_5 AM29
5 IO_L03N_5/D4/ALT_VRP_5 AK28
5 IO_L03P_5/D5/ALT_VRN_5 AL29
5 IO_L02N_5/D6 AG24
5 IO_L02P_5/D7 AG25
5 IO_L01N_5/RDWR_B AL30
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 117 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
118 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
5 IO_L01P_5/CS_B AM31
6 IO_L01P_6 AE24
6 IO_L01N_6 AD25
6 IO_L02P_6/VRN_6 AJ30
6 IO_L02N_6/VRP_6 AH30
6 IO_L03P_6 AL32
6 IO_L03N_6/VREF_6 AK32
6 IO_L04P_6 AF25
6 IO_L04N_6 AE25
6 IO_L05P_6 AJ31
6 IO_L05N_6 AK31
6 IO_L06P_6 AH29
6 IO_L06N_6 AG29
6 IO_L19P_6 AG26
6 IO_L19N_6 AF26
6 IO_L20P_6 AL33
6 IO_L20N_6 AK33
6 IO_L21P_6 AJ32
6 IO_L21N_6/VREF_6 AH32
6 IO_L22P_6 AG28
6 IO_L22N_6 AF28
6 IO_L23P_6 AG30
6 IO_L23N_6 AF30
6 IO_L24P_6 AF29
6 IO_L24N_6 AE29
6 IO_L25P_6 AF27
6 IO_L25N_6 AE27
6 IO_L26P_6 AL34
6 IO_L26N_6 AK34
6 IO_L27P_6 AE28
6 IO_L27N_6/VREF_6 AD28
6 IO_L28P_6 AE26
6 IO_L28N_6 AD26
6 IO_L29P_6 AF31
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
6 IO_L29N_6 AG31
6 IO_L30P_6 AF32
6 IO_L30N_6 AG32
6 IO_L43P_6 AC25
6 IO_L43N_6 AB25
6 IO_L44P_6 AJ33
6 IO_L44N_6 AH33
6 IO_L45P_6 AE31
6 IO_L45N_6/VREF_6 AD32
6 IO_L46P_6 AD27
6 IO_L46N_6 AC27
6 IO_L47P_6 AJ34
6 IO_L47N_6 AH34
6 IO_L48P_6 AE30
6 IO_L48N_6 AD30
6 IO_L49P_6 AC26
6 IO_L49N_6 AB26
6 IO_L50P_6 AD29
6 IO_L50N_6 AC29
6 IO_L51P_6 AF33
6 IO_L51N_6/VREF_6 AG33
6 IO_L52P_6 AC28
6 IO_L52N_6 AB28
6 IO_L53P_6 AF34
6 IO_L53N_6 AE33
6 IO_L54P_6 AB27
6 IO_L54N_6 AA27
6 IO_L67P_6 AA25
6 IO_L67N_6 Y25
6 IO_L68P_6 AD33
6 IO_L68N_6 AC33
6 IO_L69P_6 AC32
6 IO_L69N_6/VREF_6 AB32
6 IO_L70P_6 AA26
6 IO_L70N_6 Y26
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 118 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 119
Product Specification 1-800-255-7778
R
6 IO_L71P_6 AD34
6 IO_L71N_6 AC34
6 IO_L72P_6 AC31
6 IO_L72N_6 AD31
6 IO_L73P_6 Y27
6 IO_L73N_6 W27
6 IO_L74P_6 AB29
6 IO_L74N_6 AA29
6 IO_L75P_6 AB31
6 IO_L75N_6/VREF_6 AA31
6 IO_L76P_6 Y28
6 IO_L76N_6 Y29
6 IO_L77P_6 AB33
6 IO_L77N_6 AA33
6 IO_L78P_6 AA30
6 IO_L78N_6 AB30
6 IO_L79P_6 W24
6 IO_L79N_6 V24
6 IO_L80P_6 AB34
6 IO_L80N_6 AA34
6 IO_L81P_6 W33
6 IO_L81N_6/VREF_6 Y34
6 IO_L82P_6 W25
6 IO_L82N_6 V25
6 IO_L83P_6 Y32
6 IO_L83N_6 AA32
6 IO_L84P_6 W29
6 IO_L84N_6 V29
6 IO_L91P_6 W28
6 IO_L91N_6 V28
6 IO_L92P_6 V33
6 IO_L92N_6 V34
6 IO_L93P_6 Y31
6 IO_L93N_6/VREF_6 W31
6 IO_L94P_6 V26
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
6 IO_L94N_6 V27
6 IO_L95P_6 W30
6 IO_L95N_6 V30
6 IO_L96P_6 V32
6 IO_L96N_6 W32
7 IO_L96P_7 U31
7 IO_L96N_7 V31
7 IO_L95P_7 T28
7 IO_L95N_7 U28
7 IO_L94P_7 U33
7 IO_L94N_7 U34
7 IO_L93P_7/VREF_7 U29
