Si86xx 1 Mbps Data Sheet
1 Mbps, 2.5 kVRMS Digital Isolators
Silicon Lab's family of ultra-low-power digital isolators are CMOS devices offering sub-
stantial data rate, propagation delay, power, size, reliability, and external BOM advan-
tages over legacy isolation technologies. The operating parameters of these products
remain stable across wide temperature ranges and throughout device service life for
ease of design and highly uniform performance. All device versions have Schmitt trigger
inputs for high noise immunity and only require VDD bypass capacitors.
All products support Data rates up to 1 Mbps and Enable inputs which provide a single
point control for enabling and disabling output drive. All products are safety certified by
UL, CSA, VDE, and CQC and support withstand ratings up to 2.5 kVRMS.
Automotive Grade is available for certain part numbers. These products are built using
automotive-specific flows at all steps in the manufacturing process to ensure the robust-
ness and low defectivity required for automotive applications.
KEY FEATURES
High-speed operation
DC to 1 Mbps
No start-up initialization required
Wide Operating Supply Voltage
2.5 to 5.5 V
Up to 2500 VRMS isolation
60-year life at rated working voltage
High electromagnetic immunity
Ultra low power (typical)
5 V Operation: 1.6 mA per channel at 1
Mbps
2.5 V Operation: 1.5 mA per channel at
1 Mbps
Tri-state outputs with ENABLE
Schmitt trigger inputs
Transient Immunity 50 kV/µs
AEC-Q100 qualification
Wide temperature range
–40 to 125 °C
RoHS-compliant packages
SOIC-16 wide body
SOIC-16 narrow body
SOIC-8 narrow body
Automotive-grade OPNs available
AIAG compliant PPAP documentation
support
IMDS and CAMDS listing support
Industrial Applications
Industrial automation systems
Medical electronics
Isolated switch mode supplies
Isolated ADC, DAC
Motor control
Power inverters
Communication systems
Safety Regulatory Approvals
UL 1577 recognized
Up to 5000 VRMS for 1 minute
CSA component notice 5A approval
IEC 60950-1, 61010-1
VDE certification conformity
IEC 60747-5-2 (VDE0884 Part 2)
CQC certification approval
GB4943.1
Automotive Applications
On-board chargers
Battery management systems
Charging stations
Traction inverters
Hybrid Electric Vehicles
Battery Electric Vehicles
silabs.com | Building a more connected world. Rev. 1.02
1. Ordering Guide
Table 1.1. Ordering Guide for Valid OPNs1,2
Ordering Part
Number (OPN)
Number of
Inputs
VDD1 Side
Number of
Inputs
VDD2 Side
Max Data
Rate (Mbps)
Default Out-
put State
Isolation
Rating (kV)
Temp (°C) Package
Si8610AB-B-IS 1 0 1 Low 2.5 –40 to 125 °C SOIC-8
Si8620AB-B-IS 2 0 1 Low 2.5 –40 to 125 °C SOIC-8
Si8621AB-B-IS 1 1 1 Low 2.5 –40 to 125 °C SOIC-8
Si8630AB-B-IS 3 0 1 Low 2.5 –40 to 125 °C WB SOIC-16
Si8630AB-B-IS1 3 0 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8631AB-B-IS 2 1 1 Low 2.5 –40 to 125 °C WB SOIC-16
Si8631AB-B-IS1 2 1 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8640AB-B-IS1 4 0 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8640AB-B-IS 4 0 1 Low 2.5 –40 to 125 °C WB SOIC-16
Si8641AB-B-IS1 3 1 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8641AB-B-IS 3 1 1 Low 2.5 –40 to 125 °C WB SOIC-16
Si8642AB-B-IS1 2 2 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8642AB-B-IS 2 2 1 Low 2.5 –40 to 125 °C WB SOIC-16
Si8650AB-B-IS1 5 0 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8651AB-B-IS1 4 1 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8652AB-B-IS1 3 2 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8660AB-B-IS1 6 0 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8661AB-B-IS1 5 1 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8662AB-B-IS1 4 2 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8663AB-B-IS1 3 3 1 Low 2.5 –40 to 125 °C NB SOIC-16
Notes:
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifica-
tions and peak solder temperatures.
2. “Si” and “SI” are used interchangeably.
Si86xx Data Sheet
Ordering Guide
silabs.com | Building a more connected world. Rev. 1.02 | 2
Automotive Grade OPNs
Automotive-grade devices are built using automotive-specific flows at all steps in the manufacturing process to ensure robustness and
low defectivity. These devices are supported with AIAG-compliant Production Part Approval Process (PPAP) documentation, and fea-
ture International Material Data System (IMDS) and China Automotive Material Data System (CAMDS) listing. Qualifications are compli-
ant with AEC-Q100, and a zero-defect methodology is maintained throughout definition, design, evaluation, qualification, and mass pro-
duction steps.
Table 1.2. Ordering Guide for Automotive Grade OPNs1, 2, 4, 5
Ordering Part Number
(OPN)
Number of
Inputs
VDD1 Side
Number of
Inputs
VDD2 Side
Max Data
Rate
(Mbps)
Default
Output
State
Isolation
Rating (kV)
Temp (°C) Package
Si8621AB-AS 1 1 1 Low 2.5 –40 to 125 °C SOIC-8
SI8641AB-AS1 3 1 1 Low 2.5 –40 to 125 °C NB SOIC-16
SI8642AB-AS1 2 2 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8663AB-AS1 3 3 1 Low 2.5 –40 to 125 °C SOIC-16
Note:
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifica-
tions.
2. “Si” and “SI” are used interchangeably.
3. An "R" at the end of the part number denotes tape and reel packaging option.
4. Automotive-Grade devices (with an "–A" suffix) are identical in construction materials, topside marking, and electrical parameters
to their Industrial-Grade (with a "–I" suffix) version counterparts. Automotive-Grade products are produced utilizing full automotive
process flows and additional statistical process controls throughout the manufacturing flow. The Automotive-Grade part number is
included on shipping labels.
5. Additional Ordering Part Numbers may be available in Automotive-Grade. Please contact your local Silicon Labs sales represen-
tative for further information.
Si86xx Data Sheet
Ordering Guide
silabs.com | Building a more connected world. Rev. 1.02 | 3
Table of Contents
1. Ordering Guide ..............................2
2. Functional Description............................5
2.1 Theory of Operation ............................5
3. Device Operation ..............................6
3.1 Device Startup ..............................8
3.2 Undervoltage Lockout ...........................8
3.3 Layout Recommendations ..........................8
3.3.1 Supply Bypass ............................8
3.3.2 Output Pin Termination..........................8
4. Electrical Specifications ...........................9
5. Pin Descriptions .............................30
5.1 Pin Descriptions (Si861x/2x Narrow Body SOIC-8) ..................30
5.2 Pin Descriptions (Si863x) ..........................31
5.3 Pin Descriptions (Si864x) ..........................32
5.4 Pin Descriptions (Si8650/51/52) ........................33
5.5 Pin Descriptions (Si866x) ..........................34
6. Package Outlines .............................35
6.1 Package Outline (16-Pin Wide Body SOIC) ....................35
6.2 Package Outline (16-Pin Narrow Body SOIC)....................37
6.3 Package Outline (8-Pin Narrow Body SOIC) ....................39
7. Land Patterns ..............................40
7.1 Land Pattern (16-Pin Wide-Body SOIC) .....................40
7.2 Land Pattern (16-Pin Narrow Body SOIC) .....................41
7.3 Land Pattern (8-Pin Narrow Body SOIC) .....................42
8. Top Markings ..............................43
8.1 Top Marking (16-Pin Wide Body SOIC) ......................43
8.2 Top Marking (16-Pin Narrow Body SOIC) .....................44
8.3 Top Marking (8-Pin Narrow Body SOIC) .....................45
9. Revision History .............................46
silabs.com | Building a more connected world. Rev. 1.02 | 4
2. Functional Description
2.1 Theory of Operation
The operation of an Si86xx channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This
simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified
block diagram for a single Si86xx channel is shown in the figure below.
