Semiconductor Components Industries, LLC, 2004
September, 2004 − Rev. 2 1Publication Order Number:
MMBT2222ATT1/D
MMBT2222ATT1
Preferred Device
General Purpose Transistor
NPN Silicon
These transistors are designed for general purpose amplifier
applications. They are housed in the SOT−416/SC−75 package which
is designed for low power surface mount applications.
MAXIMUM RATINGS (TA = 25°C)
Rating Symbol Max Unit
Collector−Emitter Voltage VCEO 40 Vdc
Collector−Base Voltage VCBO 75 Vdc
Emitter−Base Voltage VEBO 6.0 Vdc
Collector Current − Continuous IC600 mAdc
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Total Device Dissipation (Note 1)
TA = 25°CPD150 mW
Thermal Resistance,
Junction−to−Ambient RθJA 833 °C/W
Operating and Storage Junction
Temperature Range TJ, Tstg −55 to
+150 °C
Maximum ratings are those values beyond which device damage can occur.
Maximum ratings applied to the device are individual stress limit values (not
normal operating conditions) and are not valid simultaneously. If these limits are
exceeded, device functional operation is not implied, damage may occur and
reliability may be affected.
1. Device mounted on FR4 glass epoxy printed circuit board using the minimum
recommended footprint.
Device Package Shipping
ORDERING INFORMATION
MMBT2222ATT1 SOT−416
CASE 463
SOT−416/SC−75
STYLE 1
3000 / Tape & Reel
MARKING DIAGRAM
3
2
1
Preferred devices are recommended choices for future use
and best overall value.
COLLECTOR
3
1
BASE
2
EMITTER
http://onsemi.com
For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specification
Brochure, BRD8011/D.
1P M
1P = Specific Device Code
M = Date Code
1
MMBT2222ATT1
http://onsemi.com
2
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic Symbol Min Max Unit
OFF CHARACTERISTICS
CollectorEmitter Breakdown Voltage(1)
(IC = 1.0 mAdc, IB = 0) V(BR)CEO 40 Vdc
CollectorBase Breakdown Voltage
(IC = 10 Adc, IE = 0) V(BR)CBO 75 Vdc
EmitterBase Breakdown Voltage
(IE = 10 Adc, IC = 0) V(BR)EBO 6.0 Vdc
Base Cutoff Current
(VCE = 60 Vdc, VEB = 3.0 Vdc) IBL 20 nAdc
Collector Cutoff Current
(VCE = 60 Vdc, VEB = 3.0 Vdc) ICEX 10 nAdc
ON CHARACTERISTICS (Note 2)
DC Current Gain
(IC = 0.1 mAdc, VCE = 10 Vdc)
(IC = 1.0 mAdc, VCE = 10 Vdc)
(IC = 10 mAdc, VCE = 10 Vdc)
(IC = 150 mAdc, VCE = 10 Vdc)
(IC = 500 mAdc, VCE = 10 Vdc)
HFE 35
50
75
100
40
CollectorEmitter Saturation Voltage
(IC = 150 mAdc, IB = 15 mAdc)
(IC = 500 mAdc, IB = 50 mAdc)
VCE(sat)
0.3
1.0
Vdc
BaseEmitter Saturation Voltage
(IC = 150 mAdc, IB = 15 mAdc)
(IC = 500 mAdc, IB = 50 mAdc)
VBE(sat) 0.6
1.2
2.0
Vdc
SMALL−SIGNAL CHARACTERISTICS
CurrentGain — Bandwidth Product
(IC = 20 mAdc, VCE = 20 Vdc, f = 100 MHz) fT300 MHz
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 1.0 MHz) Cobo 8.0 pF
Input Capacitance
(VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz) Cibo 30 pF
Input Impedance
(VCE = 10 Vdc, IC = 10 mAdc, f = 1.0 kHz) hie 0.25 1.25 k ohms
Voltage Feedback Ratio
(VCE = 10 Vdc, IC = 10 mAdc, f = 1.0 kHz) hre 4.0 X 10−4
SmallSignal Current Gain
(VCE = 10 Vdc, IC = 10 mAdc, f = 1.0 kHz) hfe 75 375
Output Admittance
(VCE = 10 Vdc, IC = 10 mAdc, f = 1.0 kHz) hoe 25 200 mhos
Noise Figure
(VCE = 10 Vdc, IC = 100 Adc, RS = 1.0 k ohms, f = 1.0 kHz) NF 4.0 dB
SWITCHING CHARACTERISTICS
Delay Time (VCC = 3.0 Vdc, VBE = −0.5 Vdc, td 10
ns
Rise Time
(VCC
3
.
0
Vdc
,
VBE
0
.
5
Vdc
,
IC = 150 mAdc, IB1 = 15 mAdc) tr 25 ns
Storage Time (VCC = 30 Vdc, IC = 150 mAdc, ts 225
ns
Fall Time
(VCC
30
Vdc
,
IC
150
mAdc
,
IB1 = IB2 = 15 mAdc) tf 60 ns
2. Pulse Test: Pulse Width 300 s, Duty Cycle 2.0%.
MMBT2222ATT1
http://onsemi.com
3
Figure 1. Turn−On Time Figure 2. Turn−Off Time
SWITCHING TIME EQUIVALENT TEST CIRCUITS
Scope rise time < 4 ns
*Total shunt capacitance of test jig, connectors, and oscilloscope.
