This is information on a product in full production.
September 2016 DocID022063 Rev 8 1/206
STM32F415xx
STM32F417xx
ARM Cortex-M4 32b MCU+FPU, 210DMIPS, up to 1MB Flash/192+4KB RAM,
crypto, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera
Datasheet - production data
Features
Core: ARM® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Flash memory, frequency up to 168 MHz,
memory protection unit, 210 DMIPS/
1.25 DMIPS/MHz (Dhrystone 2.1), and DSP
instructions
Memories
Up to 1 Mbyte of Flash memory
Up to 192+4 Kbytes of SRAM including 64-
Kbyte of CCM (core coupled memory) data
RAM
Flexible static memory controller supporting
Compact Flash, SRAM, PSRAM, NOR and
NAND memories
LCD parallel interface, 8080/6800 modes
Clock, reset and supply management
1.8 V to 3.6 V application supply and I/Os
POR, PDR, PVD and BOR
4-to-26 MHz crystal oscillator
Internal 16 MHz factory-trimmed RC (1%
accuracy)
32 kHz oscillator for RTC with calibration
Internal 32 kHz RC with calibration
Low-power operation
Sleep, Stop and Standby modes
–V
BAT supply for RTC, 20×32 bit backup
registers + optional 4 KB backup SRAM
3×12-bit, 2.4 MSPS A/D converters: up to 24
channels and 7.2 MSPS in triple interleaved
mode
2×12-bit D/A converters
General-purpose DMA: 16-stream DMA
controller with FIFOs and burst support
Up to 17 timers: up to twelve 16-bit and two 32-
bit timers up to 168 MHz, each with up to 4
IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input
Debug mode
Serial wire debug (SWD) & JTAG
interfaces
Cortex-M4 Embedded Trace Macrocell™
Up to 140 I/O ports with interrupt capability
Up to 136 fast I/Os up to 84 MHz
Up to 138 5 V-tolerant I/Os
Up to 15 communication interfaces
Up to 3 × I2C interfaces (SMBus/PMBus)
Up to 4 USARTs/2 UARTs (10.5 Mbit/s, ISO
7816 interface, LIN, IrDA, modem control)
Up to 3 SPIs (42 Mbits/s), 2 with muxed
full-duplex I2S to achieve audio class
accuracy via internal audio PLL or external
clock
2 × CAN interfaces (2.0B Active)
SDIO interface
Advanced connectivity
USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI
10/100 Ethernet MAC with dedicated DMA:
supports IEEE 1588v2 hardware, MII/RMII
LQFP64 (10 × 10 mm)
LQFP100 (14 × 14 mm)
LQFP144 (20 × 20 mm)
UFBGA176
(10 × 10 mm)
LQFP176 (24 × 24 mm)
WLCSP90
(4.223x3.969 mm)
&"'!
www.st.com
STM32F415xx, STM32F417xx
2/206 DocID022063 Rev 8
8- to 14-bit parallel camera interface up to
54 Mbytes/s
Cryptographic acceleration: hardware
acceleration for AES 128, 192, 256, Triple
DES, HASH (MD5, SHA-1), and HMAC
True random number generator
CRC calculation unit
96-bit unique ID
RTC: subsecond accuracy, hardware calendar
Table 1. Device summary
Reference Part number
STM32F415xx STM32F415RG, STM32F415VG, STM32F415ZG, STM32F415OG
STM32F417xx STM32F417VG, STM32F417IG, STM32F417ZG, STM32F417VE,
STM32F417ZE, STM32F417IE
DocID022063 Rev 8 3/206
STM32F415xx, STM32F417xx Contents
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 ARM® Cortex®-M4 core with FPU and embedded Flash and SRAM . . 21
2.2.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . 21
2.2.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 22
2.2.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.9 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.10 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 24
2.2.11 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.12 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.13 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.15 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.16 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.17 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 31
2.2.18 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . 31
2.2.19 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.20 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.21 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.22 Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.23 Universal synchronous/asynchronous receiver transmitters (USART) . 36
2.2.24 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.25 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.26 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.27 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . 38
2.2.28 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 38
2.2.29 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Contents STM32F415xx, STM32F417xx
4/206 DocID022063 Rev 8
2.2.30 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . 39
2.2.31 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . 40
2.2.32 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.33 Cryptographic acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.34 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.35 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.36 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.37 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.38 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.39 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.40 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 VCAP_1/VCAP_2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 85
5.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 85
5.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 86
5.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.7 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
DocID022063 Rev 8 5/206
STM32F415xx, STM32F417xx Contents
5.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 110
5.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 116
5.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.20 CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . 137
5.3.21 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.24 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.25 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.26 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.3.27 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 165
5.3.28 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 166
5.3.29 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.1 WLCSP90 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.2 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.3 LQPF100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.4 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.5 UFBGA176+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.6 LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.7 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
A.1 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 190
A.2 USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 192
A.3 Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Contents STM32F415xx, STM32F417xx
6/206 DocID022063 Rev 8
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
DocID022063 Rev 8 7/206
STM32F415xx, STM32F417xx List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32F415xx and STM32F417xx: features and peripheral counts. . . . . . . . . . . . . . . . . . 15
Table 3. Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 4. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 5. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 6. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 7. STM32F41xxx pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 8. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 9. Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 10. STM32F41x register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 11. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 12. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 13. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 14. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 15. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 84
Table 16. VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 17. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 85
Table 18. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 85
Table 19. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 20. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . 88
Table 21. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 22. Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 23. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 24. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 93
Table 25. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 94
Table 26. Typical current consumption in Run mode, code with data processing
running from Flash memory, regulator ON (ART accelerator enabled
except prefetch), VDD = 1.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 27. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 28. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 29. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 30. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 31. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 32. HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 33. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 34. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 35. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 36. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 37. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 38. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 39. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 40. Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 41. Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 42. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 43. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 44. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
List of tables STM32F415xx, STM32F417xx
8/206 DocID022063 Rev 8
Table 45. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 46. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 47. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 48. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 49. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 50. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 51. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 52. Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 53. Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 54. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 55. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 56. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 57. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 58. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 59. USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 60. USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 61. USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 62. ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 63. Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 64. Dynamic characteristics: Eternity MAC signals for SMI . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 65. Dynamic characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 66. Dynamic characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 67. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 68. ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 69. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 70. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 71. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 72. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 73. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 74. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 147
Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 148
Table 77. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 78. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 79. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 80. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 81. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 82. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 83. Switching characteristics for PC Card/CF read and write cycles
in attribute/common space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 84. Switching characteristics for PC Card/CF read and write cycles
in I/O space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 85. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 86. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 87. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 88. Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 89. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 90. WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 91. WLCSP90 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 92. LQFP64 – 64-pin 10 x 10 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
DocID022063 Rev 8 9/206
STM32F415xx, STM32F417xx List of tables
Table 93. LQPF100 – 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 94. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 95. UFBGA176+25 ball, 10 × 10 × 0.65 mm pitch, ultra thin fine pitch
ball grid array mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Table 96. UFBGA176+2 recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . . . 182
Table 97. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 98. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 99. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Table 100. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
List of figures STM32F415xx, STM32F417xx
10/206 DocID022063 Rev 8
List of figures
Figure 1. Compatible board design between STM32F10xx/STM32F41xxx for LQFP64 . . . . . . . . . . 17
Figure 2. Compatible board design STM32F10xx/STM32F2/STM32F41xxx
for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 3. Compatible board design between STM32F10xx/STM32F2/STM32F41xxx
for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 4. Compatible board design between STM32F2 and STM32F41xxx
for LQFP176 and BGA176 packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 5. STM32F41xxx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 6. Multi-AHB matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 7. Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 27
Figure 8. PDR_ON and NRST control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 9. Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 10. Startup in regulator OFF mode: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 11. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 31
Figure 12. STM32F41xxx LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 13. STM32F41xxx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 14. STM32F41xxx LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 15. STM32F41xxx LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 16. STM32F41xxx UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 17. STM32F41xxx WLCSP90 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 18. STM32F41xxx memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 19. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 20. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 21. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 22. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 23. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 24. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF . . . . 90
Figure 25. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals ON . . . . . 90
Figure 26. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF . . . 91
Figure 27. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON . . . . 91
Figure 28. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF) . . . . . . . . . . . . 94
Figure 29. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON) . . . . . . . . . . . . . 95
Figure 30. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 31. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 32. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 33. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 34. ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 35. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 36. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 37. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 38. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 39. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
DocID022063 Rev 8 11/206
STM32F415xx, STM32F417xx List of figures
Figure 40. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Figure 41. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 42. I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 43. I2S master timing diagram (Philips protocol)(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 44. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 133
Figure 45. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 46. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 47. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 48. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 49. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 50. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 51. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 141
Figure 52. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 142
Figure 53. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Figure 54. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 147
Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 148
Figure 56. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 57. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 58. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Figure 59. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 60. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 154
Figure 61. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 62. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 157
Figure 63. PC Card/CompactFlash controller waveforms for common memory write access . . . . . . 158
Figure 64. PC Card/CompactFlash controller waveforms for attribute memory read
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 65. PC Card/CompactFlash controller waveforms for attribute memory write
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Figure 66. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 160
Figure 67. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 161
Figure 68. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 69. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 70. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 164
Figure 71. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 164
Figure 72. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 73. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 74. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 75. WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Figure 76. WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Figure 77. WLCSP90 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Figure 78. LQFP64 – 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 171
Figure 79. LQFP64 – 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Figure 80. LPQF64 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 81. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 174
Figure 82. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Figure 83. LQFP100 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 84. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . 177
Figure 85. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package
List of figures STM32F415xx, STM32F417xx
12/206 DocID022063 Rev 8
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Figure 86. LQFP144 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Figure 87. UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch
ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 88. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch
ball grid array recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Figure 89. UFBGA176+25 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Figure 90. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline . . . . . . . . . . . . . . 184
Figure 91. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint. . . . . . . . . 186
Figure 92. LQFP176 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Figure 93. USB controller configured as peripheral-only and used
in Full speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 94. USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 190
Figure 95. USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 191
Figure 96. USB controller configured as peripheral, host, or dual-mode
and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Figure 97. MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 98. RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 99. RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
DocID022063 Rev 8 13/206
STM32F415xx, STM32F417xx Introduction
1 Introduction
This datasheet provides the description of the STM32F415xx and STM32F417xx lines of
microcontrollers. For more details on the whole STMicroelectronics STM32™ family, please
refer to Section 2.1: Full compatibility throughout the family.
The STM32F415xx and STM32F417xx datasheet should be read in conjunction with the
STM32F4xx reference manual which is available from the STMicroelectronics website
www.st.com.
For information on the Cortex®-M4 core, please refer to the Cortex®-M4 programming
manual (PM0214) available from www.st.com.
Description STM32F415xx, STM32F417xx
14/206 DocID022063 Rev 8
2 Description
The STM32F415xx and STM32F417xx family is based on the high-performance ARM®
Cortex®-M4 32-bit RISC core operating at a frequency of up to 168 MHz. The Cortex-M4
core features a Floating point unit (FPU) single precision which supports all ARM single-
precision data-processing instructions and data types. It also implements a full set of DSP
instructions and a memory protection unit (MPU) which enhances application security.
The STM32F415xx and STM32F417xx family incorporates high-speed embedded
memories (Flash memory up to 1 Mbyte, up to 192 Kbytes of SRAM), up to 4 Kbytes of
backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two
APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.
a true random number generator (RNG), and a cryptographic acceleration cell. They also
feature standard and advanced communication interfaces.
Up to three I2Cs
Three SPIs, two I2Ss full duplex. To achieve audio class accuracy, the I2S peripherals
can be clocked via a dedicated internal audio PLL or via an external clock to allow
synchronization.
Four USARTs plus two UARTs
An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the
ULPI),
Two CANs
An SDIO/MMC interface
Ethernet and the camera interface available on STM32F417xx devices only.
New advanced peripherals include an SDIO, an enhanced flexible static memory control
(FSMC) interface (for devices offered in packages of 100 pins and more), a camera
interface for CMOS sensors and a cryptographic acceleration cell. Refer to Table 2:
STM32F415xx and STM32F417xx: features and peripheral counts for the list of peripherals
available on each part number.
The STM32F415xx and STM32F417xx family operates in the –40 to +105 °C temperature
range from a 1.8 to 3.6 V power supply. The supply voltage can drop to 1.7 V when the
device operates in the 0 to 70 °C temperature range using an external power supply
supervisor: refer to Section : Internal reset OFF. A comprehensive set of power-saving
mode allows the design of low-power applications.
The STM32F415xx and STM32F417xx family offers devices in various packages ranging
from 64 pins to 176 pins. The set of included peripherals changes with the device chosen.
These features make the STM32F415xx and STM32F417xx microcontroller family suitable
for a wide range of applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
STM32F415xx, STM32F417xx Description
DocID022063 Rev 8 15/206
Figure 5 shows the general block diagram of the device family.
Table 2. STM32F415xx and STM32F417xx: features and peripheral counts
Peripherals STM32F415RG STM32F415OG STM32F415VG STM32F415ZG STM32F417Vx STM32F417Zx STM32F417Ix
Flash memory in Kbytes 1024 512 1024 512 1024 512 1024
SRAM in
Kbytes
System 192(112+16+64)
Backup 4
FSMC memory controller No Yes(1)
Ethernet No Yes
Timers
General-
purpose 10
Advanced-
control 2
Basic 2
IWDG Yes
WWDG Yes
RTC Yes
Random number generator Yes
Communicatio
n interfaces
SPI / I2S 3/2 (full duplex)(2)
I2C 3
USART/UART 4/2
USB OTG FS Yes
USB OTG HS Yes
CAN 2
SDIO Yes
Camera interface No Yes
Cryptography Yes
Description STM32F415xx, STM32F417xx
16/206 DocID022063 Rev 8
GPIOs 51 72 82 114 82 114 140
12-bit ADC
Number of channels
3
16 13 16 24 16 24 24
12-bit DAC
Number of channels
Yes
2
Maximum CPU frequency 168 MHz
Operating voltage 1.8 to 3.6 V(3)
Operating temperatures
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Junction temperature: –40 to + 125 °C
Package LQFP64 WLCSP90 LQFP100 LQFP144 LQFP100 LQFP144 UFBGA176
LQFP176
1. For the LQFP100 and WLCSP90 packages, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip
Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this
package.
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to
Section : Internal reset OFF).
Table 2. STM32F415xx and STM32F417xx: features and peripheral counts
Peripherals STM32F415RG STM32F415OG STM32F415VG STM32F415ZG STM32F417Vx STM32F417Zx STM32F417Ix
DocID022063 Rev 8 17/206
STM32F415xx, STM32F417xx Description
2.1 Full compatibility throughout the family
The STM32F415xx and STM32F417xx are part of the STM32F4 family. They are fully pin-
to-pin, software and feature compatible with the STM32F2xx devices, allowing the user to
try different memory densities, peripherals, and performances (FPU, higher frequency) for a
greater degree of freedom during the development cycle.
The STM32F415xx and STM32F417xx devices maintain a close compatibility with the
whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The
STM32F415xx and STM32F417xx, however, are not drop-in replacements for the
STM32F10xxx devices: the two families do not have the same power scheme, and so their
power pins are different. Nonetheless, transition from the STM32F10xxx to the
STM32F41xxx family remains simple as only a few pins are impacted.
Figure 4, Figure 3, Figure 2, and Figure 1 give compatible board designs between the
STM32F41xxx, STM32F2, and STM32F10xxx families.
Figure 1. Compatible board design between STM32F10xx/STM32F41xxx for LQFP64