RF
OSCILLATOR
MODULATOR DEMODULATOR
A B
Semiconductor-
Based Isolation
Barrier
Transmitter Receiver
Figure 2.1. Simplified Channel Diagram
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the
Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that
decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying
scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to
magnetic fields. See the figure below for more details.
Input Signal
Output Signal
Modulation Signal
Figure 2.2. Modulation Scheme
Si86xx Data Sheet
Functional Description
silabs.com | Building a more connected world. Rev. 1.02 | 5
3. Device Operation
Device behavior during start-up, normal operation, and shutdown is shown in Figure 3.1 Device Behavior during Normal Operation on
page 8, where UVLO+ and UVLO- are the positive-going and negative-going thresholds respectively. Refer to the table below to
determine outputs when power supply (VDD) is not present. Additionally, refer to Table 3.2 Enable Input Truth1 on page 7 for logic
conditions when enable pins are used.
Table 3.1. Si86xx Logic Operation
VI
Input1,2
EN
Input1,2,3,4
VDDI
State1,5,6
VDDO
State1,5,6
VO Output1,2 Comments
H H or NC P P H Enabled, normal operation.
L H or NC P P L
X7L P P Hi-Z8Disabled.
X7H or NC UP P L Upon transition of VDDI from unpowered to powered, VO re-
turns to the same state as VI in less than 1 µs.
X7L UP P Hi-Z8Disabled.
X7X7P UP Undetermined Upon transition of VDDO from unpowered to powered, VO re-
turns to the same state as VI within 1 µs, if EN is in either the
H or NC state. Upon transition of VDDO from unpowered to
powered, VO returns to Hi-Z within 1 µs if EN is L.
Notes:
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals. EN is the
enable control input located on the same output side.
2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.
3. It is recommended that the enable inputs be connected to an external logic high or low level when the Si86xx is operating in noisy
environments.
4. No Connect (NC) replaces EN1 on some devices. No Connects are not internally connected and can be left floating, tied to VDD,
or tied to GND.
5. “Powered” state (P) is defined as 2.5 V < VDD < 5.5 V.
6. “Unpowered” state (UP) is defined as VDD = 0 V.
7. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.
8. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is disabled
(EN = 0).
Si86xx Data Sheet
Device Operation
silabs.com | Building a more connected world. Rev. 1.02 | 6
Table 3.2. Enable Input Truth1
P/N EN11,2 EN21,2 Operation
Si861x/2x Outputs are enabled and follow input state.
Si8630 H Outputs B1, B2, B3 are enabled and follow input state.
L Outputs B1, B2, B3 are disabled and in high impedance state.3
Si8631 H X Output A3 enabled and follows input state.
L X Output A3 disabled and in high impedance state.3
X H Outputs B1, B2 are enabled and follow input state.
X L Outputs B1, B2 are disabled and in high impedance state.3
Si8640 H Outputs B1, B2, B3, B4 are enabled and follow the input state.
L Outputs B1, B2, B3, B4 are disabled and in high impedance state.3
Si8641 H X Output A4 enabled and follows the input state.
L X Output A4 disabled and in high impedance state.3
X H Outputs B1, B2, B3 are enabled and follow the input state.
X L Outputs B1, B2, B3 are disabled and in high impedance state.3
Si8642 H X Outputs A3 and A4 are enabled and follow the input state.
L X Outputs A3 and A4 are disabled and in high impedance state.3
X H Outputs B1 and B2 are enabled and follow the input state.
X L Outputs B1 and B2 are disabled and in high impedance state.3
Si8650 H Outputs B1, B2, B3, B4, B5 are enabled and follow input state.
L Outputs B1, B2, B3, B4, B5 are disabled and Logic Low or in high impedance state.3
Si8651 H X Output A5 enabled and follow input state.
L X Output A5 disabled and in high impedance state.3
X H Outputs B1, B2, B3, B4 are enabled and follow input state.
X L Outputs B1, B2, B3, B4 are disabled and in high impedance state.3
Si8652 H X Outputs A4 and A5 are enabled and follow input state.
L X Outputs A4 and A5 are disabled and in high impedance state.3
X H Outputs B1, B2, B3 are enabled and follow input state.
X L Outputs B1, B2, B3 are disabled and in high impedance state.3
Si866x Outputs are enabled and follow input state.
Notes:
1. Enable inputs EN1 and EN2 can be used for multiplexing, for clock sync, or other output control. These inputs are internally
pulled-up to local VDD by a 2 µA current source allowing them to be connected to an external logic level (high or low) or left
floating. To minimize noise coupling, do not connect circuit traces to EN1 or EN2 if they are left floating. If EN1, EN2 are unused,
it is recommended they be connected to an external logic level, especially if the Si86xx is operating in a noisy environment.
2. X = not applicable; H = Logic High; L = Logic Low.
3. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is disabled
(EN = 0).
Si86xx Data Sheet
Device Operation
silabs.com | Building a more connected world. Rev. 1.02 | 7
3.1 Device Startup
Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following this, the outputs follow
the states of inputs.
3.2 Undervoltage Lockout
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its
specified operating circuits range. Both Side A and Side B each have their own undervoltage lockout monitors. Each side can enter or
exit UVLO independently. For example, Side A unconditionally enters UVLO when VDD1 falls below VDD1(UVLO–) and exits UVLO when
VDD1 rises above VDD1(UVLO+). Side B operates the same as Side A with respect to its VDD2 supply.
INPUT
VDD1
UVLO-
VDD2
UVLO+
UVLO-
UVLO+
OUTPUT
tSTART tSTART tSTART tPHL tPLH
tSD
Figure 3.1. Device Behavior during Normal Operation
3.3 Layout Recommendations
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the
safety extra-low voltage circuits (SELV is a circuit with <30 VAC) by a certain distance (creepage/clearance). If a component, such as a
digital isolator, straddles this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large
high-voltage breakdown protection rating (commonly referred to as working voltage protection). Table 4.5 Regulatory Information1 on
page 25 and Table 4.6 Insulation and Safety-Related Specifications on page 25 detail the working voltage and creepage/clearance
capabilities of the Si86xx. These tables also detail the component standards (UL1577, IEC60747, CSA 5A), which are readily accepted
by certification bodies to provide proof for end-system specifications requirements. Refer to the end-system specification (61010-1,
60950-1, 60601-1, etc.) requirements before starting any design that uses a digital isolator.
3.3.1 Supply Bypass
The Si86xx family requires a 0.1 µF bypass capacitor between VDD1 and GND1 and VDD2 and GND2. The capacitor should be placed
as close as possible to the package. To enhance the robustness of a design, the user may also include resistors (50–300 Ω ) in series
with the inputs and outputs if the system is excessively noisy.