+16 V
−2 V < 2 ns
0
1.0 to 100 µs,
DUTY CYCLE 2.0%
1 k
+30 V
200
CS* < 10 pF
+16 V
−14 V
0
< 20 ns
1.0 to 100 µs,
DUTY CYCLE 2.0%
1 k
+30 V
200
CS* < 10 pF
−4 V
1N914
1000
10
20
30
50
70
100
200
300
500
700
1.0 k0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 300 500 700
IC, COLLECTOR CURRENT (mA)
Figure 3. DC Current Gain
hFE, DC CURRENT GAINVCE, COLLECTOR−EMITTER VOLTAGE (VOLTS)
1.0
0.8
0.6
0.4
0.2
0
0.005 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50
IB, BASE CURRENT (mA)
Figure 4. Collector Saturation Region
TJ = 125°C
TJ = 25°C
25°C
−55°C
IC = 1.0 mA 10 mA 150 mA 500 mA
VCE = 1.0 V
VCE = 10 V
MMBT2222ATT1
http://onsemi.com
4
Figure 5. TurnOn Time
IC, COLLECTOR CURRENT (mA)
70
100
200
50
t, TIME (ns)
10 20 70
5.0
100
5.0 7.0 30 50 200
10
30
7.0
20
IC/IB = 10
TJ = 25°C
tr @ VCC = 30 V
td @ VEB(off) = 2.0 V
td @ VEB(off) = 0
3.0
2.0
300 500
500
t, TIME (ns)
5.0
7.0
10
20
30
50
70
100
200
300
Figure 6. TurnOff Time
IC, COLLECTOR CURRENT (mA)
10 20 70 1005.0 7.0 30 50 200 300 500
VCC = 30 V
IC/IB = 10
IB1 = IB2
TJ = 25°C
ts = ts − 1/8 tf
tf
Figure 7. Frequency Effects
f, FREQUENCY (kHz)
4.0
6.0
8.0
10
2.0
0.1
Figure 8. Source Resistance Effects
RS, SOURCE RESISTANCE (OHMS)
NF, NOISE FIGURE (dB)
1.0 2.0 5.0 10 20 50
0.2 0.5
0
100
NF, NOISE FIGURE (dB)
0.01 0.02 0.05
RS = OPTIMUM
RS = SOURCE
RS = RESISTANCE
IC = 1.0 mA, RS = 150
500 µA, RS = 200
100 µA, RS = 2.0 k
50 µA, RS = 4.0 k
f = 1.0 kHz
IC = 50 µA
100 µA
500 µA
1.0 mA
4.0
6.0
8.0
10
2.0
0
50 100 200 500 1.0 k 2.0 k 5.0 k 10 k 20 k 50 k 100 k
Figure 9. Capacitances
REVERSE VOLTAGE (VOLTS)
3.0
5.0
7.0
10
2.0
0.1
CAPACITANCE (pF)
1.0 2.0 3.0 5.0 7.0 10 20 30 50
0.2 0.3 0.5 0.7
Ccb
20
30
Ceb
Figure 10. Current−Gain Bandwidth Product
IC, COLLECTOR CURRENT (mA)
70
100
200
300
50
500
fT, CURRENT−GAIN BANDWIDTH PRODUCT (MHz)
1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100
VCE = 20 V
TJ = 25°C
MMBT2222ATT1
http://onsemi.com
5
Figure 11. “On” Voltages
IC, COLLECTOR CURRENT (mA)
0.4
0.6
0.8
1.0
0.2
V, VOLTAGE (VOLTS)
0
TJ = 25°C
VBE(sat) @ IC/IB = 10
VCE(sat) @ IC/IB = 10
VBE(on) @ VCE = 10 V
Figure 12. Temperature Coefficients
IC, COLLECTOR CURRENT (mA)
−0.5
0
+0.5
COEFFICIENT (mV/ C)
−1.0
−1.5
−2.5
°
RVC for VCE(sat)
RVB for VBE
0.1 1.0 2.0 5.0 10 20 50
0.2 0.5 100 200 500 1.0 k
1.0 V
−2.0
0.1 1.0 2.0 5.0 10 20 500.2 0.5 100 200 500
MMBT2222ATT1
http://onsemi.com
6
PACKAGE DIMENSIONS
SC−75/SOT−416
CASE 463−01
ISSUE C
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A0.70 0.90 0.028 0.035
B1.40 1.80 0.055 0.071
C0.60 0.90 0.024 0.035
D0.15 0.30 0.006 0.012
G1.00 BSC 0.039 BSC
H−−− 0.10 −−− 0.004
J0.10 0.25 0.004 0.010
K1.45 1.75 0.057 0.069
L0.10 0.20 0.004 0.008
S0.50 BSC 0.020 BSC
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
M
0.20 (0.008) B
−A−
−B−
S
D
G
3 PL
0.20 (0.008) A
K
J
L
C
H
3
2
1
STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
MMBT2222ATT1/D
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.