 
633
633
633
633
7RESISTORORSOLDERINGBRIDGE
PRESENTFORTHE34-&XX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION
AI
Description STM32F415xx, STM32F417xx
18/206 DocID022063 Rev 8
Figure 2. Compatible board design STM32F10xx/STM32F2/STM32F41xxx
for LQFP100 package
Figure 3. Compatible board design between STM32F10xx/STM32F2/STM32F41xxx
for LQFP144 package
DLG







 

966
966
9''
966
966
966
UHVLVWRURUVROGHULQJEULGJH
SUHVHQWIRUWKH670)[[[
FRQILJXUDWLRQQRWSUHVHQWLQWKH
670)[[FRQILJXUDWLRQ
966
966
7ZRUHVLVWRUVFRQQHFWHGWR
966IRUWKH670)[[
966IRUWKH670)[[
966RU1&IRUWKH670)[[
966IRU670)[[
9''IRU670)[[
DLG









966
UHVLVWRURUVROGHULQJEULGJH
SUHVHQWIRUWKH670)[[
FRQILJXUDWLRQQRWSUHVHQWLQWKH
670)[[FRQILJXUDWLRQ

966

7ZRUHVLVWRUVFRQQHFWHGWR
966IRUWKH670)[[
9669''RU1&IRUWKH670)[[
9''RUVLJQDOIURPH[WHUQDOSRZHUVXSSO\VXSHUYLVRUIRUWKH670)[[
966
9''
966
966
3'5B21
966
9''
966IRU670)[[
9''IRU670)[[
6LJQDOIURP
H[WHUQDOSRZHU
VXSSO\
VXSHUYLVRU
1RWSRSXODWHGZKHQ
UHVLVWRURUVROGHULQJ
EULGJHSUHVHQW
1RWSRSXODWHGIRU670)[[
DocID022063 Rev 8 19/206
STM32F415xx, STM32F417xx Description
Figure 4. Compatible board design between STM32F2 and STM32F41xxx
for LQFP176 and BGA176 packages
069






7ZRUHVLVWRUVFRQQHFWHGWR
9669''RU1&IRUWKH670)[[
9''RUVLJQDOIURPH[WHUQDOSRZHUVXSSO\VXSHUYLVRUIRUWKH670)[[
3'5B21
966
9''
6LJQDOIURPH[WHUQDO
SRZHUVXSSO\
VXSHUYLVRU
Description STM32F415xx, STM32F417xx
20/206 DocID022063 Rev 8
2.2 Device overview
Figure 5. STM32F41xxx block diagram
1. The camera interface and ethernet are available only on STM32F417xx devices.
DLG
*3,23257$
$+%$3%
$)
3$>@
7,03:0
FRPSOFKDQQHOV7,0B&+>@1
FKDQQHOV7,0B&+>@(75
%.,1DV$)
5;7;&.
&76576DV$)
026,0,62
6&.166DV$)
$3% 0+]
DQDORJLQSXWVFRPPRQ
WRWKH$'&V
9''5()B$'&
026,6'0,626'BH[W6&.&.
166:60&.DV$)
7;5;
'$&B287
DV$)
,7)
::'*
.%%.365$0
57&B$)
26&B,1
26&B287
9''$966$
1567
E
6',200&
'>@
&0'&.DV$)
9%$7 WR9
'0$
6&/6'$60%$DV$)
-7$*6:
$50&RUWH[0
0+]
19,&
(70
038
75$&(&/.
75$&('>@
(WKHUQHW0$&