3.3.2 Output Pin Termination
The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of the on-
chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will
be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
Si86xx Data Sheet
Device Operation
silabs.com | Building a more connected world. Rev. 1.02 | 8
4. Electrical Specifications
Table 4.1. Recommended Operating Conditions
Parameter Symbol Min Typ Max Unit
Ambient Operating Temperature1TA–40 25 125 ºC
Supply Voltage
VDD1 2.5 5.5 V
VDD2 2.5 5.5 V
Note:
1. The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels, and supply
voltage.
Table 4.2. Electrical Characteristics
(VDD1 = 5 V±10%, VDD2 = 5 V±10%, TA = –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 1.95 2.24 2.375 V
VDD Undervoltage Threshold VDDUV– VDD1, VDD2 falling 1.88 2.16 2.325 V
VDD Undervoltage
Hysteresis
VDDHYS 50 70 95 mV
Positive-Going Input Threshold VT+ All inputs rising 1.4 1.67 1.9 V
Negative-Going
Input Threshold
VT– All inputs falling 1.0 1.23 1.4 V
Input Hysteresis VHYS 0.38 0.44 0.50 V
High Level Input Voltage VIH 2.0 V
Low Level input voltage VIL 0.8 V
High Level Output Voltage VOH loh = –4 mA VDD1,VDD2
0.4
4.8 V
Low Level Output Voltage VOL lol = 4 mA 0.2 0.4 V
Input Leakage Current IL ±10 µA
Output Impedance1ZO 50 Ω
Enable Input High Current ΙENH VENx = VIH 2.0 µA
Enable Input Low Current IENL VENx = VIL 2.0 µA
DC Supply Current (All inputs 0 V or at Supply)
Si8610Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
0.6
0.8
1.8
0.8
1.2
1.5
2.9
1.5
mA
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 9
Parameter Symbol Test Condition Min Typ Max Unit
Si8620Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
0.8
1.4
3.3
1.4
1.4
2.2
5.3
2.2
mA
Si8621Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.2
1.2
2.4
2.4
1.9
1.9
3.8
3.8
mA
Si8630Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
0.9
1.9
4.6
1.9
1.6
3.0
7.4
3.0
mA
Si8631Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.3
1.7
3.9
3.0
2.1
2.7
5.9
4.5
mA
Si8640Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.0
2.4
6.1
2.5
1.6
3.8
9.2
4.0
mA
Si8641Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.4
2.3
5.2
3.6
2.2
3.7
7.8
5.4
mA
Si8642Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.8
1.8
4.4
4.4
2.9
2.9
6.6
6.6
mA
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 10
Parameter Symbol Test Condition Min Typ Max Unit
Si8650Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.1
3.1
7.0
3.3
1.8
4.7
9.8
5.0
mA
Si8651Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.5
2.7
6.6
4.0
2.4
4.1
9.2
6.0
mA
Si8652Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
2.0
2.4
5.6
5.0
3.0
3.6
7.8
7.5
mA
Si8660Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.2
3.5
8.8
3.7
1.9
5.3
12.3
5.6
mA
Si8661Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.7
3.4
7.9
4.8
2.7
5.1
11.1
7.2
mA
Si8662Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
2.2
3.0
7.5
5.6
3.3
4.5
10.5
8.4
mA
Si8663Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
2.6
2.6
6.5
6.5
3.9
3.9
9.1
9.1
mA
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 11
Parameter Symbol Test Condition Min Typ Max Unit
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all Outputs)
Si8610Ax
VDD1
VDD2
1.2
0.9
2.0
1.5
mA
Si8620Ax
VDD1
VDD2
2.1
1.6
3.1
2.4
mA
Si8621Ax
VDD1
VDD2
1.9
1.9
2.9
2.9
mA
Si8630Ax
VDD1
VDD2
2.8
2.2
3.9
3.1
mA
Si8631Ax
VDD1
VDD2
2.7
2.6
3.8
3.6
mA
Si8640Ax
VDD1
VDD2
3.6
2.9
5.0
4.0
mA
Si8641Ax
VDD1
VDD2
3.4
3.3
4.8
4.6
mA
Si8642Ax
VDD1
VDD2
3.3
3.3
4.6
4.6
mA
Si8650Ax
VDD1
VDD2
4.1
3.7
5.7
5.2
mA
Si8651Ax
VDD1
VDD2
4.2
3.8
5.8
5.3
mA
Si8652Ax
VDD1
VDD2
4.0
4.0
5.6
5.6
mA
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 12
Parameter Symbol Test Condition Min Typ Max Unit
Si8660Ax
VDD1
VDD2
5.0
4.2
7.0
5.9
mA
Si8661Ax
VDD1
VDD2
4.9
4.6
6.9
6.4
mA
Si8662Ax
VDD1
VDD2
5.1
4.7
7.1
6.6
mA
Si8663Ax
VDD1
VDD2
4.9
4.9
6.8
6.8
mA
Timing Characteristics
All Models
Maximum Data Rate 0 1 Mbps
Minimum Pulse Width 250 ns
Propagation Delay tPHL, tPLH See Figure 4.2 Propagation
Delay Timing on page 14
35 ns
Pulse Width Distortion
|tPLH – tPHL|
PWD See Figure 4.2 Propagation
Delay Timing on page 14
25 ns
Propagation Delay Skew2tPSK(P-P) 40 ns
Channel-Channel Skew tPSK 35 ns
Output Rise Time trCL = 15 pF
See Figure 4.2 Propagation
Delay Timing on page 14
2.5 4.0 ns
Output Fall Time tfCL = 15 pF
See Figure 4.2 Propagation
Delay Timing on page 14
2.5 4.0 ns
Peak eye diagram jitter tJIT(PK) See Figure 2.2 Modulation
Scheme on page 5
350 ps
Common Mode
Transient Immunity
CMTI VI = VDD or 0 V
VCM = 1500 V (See Figure
4.3 Common-Mode Transient
Immunity Test Circuit on page
15)
35 50 kV/µs
Enable to Data Valid ten1 See Figure 4.1 ENABLE Tim-
ing Diagram on page 14
6.0 11 ns
Enable to Data Tri-State ten2 See Figure 4.1 ENABLE Tim-
ing Diagram on page 14
8.0 12 ns
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 13
Parameter Symbol Test Condition Min Typ Max Unit
Start-up Time3tSU 15 40 µs
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same
supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
ENABLE
OUTPUTS
ten1 ten2
Figure 4.1. ENABLE Timing Diagram
Typical
Input
tPLH tPHL
Typical
Output
trtf
90%
10%
90%
10%
1.4 V
1.4 V
Figure 4.2. Propagation Delay Timing
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 14
Oscilloscope
3 to 5 V
Isolated
Supply
Si86xx
VDD2
OUTPUT
3 to 5 V
Supply
High Voltage
Surge Generator
Vcm Surge
Output
High Voltage
Differential
Probe
GND2GND1
VDD1
INPUT
Input
Signal
Switch
Input
Output
Isolated
Ground
Figure 4.3. Common-Mode Transient Immunity Test Circuit
Table 4.3. Electrical Characteristics
(VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA = –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 1.95 2.24 2.375 V
VDD Undervoltage Threshold VDDUV– VDD1, VDD2 falling 1.88 2.16 2.325 V
VDD Undervoltage
Hysteresis
VDDHYS 50 70 95 mV
Positive-Going Input
Threshold
VT+ All inputs rising 1.4 1.67 1.9 V