7 IO_L93N_7 T29
7 IO_L92P_7 U27
7 IO_L92N_7 U26
7 IO_L91P_7 T30
7 IO_L91N_7 U30
7 IO_L84P_7 R32
7 IO_L84N_7 T32
7 IO_L83P_7 U25
7 IO_L83N_7 T25
7 IO_L82P_7 R34
7 IO_L82N_7 T33
7 IO_L81P_7/VREF_7 N34
7 IO_L81N_7 P34
7 IO_L80P_7 U24
7 IO_L80N_7 T24
7 IO_L79P_7 R31
7 IO_L79N_7 T31
7 IO_L78P_7 N32
7 IO_L78N_7 P32
7 IO_L77P_7 T27
7 IO_L77N_7 R27
7 IO_L76P_7 N33
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 119 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
120 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
7 IO_L76N_7 P33
7 IO_L75P_7/VREF_7 R29
7 IO_L75N_7 R28
7 IO_L74P_7 R26
7 IO_L74N_7 P26
7 IO_L73P_7 N31
7 IO_L73N_7 P31
7 IO_L72P_7 N30
7 IO_L72N_7 P30
7 IO_L71P_7 R25
7 IO_L71N_7 P25
7 IO_L70P_7 L34
7 IO_L70N_7 M34
7 IO_L69P_7/VREF_7 P29
7 IO_L69N_7 N29
7 IO_L68P_7 P27
7 IO_L68N_7 N27
7 IO_L67P_7 L32
7 IO_L67N_7 M32
7 IO_L54P_7 L31
7 IO_L54N_7 M31
7 IO_L53P_7 K29
7 IO_L53N_7 L30
7 IO_L52P_7 L33
7 IO_L52N_7 M33
7 IO_L51P_7/VREF_7 M29
7 IO_L51N_7 L29
7 IO_L50P_7 M28
7 IO_L50N_7 N28
7 IO_L49P_7 K30
7 IO_L49N_7 K31
7 IO_L48P_7 H32
7 IO_L48N_7 J32
7 IO_L47P_7 N26
7 IO_L47N_7 M26
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
7 IO_L46P_7 J33
7 IO_L46N_7 K33
7 IO_L45P_7/VREF_7 H33
7 IO_L45N_7 J34
7 IO_L44P_7 M27
7 IO_L44N_7 L27
7 IO_L43P_7 H31
7 IO_L43N_7 J31
7 IO_L30P_7 F32
7 IO_L30N_7 G32
7 IO_L29P_7 N25
7 IO_L29N_7 M25
7 IO_L28P_7 F34
7 IO_L28N_7 G34
7 IO_L27P_7/VREF_7 J30
7 IO_L27N_7 H30
7 IO_L26P_7 K28
7 IO_L26N_7 L28
7 IO_L25P_7 H28
7 IO_L25N_7 J29
7 IO_L24P_7 G29
7 IO_L24N_7 H29
7 IO_L23P_7 L26
7 IO_L23N_7 K26
7 IO_L22P_7 F33
7 IO_L22N_7 G33
7 IO_L21P_7/VREF_7 J28
7 IO_L21N_7 J27
7 IO_L20P_7 K27
7 IO_L20N_7 J26
7 IO_L19P_7 E31
7 IO_L19N_7 F31
7 IO_L06P_7 D32
7 IO_L06N_7 E32
7 IO_L05P_7 L25
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 120 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 121
Product Specification 1-800-255-7778
R
7 IO_L05N_7 K24
7 IO_L04P_7 D34
7 IO_L04N_7 E34
7 IO_L03P_7/VREF_7 G30
7 IO_L03N_7 F30
7 IO_L02P_7/VRN_7 K25
7 IO_L02N_7/VRP_7 J25
7 IO_L01P_7 D33
7 IO_L01N_7 E33
0 VCCO_0 M22
0 VCCO_0 M21
0 VCCO_0 M20
0 VCCO_0 M19
0 VCCO_0 M18
0 VCCO_0 L23
0 VCCO_0 L22
0 VCCO_0 L21
0 VCCO_0 L20
0 VCCO_0 E20
0 VCCO_0 D28
0 VCCO_0 A25
0 VCCO_0 A19
1 VCCO_1 M17
1 VCCO_1 M16
1 VCCO_1 M15
1 VCCO_1 M14
1 VCCO_1 M13
1 VCCO_1 L15
1 VCCO_1 L14
1 VCCO_1 L13
1 VCCO_1 L12
1 VCCO_1 E15
1 VCCO_1 D7
1 VCCO_1 A16
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
1 VCCO_1 A10
2 VCCO_2 U12
2 VCCO_2 T12
2 VCCO_2 T1
2 VCCO_2 R12
2 VCCO_2 R11
2 VCCO_2 R5
2 VCCO_2 P12
2 VCCO_2 P11
2 VCCO_2 N12
2 VCCO_2 N11