'0$
),)2
0,,RU50,,DV$)
0',2DV$)
86%
27*+6
'3'0
8/3,&.'>@',56731;7
,'9%8662)
'0$
6WUHDPV
),)2
$57$&&(/
&$&+(
65$0.%
&/.1(>@$>@
'>@2(1:(1
1%/>@1/15(*
1:$,7,25'<&'
,1711,,6DV$)
51*
&DPHUD
LQWHUIDFH
+6<1&96<1&
38,;&/.'>@
3+<
86%
27*)6
'3
'0
,'9%8662)
),)2
$+%0+]
3+<
),)2
#9''$
#9''$
3253'5
%25
6XSSO\
VXSHUYLVLRQ
#9''$
39'
,QW
325
UHVHW
;7$/N+]
0$1 $*7
57&
5& +6
)&/.
5& / 6
3:5
LQWHUIDFH
,:'*
#9%$7
$:8
5HVHW
FORFN
FRQWURO
3 / /
3&/.[
9'' WR9
966
9&$39&3$
9ROWDJH
UHJXODWRU
WR9
9'' 3RZHUPDQDJPW
57&B$)
%DFNXSUHJLVWHU
$+%EXVPDWUL[60
/6
FKDQQHOVDV$)
'$&
'$&
)ODVK
XSWR
0%
65$0365$0125)ODVK
3&&DUG$7$1$1')ODVK
([WHUQDOPHPRU\
FRQWUROOHU)60&
7,0
7,0
7,0
7,0
7,0
7,0
7,0
7,0
7,0
86$57
86$57
8$57
8$57
63,6
,&60%86
,&60%86
,&60%86
E[&$1
E[&$1
63,
(;7,7:.83
'%86
),)2
)38
$3%0+]PD[
65$0.%
&&0GDWD5$0.%
$+%
$+%0+]
1-7567-7',
-7&.6:&/.
-7'26:'-7'2
,%86
6%86
'0$
),)2
'0$
6WUHDPV
),)2
3%>@
3&>@
3'>@
3(>@
3)>@
3*>@
3+>@
3,>@
*3,23257%
*3,23257&
*3,23257'
*3,23257(
*3,23257)
*3,23257*
*3,23257+
*3,23257,
7,03:0 E
FRPSOFKDQQHOV7,0B&+>@1
FKDQQHOV7,0B&+>@(75
%.,1DV$)
FKDQQHODV$)
FKDQQHODV$)
5;7;&.
&76576DV$)
DQDORJLQSXWVFRPPRQ
WRWKH$'&
DQDORJLQSXWVIRU$'&
'$&B287
DV$)
E
E
6&/6'$60%$DV$)
6&/6'$60%$DV$)
026,6'0,626'BH[W6&.&.
166:60&.DV$)
7;5;
5;7;DV$)
5;7;DV$)
5;7;DV$)
&76576DV$)
5;7;DV$)
&76576DV$)
FKDQQHODV$)
VPFDUG
LU'$
VPFDUG
LU'$
E
E
E
FKDQQHODV$)
FKDQQHOVDV$)
E
E
E
E
FKDQQHOV
FKDQQHOV(75DV$)
FKDQQHOV(75DV$)
FKDQQHOV(75DV$)
'0$
$+%$3%
/6
26&B,1
26&B287
+&/.[
;7$/26&
0+]
),)2
63,6
1,25',2:5,17>@
$'&
$'&
$'&
7HPSHUDWXUHVHQVRU
,)
7,0 E
7,0 E
7,0 E
VPFDUG
LU'$ 86$57
LU'$ 86$57
VPFDUG
$3%0+]
#9''
#9''
#9''$
7'(6$(6
+$6+
DocID022063 Rev 8 21/206
STM32F415xx, STM32F417xx Description
2.2.1 ARM® Cortex®-M4 core with FPU and embedded Flash and SRAM
The ARM Cortex-M4 processor with FPU is the latest generation of ARM processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The ARM Cortex-M4 32-bit RISC processor with FPU features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
The STM32F415xx and STM32F417xx family is compatible with all ARM tools and software.
Figure 5 shows the general block diagram of the STM32F41xxx family.
Note: Cortex-M4 with FPU is binary compatible with Cortex-M3.
2.2.2 Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-
standard ARM® Cortex®-M4 with FPU processors. It balances the inherent performance
advantage of the ARM Cortex-M4 with FPU over Flash memory technologies, which
normally requires the processor to wait for the Flash memory at higher frequencies.
To release the processor full 210 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 168 MHz.
2.2.3 Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-
time operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
2.2.4 Embedded Flash memory
The STM32F41xxx devices embed a Flash memory of 512 Kbytes or 1 Mbytes available for
storing programs and data.
Description STM32F415xx, STM32F417xx
22/206 DocID022063 Rev 8
2.2.5 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
2.2.6 Embedded SRAM
All STM32F41xxx products embed:
Up to 192 Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory)
data RAM
RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
4 Kbytes of backup SRAM
This area is accessible only from the CPU. Its content is protected against possible
unwanted write accesses, and is retained in Standby or VBAT mode.
2.2.7 Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB
HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a
seamless and efficient operation even when several high-speed peripherals work
simultaneously.
DocID022063 Rev 8 23/206
STM32F415xx, STM32F417xx Description
Figure 6. Multi-AHB matrix
2.2.8 DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
!2-
#ORTEX-
'0
$-!
'0
$-!
-!#
%THERNET
53"/4'
(3
"USMATRIX3
)#/$%
$#/$%
!##%,
&LASH
MEMORY
32!-
+BYTE
32!-
+BYTE
!("
PERIPHERALS
!("
&3-#
3TATIC-EM#TL
)BUS
$BUS
3BUS
$-!?0)
$-!?-%-
$-!?-%-
$-!?0
%4(%2.%4?-
53"?(3?-
AID
##-DATA2!-
+BYTE
!0"
!0"
PERIPHERALS
Description STM32F415xx, STM32F417xx
24/206 DocID022063 Rev 8
The DMA can be used with the main peripherals:
SPI and I2S
I2C
USART
General-purpose, basic and advanced-control timers TIMx
DAC
SDIO
Cryptographic acceleration
Camera interface (DCMI)
ADC.
2.2.9 Flexible static memory controller (FSMC)
The FSMC is embedded in the STM32F415xx and STM32F417xx family. It has four Chip
Select outputs supporting the following modes: PCCard/Compact Flash, SRAM, PSRAM,
NOR Flash and NAND Flash.
Functionality overview:
Write FIFO
Maximum FSMC_CLK frequency for synchronous accesses is 60 MHz.
LCD parallel interface
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-
effective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
2.2.10 Nested vectored interrupt controller (NVIC)
The STM32F415xx and STM32F417xx embed a nested vectored interrupt controller able to
manage 16 priority levels, and handle up to 82 maskable interrupt channels plus the 16
interrupt lines of the Cortex®-M4 with FPU core.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
DocID022063 Rev 8 25/206
STM32F415xx, STM32F417xx Description
2.2.11 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 23 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected
to the 16 external interrupt lines.
2.2.12 Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full
temperature range. The application can then select as system clock either the RC oscillator
or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is
detected, the system automatically switches back to the internal RC oscillator and a
software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing
to increase the frequency up to 168 MHz. Similarly, full interrupt management of the PLL
clock entry is available when necessary (for example if an indirectly used external oscillator
fails).
Several prescalers allow the configuration of the three AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB
buses is 168 MHz while the maximum frequency of the high-speed APB domains is
84 MHz. The maximum allowed frequency of the low-speed APB domain is 42 MHz.
The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class
performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
2.2.13 Boot modes
At startup, boot pins are used to select one out of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB
OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).
2.2.14 Power supply schemes
VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.
VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset
blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Refer to Figure 21: Power supply scheme for more details.
Description STM32F415xx, STM32F417xx
26/206 DocID022063 Rev 8
Note: VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced
temperature range, and with the use of an external power supply supervisor (refer to
Section : Internal reset OFF).
Refer to Table 2 in order to identify the packages supporting this option.
2.2.15 Power supply supervisor
Internal reset ON
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by
holding PDR_ON high. On all other packages, the power supply supervisor is always
enabled.
The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
reached, the option byte loading process starts, either to confirm or modify default BOR
threshold levels, or to disable BOR permanently. Three BOR thresholds are available
through option bytes. The device remains in reset mode when VDD is below a specified
threshold, VPOR/PDR or VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
Internal reset OFF
This feature is available only on packages featuring the PDR_ON pin. The internal power-on
reset (POR) / power-down reset (PDR) circuitry is disabled with the PDR_ON pin.
An external power supply supervisor should monitor VDD and should maintain the device in
reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to
this external power supply supervisor. Refer to Figure 7: Power supply supervisor
interconnection with internal reset OFF.
DocID022063 Rev 8 27/206
STM32F415xx, STM32F417xx Description
Figure 7. Power supply supervisor interconnection with internal reset OFF
1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range.
The VDD specified threshold, below which the device must be maintained under reset, is
1.8 V (see Figure 7). This supply voltage can drop to 1.7 V when the device operates in the
0 to 70 °C temperature range.
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no more supported:
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
The brownout reset (BOR) circuitry is disabled
The embedded programmable voltage detector (PVD) is disabled
VBAT functionality is no more available and VBAT pin should be connected to VDD
All packages, except for the LQFP64 and LQFP100, allow to disable the internal reset
through the PDR_ON signal.
069
1567
9''
3'5B21
([WHUQDO9''SRZHUVXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYHZKHQ
9''9
9''
$SSOLFDWLRQUHVHW
VLJQDORSWLRQDO
Description STM32F415xx, STM32F417xx
28/206 DocID022063 Rev 8
Figure 8. PDR_ON and NRST control with internal reset OFF
1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range.
2.2.16 Voltage regulator
The regulator has four operating modes:
Regulator ON
Main regulator mode (MR)
Low-power regulator (LPR)
Power-down
Regulator OFF
Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when regulator is ON:
MR is used in the nominal regulation mode (With different voltage scaling in Run)
In Main regulator mode (MR mode), different voltage scaling are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
Refer to Table 14: General operating conditions.
LPR is used in the Stop modes
The LP regulator mode is configured by software when entering Stop mode.
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost)
069
9''
WLPH
3'5 9
WLPH
1567
3'5B21 3'5B21
5HVHWE\RWKHUVRXUFHWKDQ
SRZHUVXSSO\VXSHUYLVRU
DocID022063 Rev 8 29/206
STM32F415xx, STM32F417xx Description
Two external ceramic capacitors should be connected on VCAP_1 & VCAP_2 pin. Refer to
Figure 21: Power supply scheme and Figure 16: VCAP_1/VCAP_2 operating conditions.
All packages have regulator ON feature.
Regulator OFF
This feature is available only on packages featuring the BYPASS_REG pin. The regulator is
disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply
externally a V12 voltage source through VCAP_1 and VCAP_2 pins.
Since the internal voltage scaling is not manage internally, the external voltage value must
be aligned with the targeted maximum frequency. Refer to Table 14: General operating
conditions.
The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling
capacitors.
Refer to Figure 21: Power supply scheme
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
In regulator OFF mode the following features are no more supported:
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power
domain which is not reset by the NRST pin.
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As
a consequence, PA0 and NRST pins must be managed separately if the debug
connection under reset or pre-reset is required.
The standby mode is not available
Figure 9. Regulator OFF
Ăŝϭϴϰϵϴsϰ
([WHUQDO9&$3BSRZHU
VXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYH
ZKHQ9&$3B0LQ9
9
9&$3B
9&$3B
%<3$66B5(*
9''
3$ 1567
ƉƉůŝĐĂƚŝŽŶƌĞƐĞƚ
ƐŝŐŶĂů;ŽƉƚŝŽŶĂůͿ
9''
9
Description STM32F415xx, STM32F417xx
30/206 DocID022063 Rev 8
The following conditions must be respected:
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for
VDD to reach 1.8 V, then PA0 should be kept low to cover both conditions: until VCAP_1
and VCAP_2 reach V12 minimum value and until VDD reaches 1.8 V (see Figure 10).
Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower
than the time for VDD to reach 1.8 V, then PA0 could be asserted low externally (see
Figure 11).
If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.8 V, then
a reset must be asserted on PA0 pin.
Note: The minimum value of V12 depends on the maximum frequency targeted in the application
(see Table 14: General operating conditions).
Figure 10. Startup in regulator OFF mode: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization
1. This figure is valid both whatever the internal reset mode (ON or OFF).
2. PDR = 1.7 V for reduced temperature range; PDR = 1.8 V for all temperature ranges.
DLH
9''
WLPH
0LQ9
3'5 9RU9
9&$3B9&$3B
9
1567
WLPH
DocID022063 Rev 8 31/206
STM32F415xx, STM32F417xx Description
Figure 11. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization
1. This figure is valid both whatever the internal reset mode (ON or OFF).
2. PDR = 1.7 V for a reduced temperature range; PDR = 1.8 V for all temperature ranges.
2.2.17 Regulator ON/OFF and internal reset ON/OFF availability
2.2.18 Real-time clock (RTC), backup SRAM and backup registers
The backup domain of the STM32F415xx and STM32F417xx includes:
The real-time clock (RTC)
4 Kbytes of backup SRAM
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-
coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC provides a programmable alarm and programmable
periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is
also available in binary format.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
9''
WLPH
0LQ9
9&$3B9&$3B
9
3$DVVHUWHGH[WHUQDOO\
1567
WLPH DLG
3'5 9RU9
Table 3. Regulator ON/OFF and internal reset ON/OFF availability
Regulator ON Regulator OFF Internal reset ON Internal reset
OFF
LQFP64
LQFP100 Yes No
Yes No
LQFP144
Yes
PDR_ON set to
VDD
Yes
PDR_ON
connected to an
external power
supply supervisor
WLCSP90
UFBGA176
LQFP176
Yes
BYPASS_REG set
to VSS
Yes
BYPASS_REG set
to VDD
Description STM32F415xx, STM32F417xx
32/206 DocID022063 Rev 8
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data
which need to be retained in VBAT and standby mode. This memory area is disabled by
default to minimize power consumption (see Section 2.2.19: Low-power modes). It can be
enabled by software.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 2.2.19: Low-power
modes).
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
Like backup SRAM, the RTC and backup registers are supplied through a switch that is
powered either from the VDD supply when present or from the VBAT pin.
2.2.19 Low-power modes
The STM32F415xx and STM32F417xx support three low-power modes to achieve the best
compromise between low-power consumption, short startup time and available wakeup
sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the V12 domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire V12 domain is powered off. The PLL,
the HSI RC and the HSE crystal oscillators are also switched off. After entering
DocID022063 Rev 8 33/206
STM32F415xx, STM32F417xx Description
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event
occurs.
The standby mode is not supported when the embedded voltage regulator is bypassed
and the V12 domain is controlled by an external power.
2.2.20 VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
When PDR_ON pin is not connected to VDD (internal reset OFF), the VBAT functionality is no
more available and VBAT pin should be connected to VDD.
2.2.21 Timers and watchdogs
The STM32F415xx and STM32F417xx devices include two advanced-control timers, eight
general-purpose timers, two basic timers and two watchdog timers.
All timer counters can be frozen in debug mode.
Table 4 compares the features of the advanced-control, general-purpose and basic timers.
Table 4. Timer feature comparison
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complemen-
tary output
Max
interface
clock
(MHz)
Max
timer
clock
(MHz)
Advanced
-control
TIM1,
TIM8 16-bit
Up,
Down,
Up/down
Any integer
between 1
and 65536
Yes 4 Yes 84 168
Description STM32F415xx, STM32F417xx
34/206 DocID022063 Rev 8
Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge- or center-aligned modes)
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-
100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
General
purpose
TIM2,
TIM5 32-bit
Up,
Down,
Up/down
Any integer
between 1
and 65536
Yes 4 No 42 84
TIM3,
TIM4 16-bit
Up,
Down,
Up/down
Any integer
between 1
and 65536
Yes 4 No 42 84
TIM9 16-bit Up
Any integer
between 1
and 65536
No 2 No 84 168
TIM10
,
TIM11
16-bit Up
Any integer
between 1
and 65536
No 1 No 84 168
TIM12 16-bit Up
Any integer
between 1
and 65536
No 2 No 42 84
TIM13
,
TIM14
16-bit Up
Any integer
between 1
and 65536
No 1 No 42 84
Basic TIM6,
TIM7 16-bit Up
Any integer
between 1
and 65536
Yes 0 No 42 84
Table 4. Timer feature comparison (continued)
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complemen-
tary output
Max
interface
clock
(MHz)
Max
timer
clock
(MHz)
DocID022063 Rev 8 35/206
STM32F415xx, STM32F417xx Description
General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32F41xxx
devices (see Table 4 for differences).
TIM2, TIM3, TIM4, TIM5
The STM32F41xxx include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3,
and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload
up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-
bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent
channels for input capture/output compare, PWM or one-pulse mode output. This gives
up to 16 input capture/output compare/PWMs on the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9
and TIM12 have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5
full-featured general-purpose timers. They can also be used as simple time bases.
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
TIM6 and TIM7 support independent DMA request generation.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
Description STM32F415xx, STM32F417xx
36/206 DocID022063 Rev 8
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
A 24-bit downcounter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source.
2.2.22 Inter-integrated circuit interface (I²C)
Up to three I²C bus interfaces can operate in multimaster and slave modes. They can
support the Standard-mode (up to 100 kHz) and Fast-mode (up to 400 kHz). They support
the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware
CRC generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
2.2.23 Universal synchronous/asynchronous receiver transmitters (USART)
The STM32F415xx and STM32F417xx embed four universal synchronous/asynchronous
receiver transmitters (USART1, USART2, USART3 and USART6) and two universal
asynchronous receiver transmitters (UART4 and UART5).
These six interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
communicate at speeds of up to 10.5 Mbit/s. The other available interfaces communicate at
up to 5.25 Mbit/s.
USART1, USART2, USART3 and USART6 also provide hardware management of the CTS
and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication
capability. All interfaces can be served by the DMA controller.
DocID022063 Rev 8 37/206
STM32F415xx, STM32F417xx Description
2.2.24 Serial peripheral interface (SPI)
The STM32F41xxx feature up to three SPIs in slave and master modes in full-duplex and
simplex communication modes. SPI1 can communicate at up to 42 Mbits/s, SPI2 and SPI3
can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies
and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification
supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
2.2.25 Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be
operated in master or slave mode, in full duplex and half-duplex communication modes, and
can be configured to operate with a 16-/32-bit resolution as an input or output channel.
Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of
the I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
Table 5. USART feature comparison
USART
name
Standard
features
Modem
(RTS/
CTS)
LIN SPI
master irDA Smartcard
(ISO 7816)
Max. baud rate
in Mbit/s
(oversampling
by 16)
Max. baud rate
in Mbit/s
(oversampling
by 8)
APB
mapping
USART1 X X X X X X 5.25 10.5
APB2
(max.
84 MHz)
USART2 X X X X X X 2.62 5.25
APB1
(max.
42 MHz)
USART3 X X X X X X 2.62 5.25
APB1
(max.
42 MHz)
UART4 X - X - X - 2.62 5.25
APB1
(max.
42 MHz)
UART5 X - X - X - 2.62 5.25
APB1
(max.
42 MHz)
USART6 X X X X X X 5.25 10.5
APB2
(max.
84 MHz)
Description STM32F415xx, STM32F417xx
38/206 DocID022063 Rev 8
2.2.26 Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S application. It allows to
achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
The PLLI2S configuration can be modified to manage an I2S sample rate change without
disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 KHz to 192 KHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S
flow with an external PLL (or Codec output).
2.2.27 Secure digital input/output interface (SDIO)
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital
protocol Rev1.1.
2.2.28 Ethernet MAC interface with dedicated DMA and IEEE 1588 support
Peripheral available only on the STM32F417xx devices.
The STM32F417xx devices provide an IEEE-802.3-2002-compliant media access controller
(MAC) for ethernet LAN communications through an industry-standard medium-
independent interface (MII) or a reduced medium-independent interface (RMII). The
STM32F417xx requires an external physical interface device (PHY) to connect to the
physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F417xx MII
port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz
(MII) from the STM32F417xx.
DocID022063 Rev 8 39/206
STM32F415xx, STM32F417xx Description
The STM32F417xx includes the following features:
Supports 10 and 100 Mbit/s rates
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors (see the STM32F40xxx/41xxx reference manual for details)
Tagged MAC frame support (VLAN support)
Half-duplex (CSMA/CD) and full-duplex operation
MAC control sublayer (control frames) support
32-bit CRC generation and removal
Several address filtering modes for physical and multicast address (multicast and
group addresses)
32-bit status code for each transmitted or received frame
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the
receive FIFO are both 2 Kbytes.
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
Triggers interrupt when system time becomes greater than target time
2.2.29 Controller area network (bxCAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). 256 bytes of SRAM are allocated for each CAN.
2.2.30 Universal serial bus on-the-go full-speed (OTG_FS)
The STM32F415xx and STM32F417xx embed an USB OTG full-speed device/host/OTG
peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the
USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable
endpoint setting and supports suspend/resume. The USB OTG full-speed controller
requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE
oscillator. The major features are:
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
4 bidirectional endpoints
8 host channels with periodic OUT support
HNP/SNP/IP inside (no need for any external resistor)
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
Description STM32F415xx, STM32F417xx
40/206 DocID022063 Rev 8
2.2.31 Universal serial bus on-the-go high-speed (OTG_HS)
The STM32F415xx and STM32F417xx devices embed a USB OTG high-speed (up to
480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and
high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and
features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using
the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG
1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator.
The major features are:
Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
6 bidirectional endpoints
12 host channels with periodic OUT support
Internal FS OTG PHY support
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
Internal USB DMA
HNP/SNP/IP inside (no need for any external resistor)
for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
2.2.32 Digital camera interface (DCMI)
The camera interface is not available in STM32F415xx devices.
STM32F417xx products embed a camera interface that can connect with camera modules
and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The
camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:
Programmable polarity for the input pixel clock and synchronization signals
Parallel data communication can be 8-, 10-, 12- or 14-bit
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
Supports continuous mode or snapshot (a single frame) mode
Capability to automatically crop the image
DocID022063 Rev 8 41/206
STM32F415xx, STM32F417xx Description
2.2.33 Cryptographic acceleration
The STM32F415xx and STM32F417xx devices embed a cryptographic accelerator. This
cryptographic accelerator provides a set of hardware acceleration for the advanced
cryptographic algorithms usually needed to provide confidentiality, authentication, data
integrity and non repudiation when exchanging messages with a peer.
These algorithms consists of:
Encryption/Decryption
DES/TDES (data encryption standard/triple data encryption standard): ECB
(electronic codebook) and CBC (cipher block chaining) chaining algorithms, 64-,
128- or 192-bit key
AES (advanced encryption standard): ECB, CBC and CTR (counter mode)
chaining algorithms, 128, 192 or 256-bit key
Universal hash
SHA-1 (secure hash algorithm)
–MD5
–HMAC
The cryptographic accelerator supports DMA request generation.
2.2.34 Random number generator (RNG)
All STM32F415xx and STM32F417xx products embed an RNG that delivers 32-bit random
numbers generated by an integrated analog circuit.
2.2.35 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 84 MHz.
2.2.36 Analog-to-digital converters (ADCs)
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16
external channels, performing conversions in the single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
Description STM32F415xx, STM32F417xx
42/206 DocID022063 Rev 8
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.
2.2.37 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.8 V and 3.6 V. The temperature sensor is internally
connected to the ADC1_IN16 input channel which is used to convert the sensor output
voltage into a digital value.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
2.2.38 Digital-to-analog converter (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channel independent or simultaneous conversions
DMA capability for each channel
external triggers for conversion
input voltage reference VREF+
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA streams.
2.2.39 Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
DocID022063 Rev 8 43/206
STM32F415xx, STM32F417xx Description
2.2.40 Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F41xxx through a small number of ETM pins to an external hardware trace port
analyser (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
Pinouts and pin description STM32F415xx, STM32F417xx
44/206 DocID022063 Rev 8
3 Pinouts and pin description
Figure 12. STM32F41xxx LQFP64 pinout
1. The above figure shows the package top view.
DocID022063 Rev 8 45/206
STM32F415xx, STM32F417xx Pinouts and pin description
Figure 13. STM32F41xxx LQFP100 pinout
1. The above figure shows the package top view.


































































0%
0%
0%
0%
0%
6"!4
0#
0#
633
6$$
0(
.234
0#
0#
0#
0#
6$$
633!
62%&
6$$!
0!
0!
0!
6$$
633
6#!0?
0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
0"
6#!0?
6$$
6$$
633
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!

