Negative-Going Input
Threshold
VT– All inputs falling 1.0 1.23 1.4 V
Input Hysteresis VHYS 0.38 0.44 0.50 V
High Level Input Voltage VIH 2.0 V
Low Level Input Voltage VIL 0.8 V
High Level Output Voltage VOH loh = –4 mA VDD1, VDD2 – 0.4 3.1 V
Low Level Output Voltage VOL lol = 4 mA 0.2 0.4 V
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 15
Parameter Symbol Test Condition Min Typ Max Unit
Input Leakage Current IL ±10 µA
Output Impedance1ZO 50 Ω
Enable Input High Current IENH VENx = VIH 2.0 µA
Enable Input Low Current IENL VENx = VIL 2.0 µA
DC Supply Current (All inputs 0 V or at supply)
Si8610Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
0.6
0.8
1.8
0.8
1.2
1.5
2.9
1.5
mA
Si8620Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
0.8
1.4
3.3
1.4
1.4
2.2
5.3
2.2
mA
Si8621Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.2
1.2
2.4
2.4
1.9
1.9
3.8
3.8
mA
Si8630Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
0.9
1.9
4.6
1.9
1.6
3.0
7.4
3.0
mA
Si8631Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.3
1.7
3.9
3.0
2.1
2.7
5.9
4.5
mA
Si8640Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.0
2.4
6.1
2.5
1.6
3.8
9.2
4.0
mA
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 16
Parameter Symbol Test Condition Min Typ Max Unit
Si8641Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.4
2.3
5.2
3.6
2.2
3.7
7.8
5.4
mA
Si8642Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.8
1.8
4.4
4.4
2.9
2.9
6.6
6.6
mA
Si8650Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.1
3.1
7.0
3.3
1.8
4.7
9.8
5.0
mA
Si8651Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.5
2.7
6.6
4.0
2.4
4.1
9.2
6.0
mA
Si8652Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
2.0
2.4
5.6
5.0
3.0
3.6
7.8
7.5
mA
Si8660Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.2
3.5
8.8
3.7
1.9
5.3
12.3
5.6
mA
Si8661Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.7
3.4
7.9
4.8
2.7
5.1
11.1
7.2
mA
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 17
Parameter Symbol Test Condition Min Typ Max Unit
Si8662Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
2.2
3.0
7.5
5.6
3.3
4.5
10.5
8.4
mA
Si8663Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
2.6
2.6
6.5
6.5
3.9
3.9
9.1
9.1
mA
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)
Si8610Ax
VDD1
VDD2
1.2
0.9
2.0
1.5
mA
Si8620Ax
VDD1
VDD2
2.1
1.6
3.1
2.4
mA
Si8621Ax
VDD1
VDD2
1.9
1.9
2.9
2.9
mA
Si8630Ax
VDD1
VDD2
2.8
2.2
3.9
3.1
mA
Si8631Ax
VDD1
VDD2
2.7
2.6
3.8
3.6
mA
Si8640Ax
VDD1
VDD2
3.6
2.9
5.0
4.0
mA
Si8641Ax
VDD1
VDD2
3.4
3.3
4.8
4.6
mA
Si8642Ax
VDD1
VDD2
3.3
3.3
4.6
4.6
mA
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 18
Parameter Symbol Test Condition Min Typ Max Unit
Si8650Ax
VDD1
VDD2
4.1
3.7
5.7
5.2
mA
Si8651Ax
VDD1
VDD2
4.2
3.8
5.8
5.3
mA
Si8652Ax
VDD1
VDD2
4.0
4.0
5.6
5.6
mA
Si8660Ax
VDD1
VDD2
5.0
4.2
7.0
5.9
mA
Si8661Ax
VDD1
VDD2
4.9
4.6
6.9
6.4
mA
Si8662Ax
VDD1
VDD2
5.1
4.7
7.1
6.6
mA
Si8663Ax
VDD1
VDD2
4.9
4.9
6.8
6.8
mA
Timing Characteristics
All Models
Maximum Data Rate 0 1 Mbps
Minimum Pulse Width 250 ns
Propagation Delay tPHL, tPLH See Figure 4.2 Propaga-
tion Delay Timing on page
14
35 ns
Pulse Width Distortion
|tPLH – tPHL|
PWD See Figure 4.2 Propaga-
tion Delay Timing on page
14
25 ns
Propagation Delay Skew2tPSK(P-P) 40 ns
Channel-Channel Skew tPSK 35 ns
Output Rise Time trCL = 15 pF
See Figure 4.2 Propaga-
tion Delay Timing on page
14
2.5 4.0 ns
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 19
Parameter Symbol Test Condition Min Typ Max Unit
Output Fall Time tfCL = 15 pF
See Figure 4.2 Propaga-
tion Delay Timing on page
14
2.5 4.0 ns
Peak eye diagram jitter tJIT(PK) See Figure 2.2 Modula-
tion Scheme on page 5
350 ps
Common Mode
Transient Immunity
CMTI VI = VDD or 0 V
VCM = 1500 V (see Figure
4.3 Common-Mode Tran-
sient Immunity Test Cir-
cuit on page 15)
35 50 kV/µs
Enable to Data Valid ten1 See Figure 4.1 ENABLE
Timing Diagram on page
14
6.0 11 ns
Enable to Data Tri-State ten2 See Figure 4.1 ENABLE
Timing Diagram on page
14
8.0 12 ns
Start-Up Time3tSU 15 40 µs
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same
supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Table 4.4. Electrical Characteristics
(VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 1.95 2.24 2.375 V
VDD Undervoltage Threshold VDDUV– VDD1, VDD2 falling 1.88 2.16 2.325 V
VDD Undervoltage Hysteresis VDDHYS 50 70 95 mV
Positive-Going Input Threshold VT+ All inputs rising 1.4 1.67 1.9 V
Negative-Going Input Threshold VT– All inputs falling 1.0 1.23 1.4 V
Input Hysteresis VHYS 0.38 0.44 0.50 V
High Level Input Voltage VIH 2.0 V
Low Level Input Voltage VIL 0.8 V
High Level Output Voltage VOH loh = –4 mA VDD1,VDD
2 – 0.4
2.3 V
Low Level Output Voltage VOL lol = 4 mA 0.2 0.4 V
Input Leakage Current IL ±10 µA
Output Impedance1ZO 50 Ω
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 20
Parameter Symbol Test Condition Min Typ Max Unit
Enable Input High Current IENH VENx = VIH 2.0 µA
Enable Input Low Current IENL VENx = VIL 2.0 µA
DC Supply Current (All inputs 0 V or at supply)
Si8610Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
0.6
0.8
1.8
0.8
1.2
1.5
2.9
1.5
mA
Si8620Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
0.8
1.4
3.3
1.4
1.4
2.2
5.3
2.2
mA
Si8621Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.2
1.2
2.4
2.4
1.9
1.9
3.8
3.8
mA
Si8630Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
0.9
1.9
4.6
1.9
1.6
3.0
7.4
3.0
mA
Si8631Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.3
1.7
3.9
3.0
2.1
2.7
5.9
4.5
mA
Si8640Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.0
2.4
6.1
2.5
1.6
3.8
9.2
4.0
mA
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 21
Parameter Symbol Test Condition Min Typ Max Unit
Si8641Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.4
2.3
5.2
3.6
2.2
3.7
7.8
5.4
mA
Si8642Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.8
1.8
4.4
4.4
2.9
2.9
6.6
6.6
mA