2 VCCO_2 M11
2 VCCO_2 K1
2 VCCO_2 G4
3 VCCO_3 AH4
3 VCCO_3 AE1
3 VCCO_3 AC11
3 VCCO_3 AB12
3 VCCO_3 AB11
3 VCCO_3 AA12
3 VCCO_3 AA11
3 VCCO_3 Y12
3 VCCO_3 Y11
3 VCCO_3 Y5
3 VCCO_3 W12
3 VCCO_3 W1
3 VCCO_3 V12
4 VCCO_4 AP16
4 VCCO_4 AP10
4 VCCO_4 AL7
4 VCCO_4 AK15
4 VCCO_4 AD15
4 VCCO_4 AD14
4 VCCO_4 AD13
4 VCCO_4 AD12
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 121 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
122 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
4 VCCO_4 AC17
4 VCCO_4 AC16
4 VCCO_4 AC15
4 VCCO_4 AC14
4 VCCO_4 AC13
5 VCCO_5 AP25
5 VCCO_5 AP19
5 VCCO_5 AL28
5 VCCO_5 AK20
5 VCCO_5 AD23
5 VCCO_5 AD22
5 VCCO_5 AD21
5 VCCO_5 AD20
5 VCCO_5 AC22
5 VCCO_5 AC21
5 VCCO_5 AC20
5 VCCO_5 AC19
5 VCCO_5 AC18
6 VCCO_6 AH31
6 VCCO_6 AE34
6 VCCO_6 AC24
6 VCCO_6 AB24
6 VCCO_6 AB23
6 VCCO_6 AA24
6 VCCO_6 AA23
6 VCCO_6 Y30
6 VCCO_6 Y24
6 VCCO_6 Y23
6 VCCO_6 W34
6 VCCO_6 W23
6 VCCO_6 V23
7 VCCO_7 U23
7 VCCO_7 T34
7 VCCO_7 T23
7 VCCO_7 R30
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
7 VCCO_7 R24
7 VCCO_7 R23
7 VCCO_7 P24
7 VCCO_7 P23
7 VCCO_7 N24
7 VCCO_7 N23
7 VCCO_7 M24
7 VCCO_7 K34
7 VCCO_7 G31
NA CCLK AH8
NA PROG_B D30
NA DONE AJ7
NA M0 AH27
NA M1 AJ28
NA M2 AK29
NA HSWAP_EN E29
NA TCK F7
NA TDI C31
NA TDO D5
NA TMS E6
NA PWRDWN_B AK6
NA DXN F28
NA DXP G27
NA VBATT C4
NA RSVD G8
NA VCCAUX AM30
NA VCCAUX AM18
NA VCCAUX AM5
NA VCCAUX V3
NA VCCAUX U32
NA VCCAUX C30
NA VCCAUX C17
NA VCCAUX C5
NA VCCINT AD24
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 122 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 123
Product Specification 1-800-255-7778
R
NA VCCINT AD11
NA VCCINT AC23
NA VCCINT AC12
NA VCCINT AB22
NA VCCINT AB21
NA VCCINT AB20
NA VCCINT AB19
NA VCCINT AB18
NA VCCINT AB17
NA VCCINT AB16
NA VCCINT AB15
NA VCCINT AB14
NA VCCINT AB13
NA VCCINT AA22
NA VCCINT AA13
NA VCCINT Y22
NA VCCINT Y13
NA VCCINT W22
NA VCCINT W13
NA VCCINT V22
NA VCCINT V13
NA VCCINT U22
NA VCCINT U13
NA VCCINT T22
NA VCCINT T13
NA VCCINT R22
NA VCCINT R13
NA VCCINT P22
NA VCCINT P13
NA VCCINT N22
NA VCCINT N21
NA VCCINT N20
NA VCCINT N19
NA VCCINT N18
NA VCCINT N17
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
NA VCCINT N16
NA VCCINT N15
NA VCCINT N14
NA VCCINT N13
NA VCCINT M23
NA VCCINT M12
NA VCCINT L24
NA VCCINT L11
NA GND AP32
NA GND AP27
NA GND AP8
NA GND AP3
NA GND AN33
NA GND AN20
NA GND AN15
NA GND AN2
NA GND AM34
NA GND AM32
NA GND AM25
NA GND AM10
NA GND AM3
NA GND AM1
NA GND AL31
NA GND AL4
NA GND AK30
NA GND AK23
NA GND AK12
NA GND AK5
NA GND AJ29
NA GND AJ6
NA GND AH28
NA GND AH21
NA GND AH14
NA GND AH7