AIC
,1&0
0#
0(
Pinouts and pin description STM32F415xx, STM32F417xx
46/206 DocID022063 Rev 8
Figure 14. STM32F41xxx LQFP144 pinout
1. The above figure shows the package top view.
6
$$
0$2?/.
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6
$$
6
33
0'
0'
0'
0'
0'
0'
0$
0$
6
$$
6
33
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
0% 6
$$
0% 6
33
0%
0% 0!
0% 0!
6"!4 0!
0# 0!
0# 0!
0# 0!
0& 0#
0& 0#
0& 0#
0& 0#
0& 6
$$
0& 6
33
6
33
0'
6
$$
0'
0& 0'
0& 0'
0& 0'
0& 0'
0& 0'
0( 0$
0( 0$
.234 6
$$
0# 6
33
0# 0$
0# 0$
0# 0$
6
33!
0$
6
$$
0$
6
2%&
0$
6
$$!
0"
0! 0"
0! 0"
0! 0"
0!
6
33
6
$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0&
0&
6
$$
0&
0&
0&
0'
0'
0%
0%
0%
6
33
6
$$
0%
0%
0%
0%
0%
0%
0"
0"
6
#!0?
6
$$



























































































,1&0












































AIB
6
#!0?
6
33
DocID022063 Rev 8 47/206
STM32F415xx, STM32F417xx Pinouts and pin description
Figure 15. STM32F41xxx LQFP176 pinout
1. The above figure shows the package top view.
069
3'5B21
3(
3(
3%
3%
%227
3%
3%
3%
3%
3%
3*
3*
3*
3*
3*
3*
3*
3'
3'
3'
3'
3'
3'
3'
3'
3&
3&
3&
3,
3,
3(
3(
3(
3(
3$
3(
3$
9%$7
3$
3,
3$
3&
3$
3&
3$
3)
3&
3)
3&
3)
3&
3)
3&
3)
3) 3*
3*
3)
3*
3)
3*
3)
3*
3)
3*
3)
3*
3+
3'
3+
3'
1567
9
3&
9
3&
3'
3&
3'
3&
3'
3'
3'
95()
3'
3%
3$
3%
3$
3%
3$
3%
3$
3$
3$
3$
3$
3&
3&
3%
3%
3%
3)
3)
966
3)
3)
3)
3*
3*
3(
3(
3(
3(
3(
3(
3(
3(
3(
3%
3%



























































































/4)3












































3,
3$
3$
3,
3,
3,








3+
3+
3+
3+
3+
3+
3+
3+ 







3,
3,
3+
3+
3+
3+
















3&
3,
3,
3,
966
3+
3+
9''
966
9''
9''
966$
9''$
%<3$66B5(*
9''
9''
966
9''
9&$3B
9''
966
9''
9&$3B
966
9''
966
9''
966
9''
966
9''
9''
966
9''
966
9''
Pinouts and pin description STM32F415xx, STM32F417xx
48/206 DocID022063 Rev 8
Figure 16. STM32F41xxx UFBGA176 ballout
1. This figure shows the package top view.
AIB
     
! 0% 0% 0% 0% 0" 0" 0' 0' 0" 0" 0$ 0# 0! 0! 0!
" 0% 0% 0% 0" 0" 0" 0'0'0'0' 0$ 0$ 0#0#0!
#6"!4 0) 0) 0) 0$2?/.
6$$ 6$$ 6$$ 6$$ 0' 0$ 0$ 0) 0) 0!
$0# 0) 0) 0) "//4 633 633 633 0$ 0$ 0$ 0( 0) 0!
%0# 0& 0) 0) 0( 0( 0) 0!
& 0# 633 6$$ 0( 633 633 633 633 633 633 6#!0? 0# 0!
'0( 633 6$$ 0( 633 633 633 633 633 633 6$$ 0# 0#
(0( 0& 0& 0( 633 633 633 633 633 633 6$$ 0' 0#
* .234 0& 0& 0( 633 633 633 633 633 6$$ 6$$ 0' 0'
+0& 0& 0&
6$$ 633 633 633 633 633 0( 0' 0' 0'
,0& 0& 0&
"90!33?
2%'
0( 0( 0$ 0'
- 633! 0# 0# 0# 0# 0" 0' 633 633 6#!0? 0( 0( 0( 0$ 0$
.62%& 0!
0!
0! 0# 0& 0' 6$$ 6$$ 6$$ 0% 0( 0$ 0$ 0$
0 62%& 0! 0! 0! 0# 0& 0& 0% 0% 0% 0% 0" 0" 0$ 0$
2 6$$! 0! 0! 0" 0" 0& 0& 0% 0% 0% 0% 0" 0" 0" 0"
633

DocID022063 Rev 8 49/206
STM32F415xx, STM32F417xx Pinouts and pin description
Figure 17. STM32F41xxx WLCSP90 ballout
1. This figure shows the package bump view.
! 6"!4 0# 0$2?/. 0" 0$ 0$ 0#
"0# 6$$ 0" 0" 0$ 0$ 0!
#0! 633 0# 0)
0" 0$ 0$
$ 0# 0" 0!
%0# 633
&0( 0!
'.234
(633!
*0! 0!
0! 0" 0% 0" 0"
-36
0!
0)
0!
0! 0!
0# 0# 0#
0(
0"
0# 0$
0$
0% 0%
"90!33?
2%'
0$ 0$
0% 0"