Si8650Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.1
3.1
7.0
3.3
1.8
4.7
9.8
5.0
mA
Si8651Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.5
2.7
6.6
4.0
2.4
4.1
9.2
6.0
mA
Si8652Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
2.0
2.4
5.6
5.0
3.0
3.6
7.8
7.5
mA
Si8660Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.2
3.5
8.8
3.7
1.9
5.3
12.3
5.6
mA
Si8661Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.7
3.4
7.9
4.8
2.7
5.1
11.1
7.2
mA
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 22
Parameter Symbol Test Condition Min Typ Max Unit
Si8662Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
2.2
3.0
7.5
5.6
3.3
4.5
10.5
8.4
mA
Si8663Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
2.6
2.6
6.5
6.5
3.9
3.9
9.1
9.1
mA
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)
Si8610Ax
VDD1
VDD2
1.2
0.9
2.0
1.5
mA
Si8620Ax
VDD1
VDD2
2.1
1.6
3.1
2.4
mA
Si8621Ax
VDD1
VDD2
1.9
1.9
mA
Si8630Ax
VDD1
VDD2
2.8
2.2
3.9
3.1
mA
Si8631Ax
VDD1
VDD2
2.7
2.6
3.8
3.6
mA
Si8640Ax
VDD1
VDD2
3.6
2.9
5.0
4.0
mA
Si8641Ax
VDD1
VDD2
3.4
3.3
4.8
4.6
mA
Si8642Ax
VDD1
VDD2
3.3
3.3
4.6
4.6
mA
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 23
Parameter Symbol Test Condition Min Typ Max Unit
Si8650Ax
VDD1
VDD2
4.1
3.7
5.7
5.2
mA
Si8651Ax
VDD1
VDD2
4.2
3.8
5.8
5.3
mA
Si8652Ax
VDD1
VDD2
4.0
4.0
5.6
5.6
mA
Si8660Ax
VDD1
VDD2
5.0
4.2
7.0
5.9
mA
Si8661Ax
VDD1
VDD2
4.9
4.6
6.9
6.4
mA
Si8662Ax
VDD1
VDD2
5.1
4.7
7.1
6.6
mA
Si8663Ax
VDD1
VDD2
4.9
4.9
6.8
6.8
mA
Timing Characteristics
All Models
Maximum Data Rate 0 1 Mbps
Minimum Pulse Width 250 ns
Propagation Delay tPHL, tPLH See Figure 4.2 Propagation Delay
Timing on page 14
35 ns
Pulse Width Distortion
|tPLH - tPHL|
PWD See Figure 4.2 Propagation Delay
Timing on page 14
25 ns
Propagation Delay Skew2tPSK(P-P) 40 ns
Channel-Channel Skew tPSK 35 ns
Output Rise Time trCL = 15 pF
See Figure 4.2 Propagation Delay
Timing on page 14
2.5 4.0 ns
Output Fall Time tfCL = 15 pF
See Figure 4.2 Propagation Delay
Timing on page 14
2.5 4.0 ns
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 24
Parameter Symbol Test Condition Min Typ Max Unit
Peak Eye Diagram Jitter tJIT(PK) See Figure 2.2 Modulation Scheme
on page 5
350 ps
Common Mode
Transient Immunity
CMTI VI = VDD or 0 V
VCM = 1500 V (see Figure
4.3 Common-Mode Transient Im-
munity Test Circuit on page 15)
35 50 kV/µs
Enable to Data Valid ten1 See Figure 4.1 ENABLE Timing Di-
agram on page 14
6.0 11 ns
Enable to Data Tri-State ten2 See Figure 4.1 ENABLE Timing Di-
agram on page 14
8.0 12 ns
Startup Time3tSU 15 40 µs
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same
supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Table 4.5. Regulatory Information1
CSA
The Si86xx is certified under CSA Component Acceptance Notice 5A, IEC61010-1 and IEC60950-1. For more details, see File
232873.
VDE
The Si86xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.
UL
The Si86xx is certified under UL1577 component recognition program. For more details, see File E257455.
CQC
The Si86xx is certified under GB4943.1-2011. For more details, see certificates CQC13001096110 and CQC13001096239.
Note:
1. Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec.
For more information, see 5.5 Pin Descriptions (Si866x).
Table 4.6. Insulation and Safety-Related Specifications
Parameter Symbol Test Condition Value Unit
WB SO-
IC-16
NB SO-
IC-16
NB SOIC-8
Nominal Air Gap (Clearance)1L(IO1) 8.0 4.9 4.9 mm
Nominal External Tracking
(Creepage)1
L(IO2) 8.0 4.01 4.01 mm
Minimum Internal Gap
(Internal Clearance)
0.014 0.014 0.014 mm
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 25
Parameter Symbol Test Condition Value Unit
WB SO-
IC-16
NB SO-
IC-16
NB SOIC-8
Tracking Resistance
(Proof Tracking Index)
PTI IEC60112 600 600 600 VRMS
Erosion Depth ED 0.019 0.019 0.040 mm
Resistance (Input-Output)2RIO 1012 1012 1012 Ω
Capacitance (Input-Output)2ΧIO f = 1 ΜΗz 2.0 2.0 2.0 pF
Input Capacitance3CI4.0 4.0 4.0 pF
Notes:
1. The values in this table correspond to the nominal creepage and clearance values. VDE certifies the clearance and creepage
limits as 4.7 mm minimum for the NB SOIC-16 and SOIC-8 packages and 8.5 mm minimum for the WB SOIC-16 package. UL
does not impose a clearance and creepage minimum for component-level certifications. CSA certifies the clearance and cree-
page limits as 3.9 mm minimum for the NB SOIC-16 and SOIC-8 and 7.6 mm minimum for the WB SOIC-16 package.
2. To determine resistance and capacitance, the Si86xx is converted into a 2-terminal device. Pins 1–8 (Pins 1-4 for the NB SOIC-8)
are shorted together to form the first terminal and pins 9–16 (Pins 5-8 for the NB SOIC-8) are shorted together to form the second
terminal. The parameters are then measured between these two terminals.
3. Measured from input pin to ground.
Table 4.7. IEC 60664-1 (VDE 0844 Part 2) Ratings
Parameter Test Conditions Specification
NB SOIC-16
NB SOIC-8
WB SOIC-16
Basic Isolation Group Material Group I I
Installation Classification Rated Mains Voltages < 150 VRMS I-IV I-IV
Rated Mains Voltages < 300 VRMS I-III I-IV
Rated Mains Voltages < 400 VRMS I-II I-III
Rated Mains Voltages < 600 VRMS I-II I-III
Table 4.8. IEC 60747-5-2 Insulation Characteristics for Si86xxxx*
Parameter Symbol Test Condition Characteristic Unit
WB
SOIC-16
NB
SOIC-16
SOIC-8
Maximum Working Insulation Volt-
age
VIORM 1200 630 Vpeak
Input to Output Test Voltage VPR Method b1
(VIORM x 1.875 = VPR, 100%
Production Test, tm = 1 sec,
Partial Discharge < 5 pC)
2250 1182
Transient Overvoltage VIOTM t = 60 sec 6000 6000 Vpeak
Pollution Degree
(DIN VDE 0110, Table 1)
2 2
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 26
Parameter Symbol Test Condition Characteristic Unit
WB
SOIC-16
NB
SOIC-16
SOIC-8
Insulation Resistance at TS, VIO =
500 V
RS>109>109Ω
Note: Maintenance of the safety data is ensured by protective circuits. The Si86xxxx provides a climate classification of 40/125/21.