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 123 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
124 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
NA GND AG34
NA GND AG27
NA GND AG8
NA GND AG1
NA GND AF19
NA GND AF16
NA GND AE32
NA GND AE3
NA GND AC30
NA GND AC5
NA GND AA28
NA GND AA21
NA GND AA20
NA GND AA19
NA GND AA18
NA GND AA17
NA GND AA16
NA GND AA15
NA GND AA14
NA GND AA7
NA GND Y33
NA GND Y21
NA GND Y20
NA GND Y19
NA GND Y18
NA GND Y17
NA GND Y16
NA GND Y15
NA GND Y14
NA GND Y2
NA GND W26
NA GND W21
NA GND W20
NA GND W19
NA GND W18
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
NA GND W17
NA GND W16
NA GND W15
NA GND W14
NA GND W9
NA GND V21
NA GND V20
NA GND V19
NA GND V18
NA GND V17
NA GND V16
NA GND V15
NA GND V14
NA GND U21
NA GND U20
NA GND U19
NA GND U18
NA GND U17
NA GND U16
NA GND U15
NA GND U14
NA GND T26
NA GND T21
NA GND T20
NA GND T19
NA GND T18
NA GND T17
NA GND T16
NA GND T15
NA GND T14
NA GND T9
NA GND R33
NA GND R21
NA GND R20
NA GND R19
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 124 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 125
Product Specification 1-800-255-7778
R
NA GND R18
NA GND R17
NA GND R16
NA GND R15
NA GND R14
NA GND R2
NA GND P28
NA GND P21
NA GND P20
NA GND P19
NA GND P18
NA GND P17
NA GND P16
NA GND P15
NA GND P14
NA GND P7
NA GND M30
NA GND M5
NA GND K32
NA GND K3
NA GND J19
NA GND J16
NA GND H34
NA GND H27
NA GND H8
NA GND H1
NA GND G28
NA GND G21
NA GND G14
NA GND G7
NA GND F29
NA GND F6
NA GND E30
NA GND E23
NA GND E12
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
NA GND E5
NA GND D31
NA GND D4
NA GND C34
NA GND C32
NA GND C25
NA GND C10
NA GND C3
NA GND C1
NA GND B33
NA GND B20
NA GND B15
NA GND B2
NA GND A32
NA GND A27
NA GND A8
NA GND A3
Table 80: CF1144 CGA — XQ2V6000
Bank Pin Description
Pin
Number
ds122_1_1.fm Page 125 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
126 www.xilinx.com DS122 (v1.1) January 7, 2004
1-800-255-7778 Product Specification
R
CF1144 Ceramic Flip-Chip Fine-Pitch CGA Package Specifications (1.00mm pitch)
Figure 56: CF1144 Ceramic Flip-Chip Fine-Pitch CGA Package Specifications
ds122_1_1.fm Page 126 Wednesday, January 7, 2004 9:15 PM
QPro Virtex-II 1.5V Military QML Platform FPGAs
DS122 (v1.1) January 7, 2004 www.xilinx.com 127
Product Specification 1-800-255-7778
R
Revision History
This section records the change history for this module of the data sheet.
Date Version Revision
9/24/03 1.0 Advance release.
01/07/04 1.1 Initial Xilinx release.
ds122_1_1.fm Page 127 Wednesday, January 7, 2004 9:15 PM