6$$
0# 6#!0?
0!
0" 0$ 0# 0!
633 6$$ 633 6$$ 0#
6$$ 0% 0% 6#!0? 0$
0% 0% 0$ 0$
0! 0! 0" 0" 0"
0"
"//4
6$$! 0" 0%0!
Table 6. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
TTa 3.3 V tolerant I/O directly connected to ADC
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Pinouts and pin description STM32F415xx, STM32F417xx
50/206 DocID022063 Rev 8
Table 7. STM32F41xxx pin and ball definitions
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
- - 1 1 A2 1 PE2 I/O FT -
TRACECLK/ FSMC_A23 /
ETH_MII_TXD3 /
EVENTOUT
-
- - 2 2 A1 2 PE3 I/O FT - TRACED0/FSMC_A19 /
EVENTOUT -
- - 3 3 B1 3 PE4 I/O FT - TRACED1/FSMC_A20 /
DCMI_D4/ EVENTOUT -
- - 4 4 B2 4 PE5 I/O FT -
TRACED2 / FSMC_A21 /
TIM9_CH1 / DCMI_D6 /
EVENTOUT
-
- - 5 5 B3 5 PE6 I/O FT -
TRACED3 / FSMC_A22 /
TIM9_CH2 / DCMI_D7 /
EVENTOUT
-
1A106 6 C1 6 V
BAT S- - - -
- - - - D2 7 PI8 I/O FT
(2)(
3) EVENTOUT
RTC_TAMP1,
RTC_TAMP2,
RTC_TS
2 A9 7 7 D1 8 PC13 I/O FT
(2)
(3) EVENTOUT
RTC_OUT,
RTC_TAMP1,
RTC_TS
3B108 8 E1 9 PC14/OSC32_IN
(PC14) I/O FT
(2)(
3) EVENTOUT OSC32_IN(4)
4B99 9 F110
PC15/
OSC32_OUT
(PC15)
I/O FT
(2)(
3) EVENTOUT OSC32_OUT(4)
- - - - D3 11 PI9 I/O FT - CAN1_RX / EVENTOUT -
- - - - E3 12 PI10 I/O FT - ETH_MII_RX_ER /
EVENTOUT -
- - - - E4 13 PI11 I/O FT - OTG_HS_ULPI_DIR /
EVENTOUT -
----F214 V
SS S- - - -
----F315 V
DD S- - - -
- - - 10 E2 16 PF0 I/O FT - FSMC_A0 / I2C2_SDA /
EVENTOUT -
DocID022063 Rev 8 51/206
STM32F415xx, STM32F417xx Pinouts and pin description
- - - 11 H3 17 PF1 I/O FT - FSMC_A1 / I2C2_SCL /
EVENTOUT -
- - - 12 H2 18 PF2 I/O FT - FSMC_A2 / I2C2_SMBA /
EVENTOUT -
- - - 13 J2 19 PF3 I/O FT (4) FSMC_A3/EVENTOUT ADC3_IN9
- - - 14 J3 20 PF4 I/O FT (4) FSMC_A4/EVENTOUT ADC3_IN14
- - - 15 K3 21 PF5 I/O FT (4) FSMC_A5/EVENTOUT ADC3_IN15
-C91016G222 V
SS S- - - -
-B81117G323 V
DD S- - - -
- - - 18 K2 24 PF6 I/O FT (4)
TIM10_CH1 /
FSMC_NIORD/
EVENTOUT
ADC3_IN4
- - - 19 K1 25 PF7 I/O FT (4) TIM11_CH1/FSMC_NREG/
EVENTOUT ADC3_IN5
- - - 20 L3 26 PF8 I/O FT (4)
TIM13_CH1 /
FSMC_NIOWR/
EVENTOUT
ADC3_IN6
- - - 21 L2 27 PF9 I/O FT (4) TIM14_CH1 / FSMC_CD/
EVENTOUT ADC3_IN7
- - - 22 L1 28 PF10 I/O FT (4) FSMC_INTR/ EVENTOUT ADC3_IN8
5 F10 12 23 G1 29 PH0/OSC_IN
(PH0) I/O FT - EVENTOUT OSC_IN(4)
6F91324H130PH1/OSC_OUT
(PH1) I/O FT - EVENTOUT OSC_OUT(4)
7 G10 14 25 J1 31 NRST I/O RST - - -
8 E10 15 26 M2 32 PC0 I/O FT (4) OTG_HS_ULPI_STP/
EVENTOUT ADC123_IN10
9 - 16 27 M3 33 PC1 I/O FT (4) ETH_MDC/ EVENTOUT ADC123_IN11
10 D10 17 28 M4 34 PC2 I/O FT (4)
SPI2_MISO /
OTG_HS_ULPI_DIR /
ETH_MII_TXD2
/I2S2ext_SD/ EVENTOUT
ADC123_IN12
Table 7. STM32F41xxx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
Pinouts and pin description STM32F415xx, STM32F417xx
52/206 DocID022063 Rev 8
11 E9 18 29 M5 35 PC3 I/O FT (4)
SPI2_MOSI / I2S2_SD /
OTG_HS_ULPI_NXT /
ETH_MII_TX_CLK/
EVENTOUT
ADC123_IN13
--1930-36 V
DD S- - - -
12 H10 20 31 M1 37 VSSA S- - - -
----N1- V
REF S- - - -
- - 21 32 P1 38 VREF+ S- - - -
13 G9 22 33 R1 39 VDDA S- - - -
14 C10 23 34 N3 40 PA0/WKUP
(PA0) I/O FT (5)
USART2_CTS/
UART4_TX/
ETH_MII_CRS /
TIM2_CH1_ETR/
TIM5_CH1 / TIM8_ETR/
EVENTOUT
ADC123_IN0/WKU
P(4)
15 F8 24 35 N2 41 PA1 I/O FT (4)
USART2_RTS /
UART4_RX/
ETH_RMII_REF_CLK /
ETH_MII_RX_CLK /
TIM5_CH2 / TIM2_CH2/
EVENTOUT
ADC123_IN1
16 J10 25 36 P2 42 PA2 I/O FT (4)
USART2_TX/TIM5_CH3 /
TIM9_CH1 / TIM2_CH3 /
ETH_MDIO/ EVENTOUT
ADC123_IN2
- - - - F4 43 PH2 I/O FT - ETH_MII_CRS/EVENTOUT -
- - - - G4 44 PH3 I/O FT - ETH_MII_COL/EVENTOUT -
- - - - H4 45 PH4 I/O FT -
I2C2_SCL /
OTG_HS_ULPI_NXT/
EVENTOUT
-
- - - - J4 46 PH5 I/O FT - I2C2_SDA/ EVENTOUT -
17 H9 26 37 R2 47 PA3 I/O FT (4)
USART2_RX/TIM5_CH4 /
TIM9_CH2 / TIM2_CH4 /
OTG_HS_ULPI_D0 /
ETH_MII_COL/
EVENTOUT
ADC123_IN3
18 E5 27 38 - - VSS S- - - -
Table 7. STM32F41xxx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
DocID022063 Rev 8 53/206
STM32F415xx, STM32F417xx Pinouts and pin description
D9 L4 48 BYPASS_REG I FT - - -
19 E4 28 39 K4 49 VDD S- - - -
20 J9 29 40 N4 50 PA4 I/O TTa (4)
SPI1_NSS / SPI3_NSS /
USART2_CK /
DCMI_HSYNC /
OTG_HS_SOF/ I2S3_WS/
EVENTOUT
ADC12_IN4
/DAC_OUT1
21 G8 30 41 P4 51 PA5 I/O TTa (4)
SPI1_SCK/
OTG_HS_ULPI_CK /
TIM2_CH1_ETR/
TIM8_CH1N/ EVENTOUT
ADC12_IN5/DAC_
OUT2
22 H8 31 42 P3 52 PA6 I/O FT (4)
SPI1_MISO /
TIM8_BKIN/TIM13_CH1 /
DCMI_PIXCLK / TIM3_CH1
/ TIM1_BKIN/ EVENTOUT
ADC12_IN6
23 J8 32 43 R3 53 PA7 I/O FT (4)
SPI1_MOSI/ TIM8_CH1N /
TIM14_CH1/TIM3_CH2/
ETH_MII_RX_DV /
TIM1_CH1N /
ETH_RMII_CRS_DV/
EVENTOUT
ADC12_IN7
24 - 33 44 N5 54 PC4 I/O FT (4)
ETH_RMII_RX_D0 /
ETH_MII_RX_D0/
EVENTOUT
ADC12_IN14
25 - 34 45 P5 55 PC5 I/O FT (4)
ETH_RMII_RX_D1 /
ETH_MII_RX_D1/
EVENTOUT
ADC12_IN15
26 G7 35 46 R5 56 PB0 I/O FT (4)
TIM3_CH3 / TIM8_CH2N/
OTG_HS_ULPI_D1/
ETH_MII_RXD2 /
TIM1_CH2N/ EVENTOUT
ADC12_IN8
27 H7 36 47 R4 57 PB1 I/O FT (4)
TIM3_CH4 / TIM8_CH3N/
OTG_HS_ULPI_D2/
ETH_MII_RXD3 /
TIM1_CH3N/ EVENTOUT
ADC12_IN9
28 J7 37 48 M6 58 PB2/BOOT1
(PB2) I/O FT - EVENTOUT -
Table 7. STM32F41xxx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
Pinouts and pin description STM32F415xx, STM32F417xx
54/206 DocID022063 Rev 8
- - - 49 R6 59 PF11 I/O FT - DCMI_D12/ EVENTOUT -
- - - 50 P6 60 PF12 I/O FT - FSMC_A6/ EVENTOUT -
---51M861 V
SS S- - - -
---52N862 V
DD S- - - -
- - - 53 N6 63 PF13 I/O FT - FSMC_A7/ EVENTOUT -
- - - 54 R7 64 PF14 I/O FT - FSMC_A8/ EVENTOUT -
- - - 55 P7 65 PF15 I/O FT - FSMC_A9/ EVENTOUT -
- - - 56 N7 66 PG0 I/O FT - FSMC_A10/ EVENTOUT -
- - - 57 M7 67 PG1 I/O FT - FSMC_A11/ EVENTOUT -
- G63858 R8 68 PE7 I/O FT - FSMC_D4/TIM1_ETR/
EVENTOUT -
- H6 39 59 P8 69 PE8 I/O FT - FSMC_D5/ TIM1_CH1N/
EVENTOUT -
- J6 40 60 P9 70 PE9 I/O FT - FSMC_D6/TIM1_CH1/
EVENTOUT -
---61M971 V
SS S- - - -
---62N972 V
DD S- - - -
- F6 41 63 R9 73 PE10 I/O FT - FSMC_D7/TIM1_CH2N/
EVENTOUT -
- J5 42 64 P10 74 PE11 I/O FT - FSMC_D8/TIM1_CH2/
EVENTOUT -
- H54365R1075 PE12 I/O FT - FSMC_D9/TIM1_CH3N/
EVENTOUT -
- G54466N11 76 PE13 I/O FT - FSMC_D10/TIM1_CH3/
EVENTOUT -
- F5 45 67 P11 77 PE14 I/O FT - FSMC_D11/TIM1_CH4/
EVENTOUT -
- G44668R11 78 PE15 I/O FT - FSMC_D12/TIM1_BKIN/
EVENTOUT -
Table 7. STM32F41xxx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
DocID022063 Rev 8 55/206
STM32F415xx, STM32F417xx Pinouts and pin description
29 H4 47 69 R12 79 PB10 I/O FT -
SPI2_SCK / I2S2_CK /
I2C2_SCL/ USART3_TX /
OTG_HS_ULPI_D3 /
ETH_MII_RX_ER /
TIM2_CH3/ EVENTOUT
-
30 J4 48 70 R13 80 PB11 I/O FT -
I2C2_SDA/USART3_RX/
OTG_HS_ULPI_D4 /
ETH_RMII_TX_EN/
ETH_MII_TX_EN /
TIM2_CH4/ EVENTOUT
-
31 F4 49 71 M10 81 VCAP_1 S- - -
32 - 50 72 N10 82 VDD S- - -
- - - - M11 83 PH6 I/O FT -
I2C2_SMBA / TIM12_CH1 /
ETH_MII_RXD2/
EVENTOUT
-
- - - - N12 84 PH7 I/O FT -
I2C3_SCL /
ETH_MII_RXD3/
EVENTOUT
-
- - - - M12 85 PH8 I/O FT -
I2C3_SDA /
DCMI_HSYNC/
EVENTOUT
-
- - - - M13 86 PH9 I/O FT - I2C3_SMBA / TIM12_CH2/
DCMI_D0/ EVENTOUT -
- - - - L13 87 PH10 I/O FT - TIM5_CH1 / DCMI_D1/
EVENTOUT -
- - - - L12 88 PH11 I/O FT - TIM5_CH2 / DCMI_D2/
EVENTOUT -
- - - - K12 89 PH12 I/O FT - TIM5_CH3 / DCMI_D3/
EVENTOUT -
----H1290 V
SS S- - - -
----J1291 V
DD S- - - -
Table 7. STM32F41xxx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
Pinouts and pin description STM32F415xx, STM32F417xx
56/206 DocID022063 Rev 8
33 J3 51 73 P12 92 PB12 I/O FT -
SPI2_NSS / I2S2_WS /
I2C2_SMBA/
USART3_CK/ TIM1_BKIN /
CAN2_RX /
OTG_HS_ULPI_D5/
ETH_RMII_TXD0 /
ETH_MII_TXD0/
OTG_HS_ID/ EVENTOUT
-
34 J1 52 74 P13 93 PB13 I/O FT -
SPI2_SCK / I2S2_CK /
USART3_CTS/
TIM1_CH1N /CAN2_TX /
OTG_HS_ULPI_D6 /
ETH_RMII_TXD1 /
ETH_MII_TXD1/
EVENTOUT
OTG_HS_VBUS
35 J2 53 75 R14 94 PB14 I/O FT -
SPI2_MISO/ TIM1_CH2N /
TIM12_CH1 /
OTG_HS_DM/
USART3_RTS /
TIM8_CH2N/I2S2ext_SD/
EVENTOUT
-
36 H1 54 76 R15 95 PB15 I/O FT -
SPI2_MOSI / I2S2_SD/
TIM1_CH3N / TIM8_CH3N
/ TIM12_CH2 /
OTG_HS_DP/ EVENTOUT
RTC_REFIN
- H2 55 77 P15 96 PD8 I/O FT - FSMC_D13 / USART3_TX/
EVENTOUT -
- H3 56 78 P14 97 PD9 I/O FT - FSMC_D14 / USART3_RX/
EVENTOUT -
- G3 57 79 N15 98 PD10 I/O FT - FSMC_D15 / USART3_CK/
EVENTOUT -
- G15880N1499 PD11 I/O FT -
FSMC_CLE /
FSMC_A16/USART3_CTS/
EVENTOUT
-
- G2 59 81 N13 100 PD12 I/O FT -
FSMC_ALE/
FSMC_A17/TIM4_CH1 /
USART3_RTS/
EVENTOUT
-
Table 7. STM32F41xxx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
DocID022063 Rev 8 57/206
STM32F415xx, STM32F417xx Pinouts and pin description
- - 60 82 M15 101 PD13 I/O FT - FSMC_A18/TIM4_CH2/
EVENTOUT -
- - - 83 - 102 VSS S- - -
- - - 84 J13 103 VDD S- - -
- F2 61 85 M14 104 PD14 I/O FT - FSMC_D0/TIM4_CH3/
EVENTOUT/ EVENTOUT -
- F1 62 86 L14 105 PD15 I/O FT - FSMC_D1/TIM4_CH4/
EVENTOUT -
- - - 87 L15 106 PG2 I/O FT - FSMC_A12/ EVENTOUT -
- - - 88 K15 107 PG3 I/O FT - FSMC_A13/ EVENTOUT -
- - - 89 K14 108 PG4 I/O FT - FSMC_A14/ EVENTOUT -
- - - 90 K13 109 PG5 I/O FT - FSMC_A15/ EVENTOUT -
- - - 91 J15 110 PG6 I/O FT - FSMC_INT2/ EVENTOUT -
- - - 92 J14 111 PG7 I/O FT - FSMC_INT3 /USART6_CK/
EVENTOUT -
- - - 93 H14 112 PG8 I/O FT -
USART6_RTS /
ETH_PPS_OUT/
EVENTOUT
-
---94G12113 V
SS S- - -
---95H13114 V
DD S- - -
37 F3 63 96 H15 115 PC6 I/O FT -
I2S2_MCK /
TIM8_CH1/SDIO_D6 /
USART6_TX /
DCMI_D0/TIM3_CH1/
EVENTOUT
-
38 E1 64 97 G15 116 PC7 I/O FT -
I2S3_MCK /
TIM8_CH2/SDIO_D7 /
USART6_RX /
DCMI_D1/TIM3_CH2/
EVENTOUT
-
39 E2 65 98 G14 117 PC8 I/O FT -
TIM8_CH3/SDIO_D0
/TIM3_CH3/ USART6_CK /
DCMI_D2/ EVENTOUT
-
Table 7. STM32F41xxx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
Pinouts and pin description STM32F415xx, STM32F417xx
58/206 DocID022063 Rev 8
40 E3 66 99 F14 118 PC9 I/O FT -
I2S_CKIN/ MCO2 /
TIM8_CH4/SDIO_D1 /
/I2C3_SDA / DCMI_D3 /
TIM3_CH4/ EVENTOUT
-
41 D1 67 100 F15 119 PA8 I/O FT -
MCO1 / USART1_CK/
TIM1_CH1/ I2C3_SCL/
OTG_FS_SOF/
EVENTOUT
-
42 D2 68 101 E15 120 PA9 I/O FT -
USART1_TX/ TIM1_CH2 /
I2C3_SMBA / DCMI_D0/
EVENTOUT
OTG_FS_VBUS
43 D3 69 102 D15 121 PA10 I/O FT -
USART1_RX/ TIM1_CH3/
OTG_FS_ID/DCMI_D1/
EVENTOUT
-
44 C1 70 103 C15 122 PA11 I/O FT -
USART1_CTS / CAN1_RX
/ TIM1_CH4 /
OTG_FS_DM/ EVENTOUT
-
45 C2 71 104 B15 123 PA12 I/O FT -
USART1_RTS / CAN1_TX/
TIM1_ETR/ OTG_FS_DP/
EVENTOUT
-
46 D4 72 105 A15 124 PA13
(JTMS-SWDIO) I/O FT - JTMS-SWDIO/ EVENTOUT -
47 B1 73 106 F13 125 VCAP_2 S- - - -
- E7 74 107 F12 126 VSS S- - - -
48 E6 75 108 G13 127 VDD S- - - -
- - - - E12 128 PH13 I/O FT - TIM8_CH1N / CAN1_TX/
EVENTOUT -
- - - - E13 129 PH14 I/O FT - TIM8_CH2N / DCMI_D4/
EVENTOUT -
- - - - D13 130 PH15 I/O FT - TIM8_CH3N / DCMI_D11/
EVENTOUT -
- C3 - - E14 131 PI0 I/O FT -
TIM5_CH4 / SPI2_NSS /
I2S2_WS / DCMI_D13/
EVENTOUT
-
- B2 - - D14 132 PI1 I/O FT - SPI2_SCK / I2S2_CK /
DCMI_D8/ EVENTOUT -
Table 7. STM32F41xxx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
DocID022063 Rev 8 59/206
STM32F415xx, STM32F417xx Pinouts and pin description
- - - - C14 133 PI2 I/O FT -
TIM8_CH4 /SPI2_MISO /
DCMI_D9 / I2S2ext_SD/
EVENTOUT
-
- - - - C13 134 PI3 I/O FT
TIM8_ETR / SPI2_MOSI /
I2S2_SD / DCMI_D10/
EVENTOUT
-
- - - - D9 135 VSS S- - - -
- - - - C9 136 VDD S- - - -
49 A2 76 109 A14 137 PA14
(JTCK/SWCLK) I/O FT - JTCK-SWCLK/ EVENTOUT -
50 B3 77 110 A13 138 PA15
(JTDI) I/O FT -
JTDI/ SPI3_NSS/
I2S3_WS/TIM2_CH1_ETR
/ SPI1_NSS / EVENTOUT
-
51 D5 78 111 B14 139 PC10 I/O FT -
SPI3_SCK / I2S3_CK/
UART4_TX/SDIO_D2 /
DCMI_D8 / USART3_TX/
EVENTOUT
-
52 C4 79 112 B13 140 PC11 I/O FT -
UART4_RX/ SPI3_MISO /
SDIO_D3 /
DCMI_D4/USART3_RX /
I2S3ext_SD/ EVENTOUT
-
53 A3 80 113 A12 141 PC12 I/O FT -
UART5_TX/SDIO_CK /
DCMI_D9 / SPI3_MOSI
/I2S3_SD / USART3_CK/
EVENTOUT
-
- D6 81 114 B12 142 PD0 I/O FT - FSMC_D2/CAN1_RX/
EVENTOUT -
- C5 82 115 C12 143 PD1 I/O FT - FSMC_D3 / CAN1_TX/
EVENTOUT -
54 B4 83 116 D12 144 PD2 I/O FT -
TIM3_ETR/UART5_RX/
SDIO_CMD / DCMI_D11/
EVENTOUT
-
- - 84 117 D11 145 PD3 I/O FT -
FSMC_CLK/
USART2_CTS/
EVENTOUT
-