Table 4.9. IEC Safety Limiting Values1
Parameter Symbol Test Condition
Max
Unit
WB
SOIC-16
NB
SOIC-16
NB
SOIC-8
Case Temperature TS150 150 150 °Χ
Safety Input, Output, or
Supply Current ΙS
θJA = 100 °C/W (WB SOIC-16), 105
°C/W (NB SOIC-16),
140 °C/W (NB SOIC-8),
VI = 5.5 V, TJ = 150 °C, TA = 25 °C
220 215 160 mA
Device Power
Dissipation2PD415 415 150 mW
Notes:
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 4.4 Figure 5.4 on page 28,
Figure 4.5 Figure 5.5 on page 28 and Figure 4.6 Figure 5.6 on page 29.
2. The Si86xx is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 ºC, CL = 15 pF, input a 150 Mbps 50% duty cycle square wave.
Table 4.10. Thermal Characteristics
Parameter Symbol WB SOIC-16 NB SOIC-16 NB SOIC-8 Unit
IC Junction-to-Air Thermal
Resistance θJA 100 105 140 ºC/W
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 27
0 20015010050
500
400
200
100
0
Temperature (ºC)
Safety-Limiting Current (mA)
450
300
370
220
VDD1, VDD2 = 2.70 V
VDD1, VDD2 = 3.6 V
VDD1, VDD2 = 5.5 V
Figure 4.4. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
0 20015010050
500
400
200
100
0
Temperature (ºC)
Safety-Limiting Current (mA)
430
300
360
215
VDD1, VDD2 = 2.70 V
VDD1, VDD2 = 3.6 V
VDD1, VDD2 = 5.5 V
Figure 4.5. (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 28
0 20015010050
400
200
100
0
Case Temperature (ºC)
Safety-Limiting Values (mA)
320
300
VDD1, VDD2 = 2.5 V
VDD1, VDD2 = 3.3 V
VDD1, VDD2 = 5.5 V
270
160
Figure 4.6. (NB SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
Table 4.11. Absolute Maximum Ratings1
Parameter Symbol Min Max Unit
Storage Temperature2TSTG –65 150 ºC
Ambient Temperature Under Bias TA–40 125 ºC
Junction Temperature TJ 150 °C
Supply Voltage VDD1, VDD2 –0.5 7.0 V
Input Voltage VI–0.5 VDD + 0.5 V
Output Voltage VO–0.5 VDD + 0.5 V
Output Current Drive Channel
(All devices unless otherwise stated) IO 10 mA
Output Current Drive Channel
(All Si86xxxA-x-xx devices) IO 22 mA
Latchup Immunity3 100 V/ns
Lead Solder Temperature (10 s) 260 ºC
Maximum Isolation (Input to Output) (1 sec)
NB SOIC-16, SOIC-8 4500 VRMS
Maximum Isolation (Input to Output) (1 sec)
WB SOIC-16 6500 VRMS
Notes:
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to
conditions as specified in the operational sections of this data sheet.
2. VDE certifies storage temperature from –40 to 150 °C.
3. Latchup immunity specification is for slew rate applied across GND1 and GND2.
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 29
5. Pin Descriptions
5.1 Pin Descriptions (Si861x/2x Narrow Body SOIC-8)
I
s
o
l
a
t
i
o
n
VDD1 VDD2
A1 RF
XMITR
B1
RF
RCVR
GND1 GND2
Si8610 NB SOIC-8
VDD1/NC
GND2/NC
I
s
o
l
a
t
i
o
n
VDD1 VDD2
A1 B1
RF
XMITR
RF
RCVR
A2 B2
RF
XMITR
RF
RCVR
GND1 GND2
Si8620 NB SOIC-8
I
s
o
l
a
t
i
o
n
VDD1 VDD2
A1 B1
RF
XMITR
RF
RCVR
A2 B2
RF
XMITR
RF
RCVR
GND1 GND2
Si8621 NB SOIC-8
Figure 5.1. Si861x/2x Narrow Body SOIC-8 Pin Descriptions
Table 5.1. Si861x/2x Narrow Body SOIC-8 Pin Descriptions
Name SOIC-8 Pin#
Si861x
SOIC-8 Pin#
Si862x
Type Description
VDD1/NC* 1,3 1 Supply Side 1 power supply.
GND1 4 4 Ground Side 1 ground.
A1 2 2 Digital I/O Side 1 digital input or output.
A2 NA 3 Digital I/O Side 1 digital input or output.
B1 6 7 Digital I/O Side 2 digital input or output.
B2 NA 6 Digital I/O Side 2 digital input or output.
VDD2 8 8 Supply Side 2 power supply.
GND2/NC* 5, 7 5 Ground Side 2 ground.
Note: No connect. These pins are not internally connected. They can be left floating, tied to VDD, or tied to GND.
Si86xx Data Sheet
Pin Descriptions
silabs.com | Building a more connected world. Rev. 1.02 | 30
5.2 Pin Descriptions (Si863x)
VDD1
GND1
A1
A3
NC
NC
GND1
A2
VDD2
GND2
B2
B1
NC
B3
GND2
EN2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8630
VDD1
GND1
A1
A3
NC
EN1
GND1
A2
VDD2
GND2
B2
B1
NC
B3
GND2
EN2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8631
Figure 5.2. Si863x Pin Descriptions
Table 5.2. Si863x Pin Descriptions
Name SOIC-16 Pin# Type Description
VDD1 1 Supply Side 1 power supply.
GND1 21 Ground Side 1 ground.
A1 3 Digital Input Side 1 digital input.
A2 4 Digital Input Side 1 digital input.
A3 5 Digital I/O Side 1 digital input or output.
NC 6 NA No Connect.
EN1/NC2 7 Digital Input Side 1 active high enable. NC on Si8630
GND1 81 Ground Side 1 ground.
GND2 91 Ground Side 2 ground.
EN2 10 Digital Input Side 2 active high enable.
NC 11 NA No Connect.
B3 12 Digital I/O Side 2 digital input or output.
B2 13 Digital Output Side 2 digital output.
B1 14 Digital Output Side 2 digital output.
GND2 151 Ground Side 2 ground.
VDD2 16 Supply Side 2 power supply.
Notes:
1. For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pin 15 must also be
connected to external ground.
2. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.
Si86xx Data Sheet
Pin Descriptions
silabs.com | Building a more connected world. Rev. 1.02 | 31
5.3 Pin Descriptions (Si864x)
VDD1
GND1
A1
A3
A4
NC
GND1
A2
VDD2
GND2
B2
B1
B4
B3
GND2
EN2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8640
VDD1
GND1
A1
A3
A4
EN1
GND1
A2
VDD2
GND2
B2
B1
B4
B3
GND2
EN2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8641
VDD1
GND1
A1
A3
A4
EN1
GND1
A2
VDD2
GND2
B2
B1
B4
B3
GND2
EN2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8642
Figure 5.3. Si864x Pin Descriptions
Table 5.3. Si864x Pin Descriptions
Name SOIC-16 Pin# Type Description
VDD1 1 Supply Side 1 power supply.
GND1 21 Ground Side 1 ground.
A1 3 Digital Input Side 1 digital input.
A2 4 Digital Input Side 1 digital input.
A3 5 Digital I/O Side 1 digital input or output.
A4 6 Digital I/O Side 1 digital input or output.
EN1/NC2 7 Digital Input Side 1 active high enable. NC on Si8640.
GND1 81 Ground Side 1 ground.
GND2 91 Ground Side 2 ground.
EN2 10 Digital Input Side 2 active high enable.
B4 11 Digital I/O Side 2 digital input or output.
B3 12 Digital I/O Side 2 digital input or output.
B2 13 Digital Output Side 2 digital output.
B1 14 Digital Output Side 2 digital output.