Table 7. STM32F41xxx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
Pinouts and pin description STM32F415xx, STM32F417xx
60/206 DocID022063 Rev 8
- A4 85 118 D10 146 PD4 I/O FT -
FSMC_NOE/
USART2_RTS/
EVENTOUT
-
- C6 86 119 C11 147 PD5 I/O FT - FSMC_NWE/USART2_TX/
EVENTOUT -
- - - 120 D8 148 VSS S- - - -
- - - 121 C8 149 VDD S- - - -
- B5 87 122 B11 150 PD6 I/O FT - FSMC_NWAIT/
USART2_RX/ EVENTOUT -
- A5 88 123 A11 151 PD7 I/O FT - USART2_CK/FSMC_NE1/
FSMC_NCE2/ EVENTOUT -
- - - 124 C10 152 PG9 I/O FT -
USART6_RX /
FSMC_NE2/FSMC_NCE3/
EVENTOUT
-
- - - 125 B10 153 PG10 I/O FT - FSMC_NCE4_1/
FSMC_NE3/ EVENTOUT -
- - - 126 B9 154 PG11 I/O FT -
FSMC_NCE4_2 /
ETH_MII_TX_EN/
ETH _RMII_TX_EN/
EVENTOUT
-
- - - 127 B8 155 PG12 I/O FT -
FSMC_NE4 /
USART6_RTS/
EVENTOUT
-
- - - 128 A8 156 PG13 I/O FT -
FSMC_A24 /
USART6_CTS
/ETH_MII_TXD0/
ETH_RMII_TXD0/
EVENTOUT
-
- - - 129 A7 157 PG14 I/O FT -
FSMC_A25 / USART6_TX
/ETH_MII_TXD1/
ETH_RMII_TXD1/
EVENTOUT
-
- E8 - 130 D7 158 VSS S- - - -
- F7 - 131 C7 159 VDD S- - - -
- - - 132 B7 160 PG15 I/O FT - USART6_CTS /
DCMI_D13/ EVENTOUT -
Table 7. STM32F41xxx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
DocID022063 Rev 8 61/206
STM32F415xx, STM32F417xx Pinouts and pin description
55 B6 89 133 A10 161
PB3
(JTDO/
TRACESWO)
I/O FT -
JTDO/ TRACESWO/
SPI3_SCK / I2S3_CK /
TIM2_CH2 / SPI1_SCK/
EVENTOUT
-
56 A6 90 134 A9 162 PB4
(NJTRST) I/O FT -
NJTRST/ SPI3_MISO /
TIM3_CH1 / SPI1_MISO /
I2S3ext_SD/ EVENTOUT
-
57 D7 91 135 A6 163 PB5 I/O FT -
I2C1_SMBA/ CAN2_RX /
OTG_HS_ULPI_D7 /
ETH_PPS_OUT/TIM3_CH2
/ SPI1_MOSI/ SPI3_MOSI /
DCMI_D10 / I2S3_SD/
EVENTOUT
-
58 C7 92 136 B6 164 PB6 I/O FT -
I2C1_SCL/ TIM4_CH1 /
CAN2_TX /
DCMI_D5/USART1_TX/
EVENTOUT
-
59 B7 93 137 B5 165 PB7 I/O FT -
I2C1_SDA / FSMC_NL /
DCMI_VSYNC /
USART1_RX/ TIM4_CH2/
EVENTOUT
-
60 A7 94 138 D6 166 BOOT0 I B - - VPP
61 D8 95 139 A5 167 PB8 I/O FT -
TIM4_CH3/SDIO_D4/
TIM10_CH1 / DCMI_D6 /
ETH_MII_TXD3 /
I2C1_SCL/ CAN1_RX/
EVENTOUT
-
62 C8 96 140 B4 168 PB9 I/O FT -
SPI2_NSS/ I2S2_WS /
TIM4_CH4/ TIM11_CH1/
SDIO_D5 / DCMI_D7 /
I2C1_SDA / CAN1_TX/
EVENTOUT
-
- - 97 141 A4 169 PE0 I/O FT - TIM4_ETR / FSMC_NBL0 /
DCMI_D2/ EVENTOUT -
- - 98 142 A3 170 PE1 I/O FT - FSMC_NBL1 / DCMI_D3/
EVENTOUT -
63 - 99 - D5 - VSS S- - - -
Table 7. STM32F41xxx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
Pinouts and pin description STM32F415xx, STM32F417xx
62/206 DocID022063 Rev 8
- A8 - 143 C6 171 PDR_ON I FT - - -
64 A1 10
0144 C5 172 VDD S- - - -
- - - - D4 173 PI4 I/O FT - TIM8_BKIN / DCMI_D5/
EVENTOUT -
- - - - C4 174 PI5 I/O FT -
TIM8_CH1 /
DCMI_VSYNC/
EVENTOUT
-
- - - - C3 175 PI6 I/O FT - TIM8_CH2 / DCMI_D6/
EVENTOUT -
- - - - C2 176 PI7 I/O FT - TIM8_CH3 / DCMI_D7/
EVENTOUT -
1. Function availability depends on the chosen device.
2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website:
www.st.com.
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
5. If the device is delivered in an UFBGA176 or WLCSP90 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset
ON mode), then PA0 is used as an internal Reset (active low).
Table 7. STM32F41xxx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)(1)
Pin type
I / O structure
Notes
Alternate functions Additional
functions
LQFP64
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
Table 8. FSMC pin definition
Pins(1)
FSMC
LQFP100(2) WLCSP90
(2)
CF NOR/PSRAM/
SRAM NOR/PSRAM Mux NAND 16 bit
PE2 - A23 A23 - Yes -
PE3 - A19 A19 - Yes -
PE4 - A20 A20 - Yes -
PE5 - A21 A21 - Yes -
PE6 - A22 A22 - Yes -
PF0 A0 A0 - - - -
DocID022063 Rev 8 63/206
STM32F415xx, STM32F417xx Pinouts and pin description
PF1 A1 A1 - - - -
PF2 A2 A2 - - - -
PF3 A3 A3 - - - -
PF4 A4 A4 - - - -
PF5 A5 A5 - - - -
PF6 NIORD - - - - -
PF7 NREG - - - - -
PF8 NIOWR - - - - -
PF9 CD - - - - -
PF10 INTR - - - - -
PF12 A6 A6 - - - -
PF13 A7 A7 - - - -
PF14 A8 A8 - - - -
PF15 A9 A9 - - - -
PG0 A10 A10 - - - -
PG1 A11 - - - -
PE7 D4 D4 DA4 D4 Yes Yes
PE8 D5 D5 DA5 D5 Yes Yes
PE9 D6 D6 DA6 D6 Yes Yes
PE10 D7 D7 DA7 D7 Yes Yes
PE11 D8 D8 DA8 D8 Yes Yes
PE12 D9 D9 DA9 D9 Yes Yes
PE13 D10 D10 DA10 D10 Yes Yes
PE14 D11 D11 DA11 D11 Yes Yes
PE15 D12 D12 DA12 D12 Yes Yes
PD8 D13 D13 DA13 D13 Yes Yes
PD9 D14 D14 DA14 D14 Yes Yes
PD10 D15 D15 DA15 D15 Yes Yes
PD11 - A16 A16 CLE Yes Yes
PD12 - A17 A17 ALE Yes Yes
PD13 - A18 A18 - Yes -
PD14 D0 D0 DA0 D0 Yes Yes
PD15 D1 D1 DA1 D1 Yes Yes
Table 8. FSMC pin definition (continued)
Pins(1)
FSMC
LQFP100(2) WLCSP90
(2)
CF NOR/PSRAM/
SRAM NOR/PSRAM Mux NAND 16 bit
Pinouts and pin description STM32F415xx, STM32F417xx
64/206 DocID022063 Rev 8
PG2 - A12 - - - -
PG3 - A13 - - - -
PG4 - A14 - - - -
PG5 - A15 - - - -
PG6 - - - INT2 - -
PG7 - - - INT3 - -
PD0 D2 D2 DA2 D2 Yes Yes
PD1 D3 D3 DA3 D3 Yes Yes
PD3 - CLK CLK - Yes -
PD4 NOE NOE NOE NOE Yes Yes
PD5 NWE NWE NWE NWE Yes Yes
PD6 NWAIT NWAIT NWAIT NWAIT Yes Yes
PD7 - NE1 NE1 NCE2 Yes Yes
PG9 - NE2 NE2 NCE3 - -
PG10 NCE4_1 NE3 NE3 - - -
PG11 NCE4_2 - - - - -
PG12 - NE4 NE4 - - -
PG13 - A24 A24 - - -
PG14 - A25 A25 - - -
PB7 - NADV NADV - Yes Yes
PE0 - NBL0 NBL0 - Yes -
PE1 - NBL1 NBL1 - Yes -
1. Full FSMC features are available on LQFP144, LQFP176, and UFBGA176. The features available on
smaller packages are given in the dedicated package column.
2. Ports F and G are not available in devices delivered in 100-pin packages.
Table 8. FSMC pin definition (continued)
Pins(1)
FSMC
LQFP100(2) WLCSP90
(2)
CF NOR/PSRAM/
SRAM NOR/PSRAM Mux NAND 16 bit
STM32F415xx, STM32F417xx Pinouts and pin description
DocID022063 Rev 8 65/206
Table 9. Alternate function mapping
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10
/11 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS ETH FSMC/SDIO
/OTG_FS DCMI
Port A
PA0 - TIM2_CH1_
ETR TIM 5_CH1 TIM8_ETR - - - USART2_CTS UART4_TX - - ETH_MII_CRS - - - EVENTOUT
PA1 - TIM2_CH2 TIM5_CH2 - - - - USART2_RTS UART4_RX - -
ETH_MII
_RX_CLK
ETH_RMII__REF
_CLK
---EVENTOUT
PA2 - TIM2_CH3 TIM5_CH3 TIM9_CH1 - - - USART2_TX - - - ETH_MDIO - - - EVENTOUT
PA3 - TIM2_CH4 TIM5_CH4 TIM9_CH2 - - - USART2_RX - - OTG_HS_ULPI_
D0 ETH _MII_COL - - - EVENTOUT
PA4 - - - - - SPI1_NSS SPI3_NSS
I2S3_WS USART2_CK - - - - OTG_HS_SOF DCMI_
HSYNC -EVENTOUT
PA5 - TIM2_CH1_
ETR - TIM8_CH1N - SPI1_SCK - - - - OTG_HS_ULPI_
CK - - - - EVENTOUT
PA6 - TIM1_BKIN TIM3_CH1 TIM8_BKIN - SPI1_MISO - - - TIM13_CH1 - - - DCMI_PIXCK - EVENTOUT
PA7 - TIM1_CH1N TIM3_CH2 TIM8_CH1N - SPI1_MOSI - - - TIM14_CH1 -
ETH_MII _RX_DV
ETH_RMII
_CRS_DV
---EVENTOUT
PA8 MCO1 TIM1_CH1 - - I2C3_SCL - - USART1_CK - - OTG_FS_SOF - - - - EVENTOUT
PA9 - TIM1_CH2 - - I2C3_
SMBA - - USART1_TX - - - - - DCMI_D0 - EVENTOUT
PA10 - TIM1_CH3 - - - - - USART1_RX - - OTG_FS_ID - - DCMI_D1 - EVENTOUT
PA11 - TIM1_CH4 - - - - - USART1_CTS - CAN1_RX OTG_FS_DM - - - - EVENTOUT
PA12 - TIM1_ETR - - - - - USART1_RTS - CAN1_TX OTG_FS_DP - - - - EVENTOUT
PA13 JTMS-
SWDIO - - - - - - - - - - - - - - EVENTOUT
PA14 JTCK-
SWCLK - - - - - - - - - - - - - - EVENTOUT
PA15 JTDI TIM 2_CH1
TIM 2_ETR - - - SPI1_NSS SPI3_NSS/
I2S3_WS - - - - - - - - EVENTOUT
Pinouts and pin description STM32F415xx, STM32F417xx
66/206 DocID022063 Rev 8
Port B
PB0 - TIM1_CH2N TIM3_CH3 TIM8_CH2N - - - - - - OTG_HS_ULPI_
D1 ETH _MII_RXD2 - - - EVENTOUT
PB1 - TIM1_CH3N TIM3_CH4 TIM8_CH3N - - - - - OTG_HS_ULPI_
D2 ETH _MII_RXD3 - - - EVENTOUT
PB2 - - - - - - - - - - - - - - - EVENTOUT
PB3
JTDO/
TRACES
WO
TIM2_CH2 - - - SPI1_SCK
SPI3_SCK
I2S3_CK - - - - - - - - EVENTOUT
PB4 NJTRST - TIM3_CH1 - SPI1_MISO SPI3_MISO I2S3ext_SD - - - - - - - EVENTOUT
PB5 - - TIM3_CH2 I2C1_SMB
ASPI1_MOSI SPI3_MOSI
I2S3_SD - CAN2_RX OTG_HS_ULPI_
D7 ETH _PPS_OUT - DCMI_D10 - EVENTOUT
PB6 - - TIM4_CH1 I2C1_SCL - - USART1_TX - CAN2_TX - - - DCMI_D5 - EVENTOUT
PB7 - - TIM4_CH2 I2C1_SDA - - USART1_RX - - - - FSMC_NL
DCMI_VSYN
C -EVENTOUT
PB8 - - TIM4_CH3 TIM10_CH1 I2C1_SCL - - - - CAN1_RX - ETH _MII_TXD3 SDIO_D4 DCMI_D6 - EVENTOUT
PB9 - - TIM4_CH4 TIM11_CH1 I2C1_SDA
SPI2_NSS
I2S2_WS - - - CAN1_TX - - SDIO_D5 DCMI_D7 - EVENTOUT
PB10 - TIM2_CH3 - - I2C2_SCL
SPI2_SCK
I2S2_CK -USART3_TX - -
OTG_HS_ULPI_
D3 ETH_ MII_RX_ER - - - EVENTOUT
PB11 - TIM2_CH4 - - I2C2_SDA - - USART3_RX - - OTG_HS_ULPI_
D4
ETH _MII_TX_EN
ETH
_RMII_TX_EN
---EVENTOUT
PB12 - TIM1_BKIN - - I2C2_
SMBA
SPI2_NSS
I2S2_WS - USART3_CK - CAN2_RX
OTG_HS_ULPI_
D5
ETH _MII_TXD0
ETH _RMII_TXD0 OTG_HS_ID - - EVENTOUT
PB13 - TIM1_CH1N - - - SPI2_SCK
I2S2_CK - USART3_CTS - CAN2_TX
OTG_HS_ULPI_
D6
ETH _MII_TXD1
ETH _RMII_TXD1 ---EVENTOUT
PB14 - TIM1_CH2N - TIM8_CH2N - SPI2_MISO I2S2ext_SD USART3_RTS - TIM12_CH1 - - OTG_HS_DM - - EVENTOUT
PB15 RTC_
REFIN TIM1_CH3N - TIM8_CH3N - SPI2_MOSI
I2S2_SD - - - TIM12_CH2 - - OTG_HS_DP - - EVENTOUT
Table 9. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10
/11 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS ETH FSMC/SDIO
/OTG_FS DCMI
STM32F415xx, STM32F417xx Pinouts and pin description
DocID022063 Rev 8 67/206
Port C
PC0 - - - - - - - - - - OTG_HS_ULPI_
STP - - - - EVENTOUT
PC1 - - - - - - - - - - - ETH_MDC - - - EVENTOUT
PC2 - - - - - SPI2_MISO I2S2ext_SD - - - OTG_HS_ULPI_
DIR ETH _MII_TXD2 - - - EVENTOUT
PC3 - - - - - SPI2_MOSI
I2S2_SD ----
OTG_HS_ULPI_
NXT
ETH
_MII_TX_CLK ---EVENTOUT
PC4 - - - - - - - - - - - ETH_MII_RXD0
ETH_RMII_RXD0 ---EVENTOUT
PC5 - - - - - - - - - - - ETH _MII_RXD1
ETH _RMII_RXD1 ---EVENTOUT
PC6 - - TIM3_CH1 TIM8_CH1 I2S2_MCK - USART6_TX - - - SDIO_D6 DCMI_D0 - EVENTOUT
PC7 - - TIM3_CH2 TIM8_CH2 - - I2S3_MCK - USART6_RX - - - SDIO_D7 DCMI_D1 - EVENTOUT
PC8 - - TIM3_CH3 TIM8_CH3 - - - - USART6_CK - - - SDIO_D0 DCMI_D2 - EVENTOUT
PC9 MCO2 - TIM3_CH4 TIM8_CH4 I2C3_SDA I2S_CKIN - - - - - - SDIO_D1 DCMI_D3 - EVENTOUT
PC10 - - - - - - SPI3_SCK/
I2S3_CK USART3_TX/ UART4_TX - - - SDIO_D2 DCMI_D8 - EVENTOUT
PC11 - - - - - I2S3ext_SD SPI3_MISO/ USART3_RX UART4_RX - - - SDIO_D3 DCMI_D4 - EVENTOUT
PC12 - - - - - - SPI3_MOSI
I2S3_SD USART3_CK UART5_TX - - - SDIO_CK DCMI_D9 - EVENTOUT
PC13 - - - - - - - - - - - - - - - EVENTOUT
PC14 - - - - - - - - - - - - - - - EVENTOUT
PC15 - - - - - - - - - - - - - - - EVENTOUT
Table 9. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10
/11 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS ETH FSMC/SDIO
/OTG_FS DCMI
Pinouts and pin description STM32F415xx, STM32F417xx
68/206 DocID022063 Rev 8
Port D
PD0 - - - - - - - - - CAN1_RX - - FSMC_D2 - - EVENTOUT
PD1 - - - - - - - - - CAN1_TX - - FSMC_D3 - - EVENTOUT
PD2 - - TIM3_ETR - - - - - UART5_RX - - - SDIO_CMD DCMI_D11 - EVENTOUT
PD3 - - - - - - - USART2_CTS - - - - FSMC_CLK - - EVENTOUT
PD4 - - - - - - - USART2_RTS - - - - FSMC_NOE - - EVENTOUT
PD5 - - - - - - - USART2_TX - - - - FSMC_NWE - - EVENTOUT
PD6 - - - - - - - USART2_RX - - - - FSMC_NWAIT - - EVENTOUT
PD7 - - - - - - - USART2_CK - - - - FSMC_NE1/
FSMC_NCE2 - - EVENTOUT
PD8 - - - - - - - USART3_TX - - - - FSMC_D13 - - EVENTOUT
PD9 - - - - - - - USART3_RX - - - - FSMC_D14 - - EVENTOUT
PD10 - - - - - - - USART3_CK - - - - FSMC_D15 - - EVENTOUT
PD11 - - - - - - - USART3_CTS - - - - FSMC_A16 - - EVENTOUT
PD12 - - TIM4_CH1 - - - - USART3_RTS - - - - FSMC_A17 - - EVENTOUT
PD13 - - TIM4_CH2 - - - - - - - - - FSMC_A18 - - EVENTOUT
PD14 - - TIM4_CH3 - - - - - - - - - FSMC_D0 - - EVENTOUT
PD15 - - TIM4_CH4 - - - - - - - - - FSMC_D1 - - EVENTOUT
Table 9. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10
/11 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS ETH FSMC/SDIO
/OTG_FS DCMI
STM32F415xx, STM32F417xx Pinouts and pin description
DocID022063 Rev 8 69/206
Port E
PE0 - - TIM4_ETR - - - - - - - - - FSMC_NBL0 DCMI_D2 - EVENTOUT
PE1 - - - - - - - - - - - - FSMC_NBL1 DCMI_D3 - EVENTOUT
PE2 TRACECL
K - - - - - - - - - - ETH _MII_TXD3 FSMC_A23 - - EVENTOUT
PE3 TRACED0 - - - - - - - - - - - FSMC_A19 - - EVENTOUT
PE4 TRACED1 - - - - - - - - - - - FSMC_A20 DCMI_D4 - EVENTOUT
PE5 TRACED2 - - TIM9_CH1 - - - - - - - - FSMC_A21 DCMI_D6 - EVENTOUT
PE6 TRACED3 - - TIM9_CH2 - - - - - - - - FSMC_A22 DCMI_D7 - EVENTOUT
PE7 - TIM1_ETR - - - - - - - - - - FSMC_D4 - - EVENTOUT
PE8 - TIM1_CH1N - - - - - - - - - - FSMC_D5 - - EVENTOUT
PE9 - TIM1_CH1 - - - - - - - - - - FSMC_D6 - - EVENTOUT
PE10 - TIM1_CH2N - - - - - - - - - - FSMC_D7 - - EVENTOUT
PE11 - TIM1_CH2 - - - - - - - - - - FSMC_D8 - - EVENTOUT
PE12 - TIM1_CH3N - - - - - - - - - - FSMC_D9 - - EVENTOUT
PE13 - TIM1_CH3 - - - - - - - - - - FSMC_D10 - - EVENTOUT
PE14 - TIM1_CH4 - - - - - - - - - - FSMC_D11 - - EVENTOUT
PE15 - TIM1_BKIN - - - - - - - - - - FSMC_D12 - - EVENTOUT
Table 9. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10
/11 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS ETH FSMC/SDIO
/OTG_FS DCMI
Pinouts and pin description STM32F415xx, STM32F417xx
70/206 DocID022063 Rev 8
Port F
PF0 - - - - I2C2_SDA - - - - - - - FSMC_A0 - - EVENTOUT
PF1 - - - - I2C2_SCL - - - - - - - FSMC_A1 - - EVENTOUT
PF2 - - - - I2C2_
SMBA - - - - - - - FSMC_A2 - - EVENTOUT
PF3 - - - - - - - - - - - - FSMC_A3 - - EVENTOUT
PF4 - - - - - - - - - - - - FSMC_A4 - - EVENTOUT
PF5 - - - - - - - - - - - - FSMC_A5 - - EVENTOUT
PF6 - - - TIM10_CH1 - - - - - - - - FSMC_NIORD - - EVENTOUT
PF7 - - - TIM11_CH1 - - - - - - - - FSMC_NREG - - EVENTOUT
PF8 - - - - - - - - - TIM13_CH1 - - FSMC_
NIOWR - - EVENTOUT
PF9 - - - - - - - - - TIM14_CH1 - - FSMC_CD - - EVENTOUT
PF10 - - - - - - - - - - - - FSMC_INTR - - EVENTOUT
PF11 - - - - - - - - - - - - DCMI_D12 - EVENTOUT
PF12 - - - - - - - - - - - - FSMC_A6 - - EVENTOUT
PF13 - - - - - - - - - - - - FSMC_A7 - - EVENTOUT
PF14 - - - - - - - - - - - - FSMC_A8 - - EVENTOUT
PF15 - - - - - - - - - - - - FSMC_A9 - - EVENTOUT
Table 9. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10
/11 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS ETH FSMC/SDIO
/OTG_FS DCMI
STM32F415xx, STM32F417xx Pinouts and pin description
DocID022063 Rev 8 71/206
Port G
PG0 - - - - - - - - - - - - FSMC_A10 - - EVENTOUT
PG1 - - - - - - - - - - - - FSMC_A11 - - EVENTOUT
PG2 - - - - - - - - - - - - FSMC_A12 - - EVENTOUT
PG3 - - - - - - - - - - - - FSMC_A13 - - EVENTOUT
PG4 - - - - - - - - - - - - FSMC_A14 - - EVENTOUT
PG5 - - - - - - - - - - - - FSMC_A15 - - EVENTOUT
PG6 - - - - - - - - - - - - FSMC_INT2 - - EVENTOUT
PG7 - - - - - - - - USART6_CK - - - FSMC_INT3 - - EVENTOUT
PG8 - - - - - - - - USART6_
RTS - - ETH _PPS_OUT - - - EVENTOUT
PG9 - - - - - - - - USART6_RX - - - FSMC_NE2/
FSMC_NCE3 - - EVENTOUT
PG10 - - - - - - - - - - - -
FSMC_
NCE4_1/
FSMC_NE3
- - EVENTOUT
PG11 - - - - - - - - - - -
ETH _MII_TX_EN
ETH _RMII_
TX_EN
FSMC_NCE4_
2 - - EVENTOUT
PG12 - - - - - - - - USART6_
RTS - - - FSMC_NE4 - - EVENTOUT
PG13 - - - - - - - - UART6_CTS - - ETH _MII_TXD0
ETH _RMII_TXD0 FSMC_A24 - - EVENTOUT
PG14 - - - - - - - - USART6_TX - - ETH _MII_TXD1
ETH _RMII_TXD1 FSMC_A25 - - EVENTOUT
PG15 - - - - - - - - USART6_
CTS - - - - DCMI_D13 - EVENTOUT
Table 9. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10
/11 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS ETH FSMC/SDIO
/OTG_FS DCMI
Pinouts and pin description STM32F415xx, STM32F417xx
72/206 DocID022063 Rev 8
Port H
PH0 - - - - - - - - - - - - - - - EVENTOUT
PH1 - - - - - - - - - - - - - - - EVENTOUT
PH2 - - - - - - - - - - - ETH _MII_CRS - - - EVENTOUT
PH3 - - - - - - - - - - - ETH _MII_COL - - - EVENTOUT
PH4 - - - - I2C2_SCL - - - - - OTG_HS_ULPI_
NXT - - - - EVENTOUT
PH5 - - - - I2C2_SDA - - - - - - - - - - EVENTOUT
PH6 - - - - I2C2_
SMBA - - - - TIM12_CH1 - ETH _MII_RXD2 - - - EVENTOUT
PH7 - - - - I2C3_SCL - - - - - - ETH _MII_RXD3 - - - EVENTOUT
PH8 - - - - I2C3_SDA - - - - - - - - DCMI_
HSYNC -EVENTOUT
PH9 - - - - I2C3_
SMBA - - - - TIM12_CH2 - - - DCMI_D0 - EVENTOUT
PH10 - - TIM5_CH1 - - - - - - - - - - DCMI_D1 - EVENTOUT
PH11 - - TIM5_CH2 - - - - - - - - - - DCMI_D2 - EVENTOUT
PH12 - - TIM5_CH3 - - - - - - - - - - DCMI_D3 - EVENTOUT
PH13 - - - TIM8_CH1N - - - - - CAN1_TX - - - - - EVENTOUT
PH14 - - - TIM8_CH2N - - - - - - - - - DCMI_D4 - EVENTOUT
PH15 - - - TIM8_CH3N - - - - - - - - - DCMI_D11 - EVENTOUT
Table 9. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10
/11 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS ETH FSMC/SDIO
/OTG_FS DCMI
STM32F415xx, STM32F417xx Pinouts and pin description
DocID022063 Rev 8 73/206
Port I
PI0 - - TIM5_CH4 - - SPI2_NSS
I2S2_WS - - - - - - - DCMI_D13 - EVENTOUT
PI1 - - - - - SPI2_SCK
I2S2_CK - - - - - - - DCMI_D8 - EVENTOUT
PI2 - - - TIM8_CH4 - SPI2_MISO I2S2ext_SD - - - - - - DCMI_D9 - EVENTOUT
PI3 - - - TIM8_ETR - SPI2_MOSI
I2S2_SD - - - - - - - DCMI_D10 - EVENTOUT
PI4 - - - TIM8_BKIN - - - - - - - - - DCMI_D5 - EVENTOUT
PI5 - - - TIM8_CH1 - - - - - - - - - DCMI_
VSYNC -EVENTOUT
PI6 - - - TIM8_CH2 - - - - - - - - - DCMI_D6 - EVENTOUT
PI7 - - - TIM8_CH3 - - - - - - - - - DCMI_D7 - EVENTOUT
PI8 - - - - - - - - - - - - - - - EVENTOUT
PI9 - - - - - - - - - CAN1_RX - - - - - EVENTOUT
PI10 - - - - - - - - - - - ETH _MII_RX_ER - - - EVENTOUT
PI11 - - - - - - - - - - OTG_HS_ULPI_
DIR - - - - EVENTOUT
Table 9. Alternate function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13
AF14 AF15
SYS TIM1/2 TIM3/4/5 TIM8/9/10
/11 I2C1/2/3
SPI1/SPI2/
I2S2/I2S2e
xt
SPI3/I2Sext
/I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
CAN1/2
TIM12/13/
14
OTG_FS/
OTG_HS ETH FSMC/SDIO
/OTG_FS DCMI
Memory mapping STM32F415xx, STM32F417xx
74/206 DocID022063 Rev 8
4 Memory mapping
The memory map is shown in Figure 18.
Figure 18. STM32F41xxx memory map
-BYTE
BLOCK
#ORTEX-gS
INTERNAL
PERIPHERALS
-BYTE
BLOCK
.OTUSED
-BYTE
BLOCK
&3-#REGISTERS
-BYTE
BLOCK
&3-#BANK
BANK
-BYTE
BLOCK
&3-#BANK
BANK
-BYTE
BLOCK
0ERIPHERALS
-BYTE
BLOCK
32!-
X
X&&&&&&&
X
X&&&&&&&
X
X&&&&&&&
X
X&&&&&&&
X
X&&&&&&&
X!
X"&&&&&&&
X#
X$&&&&&&&
X%
X&&&&&&&&
-BYTE
BLOCK
#ODE
&LASH
XX&&&&&&&
X&&&X&&&!&
X&&&#X&&&#
XX&&&&&
XX&&&&&&
XX&&&&&
3YSTEMMEMORY/40
2ESERVED
2ESERVED
!LIASEDTO&LASHSYSTEM
MEMORYOR32!-DEPENDING
ONTHE"//4PINS
32!-+"ALIASED
BYBITBANDING
2ESERVED
XX"&&&
X#X&&&&
XX&&&&&&&
X
2ESERVED
X&&&
XX&&&&
X
X&&
X
2ESERVED X#X&&&&&&&
X
!(" X!&&&
X!X$&&&&&&&
AIF
/PTION"YTES
2ESERVED XX&&&&
X"&&
!("
X
XX&&&&&&&
2ESERVED
!("
32!-+"ALIASED
BYBITBANDING
2ESERVED X&&&#X&&&&&&&
X&&&!X&&&&&&2ESERVED
##-DATA2!-
+"DATA32!- XX&&&&
2ESERVED XX&&%&&&&
2ESERVED
!0"
X&&&&
!0"
#/24%8-INTERNALPERIPHERALS X%X%&&&&&
2ESERVED X%X&&&&&&&&
DocID022063 Rev 8 75/206
STM32F415xx, STM32F417xx Memory mapping
Table 10. STM32F41x register boundary addresses
Bus Boundary address Peripheral
0xE00F FFFF - 0xFFFF FFFF Reserved
Cortex-M4 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals
0xA000 1000 - 0xDFFF FFFF Reserved
AHB3
0xA000 0000 - 0xA000 0FFF FSMC control register
0x9000 0000 - 0x9FFF FFFF FSMC bank 4
0x8000 0000 - 0x8FFF FFFF FSMC bank 3
0x7000 0000 - 0x7FFF FFFF FSMC bank 2
0x6000 0000 - 0x6FFF FFFF FSMC bank 1
0x5006 0C00- 0x5FFF FFFF Reserved
AHB2
0x5006 0800 - 0x5006 0BFF RNG
0x5006 0400 - 0x5006 07FF HASH
0x5006 0000 - 0x5006 03FF CRYP
0x5005 0400 - 0x5005 FFFF Reserved
0x5005 0000 - 0x5005 03FF DCMI
0x5004 0000- 0x5004 FFFF Reserved
0x5000 0000 - 0x5003 FFFF USB OTG FS
0x4008 0000- 0x4FFF FFFF Reserved
Memory mapping STM32F415xx, STM32F417xx
76/206 DocID022063 Rev 8
AHB1
0x4004 0000 - 0x4007 FFFF USB OTG HS
0x4002 9400 - 0x4003 FFFF Reserved
0x4002 9000 - 0x4002 93FF
ETHERNET MAC
0x4002 8C00 - 0x4002 8FFF
0x4002 8800 - 0x4002 8BFF
0x4002 8400 - 0x4002 87FF
0x4002 8000 - 0x4002 83FF
0x4002 6800 - 0x4002 7FFF Reserved
0x4002 6400 - 0x4002 67FF DMA2
0x4002 6000 - 0x4002 63FF DMA1
0x4002 5000 - 0x4002 5FFF Reserved
0x4002 4000 - 0x4002 4FFF BKPSRAM
0x4002 3C00 - 0x4002 3FFF Flash interface register
0x4002 3800 - 0x4002 3BFF RCC
0x4002 3400 - 0x4002 37FF Reserved
0x4002 3000 - 0x4002 33FF CRC
0x4002 2400 - 0x4002 2FFF Reserved
0x4002 2000 - 0x4002 23FF GPIOI
0x4002 1C00 - 0x4002 1FFF GPIOH
0x4002 1800 - 0x4002 1BFF GPIOG
0x4002 1400 - 0x4002 17FF GPIOF
0x4002 1000 - 0x4002 13FF GPIOE
0x4002 0C00 - 0x4002 0FFF GPIOD
0x4002 0800 - 0x4002 0BFF GPIOC
0x4002 0400 - 0x4002 07FF GPIOB
0x4002 0000 - 0x4002 03FF GPIOA
0x4001 5800- 0x4001 FFFF Reserved
Table 10. STM32F41x register boundary addresses (continued)
Bus Boundary address Peripheral
DocID022063 Rev 8 77/206
STM32F415xx, STM32F417xx Memory mapping
APB2
0x4001 4C00 - 0x4001 57FF Reserved
0x4001 4800 - 0x4001 4BFF TIM11
0x4001 4400 - 0x4001 47FF TIM10
0x4001 4000 - 0x4001 43FF TIM9
0x4001 3C00 - 0x4001 3FFF EXTI
0x4001 3800 - 0x4001 3BFF SYSCFG
0x4001 3400 - 0x4001 37FF Reserved
0x4001 3000 - 0x4001 33FF SPI1
0x4001 2C00 - 0x4001 2FFF SDIO
0x4001 2400 - 0x4001 2BFF Reserved
0x4001 2000 - 0x4001 23FF ADC1 - ADC2 - ADC3
0x4001 1800 - 0x4001 1FFF Reserved
0x4001 1400 - 0x4001 17FF USART6
0x4001 1000 - 0x4001 13FF USART1
0x4001 0800 - 0x4001 0FFF Reserved
0x4001 0400 - 0x4001 07FF TIM8
0x4001 0000 - 0x4001 03FF TIM1
0x4000 7800- 0x4000 FFFF Reserved
Table 10. STM32F41x register boundary addresses (continued)
Bus Boundary address Peripheral
Memory mapping STM32F415xx, STM32F417xx
78/206 DocID022063 Rev 8
APB1
0x4000 7800 - 0x4000 7FFF Reserved
0x4000 7400 - 0x4000 77FF DAC
0x4000 7000 - 0x4000 73FF PWR
0x4000 6C00 - 0x4000 6FFF Reserved
0x4000 6800 - 0x4000 6BFF CAN2
0x4000 6400 - 0x4000 67FF CAN1
0x4000 6000 - 0x4000 63FF Reserved
0x4000 5C00 - 0x4000 5FFF I2C3
0x4000 5800 - 0x4000 5BFF I2C2
0x4000 5400 - 0x4000 57FF I2C1
0x4000 5000 - 0x4000 53FF UART5
0x4000 4C00 - 0x4000 4FFF UART4
0x4000 4800 - 0x4000 4BFF USART3
0x4000 4400 - 0x4000 47FF USART2
0x4000 4000 - 0x4000 43FF I2S3ext
0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF SPI2 / I2S2
0x4000 3400 - 0x4000 37FF I2S2ext
0x4000 3000 - 0x4000 33FF IWDG
0x4000 2C00 - 0x4000 2FFF WWDG
0x4000 2800 - 0x4000 2BFF RTC & BKP Registers
0x4000 2400 - 0x4000 27FF Reserved
0x4000 2000 - 0x4000 23FF TIM14
0x4000 1C00 - 0x4000 1FFF TIM13
0x4000 1800 - 0x4000 1BFF TIM12
0x4000 1400 - 0x4000 17FF TIM7
0x4000 1000 - 0x4000 13FF TIM6
0x4000 0C00 - 0x4000 0FFF TIM5
0x4000 0800 - 0x4000 0BFF TIM4
0x4000 0400 - 0x4000 07FF TIM3
0x4000 0000 - 0x4000 03FF TIM2
Table 10. STM32F41x register boundary addresses (continued)
Bus Boundary address Peripheral
DocID022063 Rev 8 79/206
STM32F415xx, STM32F417xx Electrical characteristics
5 Electrical characteristics
5.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
5.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.8 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
5.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 19.
5.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 20.
Figure 19. Pin loading conditions Figure 20. Pin input voltage
-36
#P&
34-&PIN
/3#?/54(I:WHEN
USING(3%OR,3%
-36
34-&PIN
6).
/3#?/54(I:WHEN
USING(3%OR,3%
Electrical characteristics STM32F415xx, STM32F417xx
80/206 DocID022063 Rev 8
5.1.6 Power supply scheme
Figure 21. Power supply scheme
1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be
placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality
of the device.
2. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.2.16: Voltage regulator and Table 2.2.15: Power supply
supervisor.
3. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is
OFF.
4. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
5. VDDA=VDD and VSSA=VSS.
069
%DFNXSFLUFXLWU\
26&.57&
:DNHXSORJLF
%DFNXSUHJLVWHUV
EDFNXS5$0
.HUQHOORJLF
&38GLJLWDO
5$0
$QDORJ
5&V
3//
3RZHU
VZLWFK
9%$7
*3,2V
287
,1
îQ)
î)
9%$7
WR9
9ROWDJH
UHJXODWRU
9''$
$'&
/HYHOVKLIWHU
,2
/RJLF
9''
Q)
)
)ODVKPHPRU\
9&$3B
9&$3B
î)
%<3$66B5(*
3'5B21 5HVHW
FRQWUROOHU
9''