GND2 151 Ground Side 2 ground.
VDD2 16 Supply Side 2 power supply.
Notes:
1. For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pin 15 must also be
connected to external ground.
2. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.
Si86xx Data Sheet
Pin Descriptions
silabs.com | Building a more connected world. Rev. 1.02 | 32
5.4 Pin Descriptions (Si8650/51/52)
VDD1
A1
A3
A4
NC
GND1
A2
VDD2
B2
B1
B4
B3
GND2
EN2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8650
A5
RF
XMITR
RF
RCVR
B5
VDD1
A1
A3
A4
EN1
GND1
A2
VDD2
B2
B1
B4
B3
GND2
EN2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8651
RF
XMITR
RF
RCVR
A5 B5
VDD1
A1
A3
A4
EN1
GND1
A2
VDD2
B2
B1
B4
B3
GND2
EN2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8652
RF
XMITR
RF
RCVR
A5 B5
Figure 5.4. Si865x Pin Descriptions
Table 5.4. Si865x Pin Descriptions
Name SOIC-16 Pin# Type Description
VDD1 1 Supply Side 1 power supply.
A1 2 Digital Input Side 1 digital input.
A2 3 Digital Input Side 1 digital input.
A3 4 Digital Input Side 1 digital input.
A4 5 Digital I/O Side 1 digital input or output.
A5 6 Digital I/O Side 1 digital input or output.
EN1/NC* 7 Digital Input Side 1 active high enable. NC on Si8650.
GND1 8 Ground Side 1 ground.
GND2 9 Ground Side 2 ground.
EN2 10 Digital Input Side 2 active high enable.
B5 11 Digital I/O Side 2 digital input or output.
B4 12 Digital I/O Side 2 digital input or output.
B3 13 Digital Output Side 2 digital output.
B2 14 Digital Output Side 2 digital output.
B1 15 Digital Output Side 2 digital output.
VDD2 16 Supply Side 2 power supply.
Note: No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.
Si86xx Data Sheet
Pin Descriptions
silabs.com | Building a more connected world. Rev. 1.02 | 33
5.5 Pin Descriptions (Si866x)
VDD1
A1
A3
A4
GND1
A2
VDD2
B2
B1
B4
B3
GND2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8660
A5
RF
XMITR
RF
RCVR
B5
B6A6 RF
XMITR
RF
RCVR
VDD1
A1
A3
A4
GND1
A2
VDD2
B2
B1
B4
B3
GND2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8661
RF
XMITR
RF
RCVR
A5 B5
RF
XMITR
RF
RCVR B6
A6
RF
XMITR
RF
RCVR
VDD1
A1
A3
A4
GND1
A2
VDD2
B2
B1
B4
B3
GND2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8662
RF
XMITR
RF
RCVR
A5 B5
B6A6
RF
XMITR
RF
RCVR
VDD1
A1
A3
A4
GND1
A2
VDD2
B2
B1
B4
B3
GND2
I
s
o
l
a
t
i
o
n
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8663
RF
XMITR
RF
RCVR
A5 B5
B6A6
RF
XMITR
RF
RCVR
Figure 5.5. Si866x Pin Descriptions
Table 5.5. Si866x Pin Descriptions
Name SOIC-16 Pin# Type Description
VDD1 1 Supply Side 1 power supply.
A1 2 Digital Input Side 1 digital input.
A2 3 Digital Input Side 1 digital input.
A3 4 Digital Input Side 1 digital input.
A4 5 Digital I/O Side 1 digital input or output.
A5 6 Digital I/O Side 1 digital input or output.
A6 7 Digital I/O Side 1 digital input or output.
GND1 8 Ground Side 1 ground.
GND2 9 Ground Side 2 ground.
B6 10 Digital I/O Side 2 digital input or output.
B5 11 Digital I/O Side 2 digital input or output.
B4 12 Digital I/O Side 2 digital input or output.
B3 13 Digital Output Side 2 digital output.
B2 14 Digital Output Side 2 digital output.
B1 15 Digital Output Side 2 digital output.
VDD2 16 Supply Side 2 power supply.
Si86xx Data Sheet
Pin Descriptions
silabs.com | Building a more connected world. Rev. 1.02 | 34
6. Package Outlines
6.1 Package Outline (16-Pin Wide Body SOIC)
The figure below illustrates the package details for the Si86xx Digital Isolator. The table below lists the values for the dimensions shown
in the illustration.
Figure 6.1. 16-Pin Wide Body SOIC
Si86xx Data Sheet
Package Outlines
silabs.com | Building a more connected world. Rev. 1.02 | 35
Table 6.1. Package Diagram Dimensions
Dimension Min Max
A 2.65
A1 0.10 0.30
A2 2.05
b 0.31 0.51
c 0.20 0.33
D 10.30 BSC
E 10.30 BSC
E1 7.50 BSC
e 1.27 BSC
L 0.40 1.27
h 0.25 0.75
θ
aaa 0.10
bbb 0.33
ccc 0.10
ddd 0.25
eee 0.10
fff 0.20
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC Outline MS-013, Variation AA.
4. Recommended reflow profile per JEDEC J-STD-020 specification for small body, lead-free components.
Si86xx Data Sheet
Package Outlines
silabs.com | Building a more connected world. Rev. 1.02 | 36
6.2 Package Outline (16-Pin Narrow Body SOIC)
The figure below illustrates the package details for the Si86xx in a 16-pin narrow-body SOIC (SO-16). The table below lists the values
for the dimensions shown in the illustration.
Figure 6.2. 16-pin Small Outline Integrated Circuit (SOIC) Package
Si86xx Data Sheet
Package Outlines
silabs.com | Building a more connected world. Rev. 1.02 | 37
Table 6.2. Package Diagram Dimensions
Dimension Min Max
A 1.75
A1 0.10 0.25
A2 1.25
b 0.31 0.51
c 0.17 0.25
D 9.90 BSC
E 6.00 BSC
E1 3.90 BSC
e 1.27 BSC
L 0.40 1.27
L2 0.25 BSC
h 0.25 0.50
θ
aaa 0.10
bbb 0.20
ccc 0.10
ddd 0.25
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
Si86xx Data Sheet
Package Outlines
silabs.com | Building a more connected world. Rev. 1.02 | 38
6.3 Package Outline (8-Pin Narrow Body SOIC)
The figure below illustrates the package details for the Si86xx. The table below lists the values for the dimensions shown in the illustra-
tion.
Figure 6.3. 8-pin Small Outline Integrated Circuit (SOIC) Package
Table 6.3. Package Diagram Dimensions
Symbol Millimeters
Min Max
A 1.35 1.75
A1 0.10 0.25
A2 1.40 REF 1.55 REF
B 0.33 0.51
C 0.19 0.25
D 4.80 5.00
E 3.80 4.00
e 1.27 BSC
H 5.80 6.20
h 0.25 0.50
L 0.40 1.27
Si86xx Data Sheet
Package Outlines
silabs.com | Building a more connected world. Rev. 1.02 | 39
7. Land Patterns
7.1 Land Pattern (16-Pin Wide-Body SOIC)
The figure below illustrates the recommended land pattern details for the Si86xx in a 16-pin wide-body SOIC. The table below lists the
values for the dimensions shown in the illustration.
Figure 7.1. 16-Pin SOIC Land Pattern
Table 7.1. 16-Pin Wide Body SOIC Land Pattern Dimensions
Dimension Feature (mm)
C1 Pad Column Spacing 9.40
E Pad Row Pitch 1.27
X1 Pad Width 0.60
Y1 Pad Length 1.90
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN for Density Level B (Median Land Protru-
sion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.
Si86xx Data Sheet
Land Patterns
silabs.com | Building a more connected world. Rev. 1.02 | 40
7.2 Land Pattern (16-Pin Narrow Body SOIC)
The figure below illustrates the recommended land pattern details for the Si86xx in a 16-pin narrow-body SOIC. The table below lists
the values for the dimensions shown in the illustration.
Figure 7.2. 16-Pin Narrow Body SOIC PCB Land Pattern
Table 7.2. 16-Pin Narrow Body SOIC Land Pattern Dimensions
Dimension Feature (mm)
C1 Pad Column Spacing 5.40
E Pad Row Pitch 1.27
X1 Pad Width 0.60
Y1 Pad Length 1.55
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.
Si86xx Data Sheet
Land Patterns
silabs.com | Building a more connected world. Rev. 1.02 | 41
7.3 Land Pattern (8-Pin Narrow Body SOIC)
The figure below illustrates the recommended land pattern details for the Si86xx in an 8-pin narrow-body SOIC. The table below lists
the values for the dimensions shown in the illustration.
Figure 7.3. PCB Land Pattern: 8-Pin Narrow Body SOIC
Table 7.3. PCM Land Pattern Dimensions (8-Pin Narrow Body SOIC)
Dimension Feature (mm)
C1 Pad Column Spacing 5.40
E Pad Row Pitch 1.27
X1 Pad Width 0.60
Y1 Pad Length 1.55
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.
Si86xx Data Sheet
Land Patterns
silabs.com | Building a more connected world. Rev. 1.02 | 42
8. Top Markings
8.1 Top Marking (16-Pin Wide Body SOIC)
Si86XYSV
YYWWRTTTTT
CC
e4
Figure 8.1. 16-Pin Wide Body SOIC
Table 8.1. Top Marking Explanation (16-Pin Wide Body SOIC)
Line 1 Marking: Base Part Number
Ordering Options
(See 1. Ordering Guide for more information).
Si86 = Isolator product series
XY = Channel Configuration
X = # of data channels (5, 4, 3, 2, 1)
Y = # of reverse channels (2, 1, 0)
S = Speed Grade (max data rate) and operating mode:
A = 1 Mbps (default output = low)
B = 150 Mbps (default output = low)
D = 1 Mbps (default output = high)
E = 150 Mbps (default output = high)
V = Insulation rating
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5.0 kV
Line 2 Marking: YY = Year
WW = Workweek
Assigned by assembly subcontractor. Corresponds to the year
and work week of the mold date.
RTTTTT = Mfg Code Manufacturing code from assembly house
“R” indicates revision
Line 3 Marking: Circle = 1.7 mm Diameter
(Center-Justified)
“e4” Pb-free symbol
Country of Origin ISO Code Abbreviation CC = Country of Origin ISO Code Abbreviation
TW = Taiwan
TH = Thailand
Si86xx Data Sheet
Top Markings
silabs.com | Building a more connected world. Rev. 1.02 | 43
8.2 Top Marking (16-Pin Narrow Body SOIC)
Si86XYSV
YYWWRTTTTT
e3
Figure 8.2. 16-Pin Narrow Body SOIC
Table 8.2. Top Marking Explanation (16-Pin Narrow Body SOIC)
Line 1 Marking: Base Part Number
Ordering Options
(See 1. Ordering Guide for more information.)
Si86 = Isolator product series
XY = Channel Configuration
X = # of data channels (5, 4, 3, 2, 1)
Y = # of reverse channels (2, 1, 0)
S = Speed Grade (max data rate) and operating mode:
A = 1 Mbps (default output = low)
B = 150 Mbps (default output = low)
D = 1 Mbps (default output = high)
E = 150 Mbps (default output = high)
V = Insulation rating
A = 1 kV; B = 2.5 kV; C = 3.75 kV
Line 2 Marking: Circle = 1.2 mm Diameter “e3” Pb-Free Symbol
YY = Year
WW = Work Week
Assigned by the assembly subcontractor. Corresponds to the
year and work week of the mold date.
RTTTTT = Mfg Code Manufacturing code from assembly house
“R” indicates revision
Si86xx Data Sheet
Top Markings
silabs.com | Building a more connected world. Rev. 1.02 | 44
8.3 Top Marking (8-Pin Narrow Body SOIC)
Si86XYSV
YYWWRT
TTTT
e3
Figure 8.3. 8-Pin Narrow Body SOIC
Table 8.3. Top Marking Explanation (8-Pin Narrow Body SOIC)
Line 1 Marking: Base Part Number
Ordering Options
(See 1. Ordering Guide for more information).
Si86 = Isolator Product Series
XY = Channel Configuration
S = Speed Grade (max data rate)
V = Insulation rating
Line 2 Marking: YY = Year
WW = Workweek
Assigned by assembly subcontractor. Corresponds to the year
and workweek of the mold date.
R = Product Revision
T = First character of the manufacturing code
Line 3 Marking: Circle = 1.1 mm Diameter “e3” Pb-Free Symbol.
TTTT = Last four characters of the manufactur-
ing code
Last four characters of the manufacturing code.
Si86xx Data Sheet
Top Markings
silabs.com | Building a more connected world. Rev. 1.02 | 45
9. Revision History
Revision 1.02
February 2018
Added SI8641AB-AS1 and SI8642AB-AS1 to Ordering Guide for Automotive-Grade OPN options
Revision 1.01
January 2018
Updated data sheet format.
Added new table to Ordering Guide for Automotive-Grade OPN options
Updated Table 4.5 Regulatory Information1 on page 25.
Added CQC certificate numbers.
Updated 1. Ordering Guide.
Removed references to moisture sensitivity levels.
Removed note 2.
Si86xx Data Sheet
Revision History
silabs.com | Building a more connected world. Rev. 1.02 | 46
http://www.silabs.com
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
Smart.
Connected.
Energy-Friendly.
Products
www.silabs.com/products Quality
www.silabs.com/quality Support and Community
community.silabs.com
Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave and others are trademarks or
registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited.
All other products or brand names mentioned herein are trademarks of their respective holders.
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Silicon Laboratories:
Si8610AB-B-ISR Si8610AB-B-IS Si8630AB-B-IS Si8621AB-B-IS Si8630AB-B-IS1R Si8631AB-B-ISR Si8631AB-B-
IS1R Si8630AB-B-ISR Si8631AB-B-IS1 Si8630AB-B-IS1 Si8621AB-B-ISR Si8620AB-B-ISR Si8631AB-B-IS
Si8620AB-B-IS Si8640AB-B-IS Si8641AB-B-IS1R Si8641AB-B-IS1 Si8641AB-B-IS Si8642AB-B-IS Si8642AB-B-ISR
Si8641AB-B-ISR Si8640AB-B-IS1 Si8642AB-B-IS1 Si8642AB-B-IS1R Si8640AB-B-IS1R Si8640AB-B-ISR
Si8652AB-B-IS1 Si8650AB-B-IS1 Si8652AB-B-IS1R Si8650AB-B-IS1R Si8651AB-B-IS1 Si8651AB-B-IS1R
Si8663AB-B-IS1 Si8662AB-B-IS1R Si8661AB-B-IS1R Si8661AB-B-IS1 Si8663AB-B-IS1R Si8660AB-B-IS1
Si8660AB-B-IS1R Si8662AB-B-IS1