966

9''
95()
95()
966$
95()
Q)
)
DocID022063 Rev 8 81/206
STM32F415xx, STM32F417xx Electrical characteristics
5.1.7 Current consumption measurement
Figure 22. Current consumption measurement scheme
5.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics,
Table 12: Current characteristics, and Table 13: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. Device mission profile (application conditions)
is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are
available on demand.
DL
9%$7
9''
9''$
,''B9%$7
,''
Table 11. Voltage characteristics
Symbol Ratings Min Max Unit
VDD–VSS External main supply voltage (including VDDA, VDD)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
–0.3 4.0
V
VIN
Input voltage on five-volt tolerant pin(2)
2. VIN maximum value must always be respected. Refer to Table 12 for the values of the maximum allowed
injected current.
VSS–0.3 VDD+4
Input voltage on any other pin VSS–0.3 4.0
|ΔVDDx| Variations between different VDD power pins - 50
mV
|VSSX VSS|Variations between all the different ground pins
including VREF
-50
VESD(HBM) Electrostatic discharge voltage (human body model)
see Section 5.3.14:
Absolute maximum
ratings (electrical
sensitivity)
Electrical characteristics STM32F415xx, STM32F417xx
82/206 DocID022063 Rev 8
5.3 Operating conditions
5.3.1 General operating conditions
Table 12. Current characteristics
Symbol Ratings Max. Unit
IVDD Total current into VDD power lines (source)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
240
mA
IVSS Total current out of VSS ground lines (sink)(1) 240
IIO
Output current sunk by any I/O and control pin 25
Output current source by any I/Os and control pin 25
IINJ(PIN) (2)
2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.21: 12-bit ADC
characteristics.
Injected current on five-volt tolerant I/O(3)
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 11 for the values of the maximum allowed input voltage.
–5/+0
Injected current on any other pin(4)
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 11 for the values of the maximum allowed input voltage.
±5
ΣIINJ(PIN)(4) Total injected current (sum of all I/O and control pins)(5)
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
±25
Table 13. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 125 °C
Table 14. General operating conditions
Symbol Parameter Conditions Min Typ Max Unit
fHCLK Internal AHB clock frequency
VOS bit in PWR_CR register = 0(1) 0 - 144
MHz
VOS bit in PWR_CR register= 1 0 - 168
fPCLK1 Internal APB1 clock frequency - 0 - 42
fPCLK2 Internal APB2 clock frequency - 0 - 84
VDD Standard operating voltage - 1.8(2) -3.6V
VDDA(3)(4)
Analog operating voltage
(ADC limited to 1.2 M samples) Must be the same potential as
VDD(5)
1.8(2) -2.4
V
Analog operating voltage
(ADC limited to 1.4 M samples) 2.4 - 3.6
VBAT Backup operating voltage - 1.65 - 3.6 V
DocID022063 Rev 8 83/206
STM32F415xx, STM32F417xx Electrical characteristics
V12
Regulator ON:
1.2 V internal voltage on
VCAP_1/VCAP_2 pins
VOS bit in PWR_CR register = 0(1)
Max frequency 144MHz 1.08 1.14 1.20 V
VOS bit in PWR_CR register= 1
Max frequency 168MHz 1.20 1.26 1.32 V
Regulator OFF:
1.2 V external voltage must be
supplied from external regulator
on VCAP_1/VCAP_2 pins
Max frequency 144MHz 1.10 1.14 1.20 V
Max frequency 168MHz 1.20 1.26 1.30 V
VIN
Input voltage on RST and FT
pins(6)
2 V VDD 3.6 V –0.3 - 5.5
V
VDD 2 V –0.3 - 5.2
Input voltage on TTa pins - –0.3 - VDDA+
0.3
Input voltage on B pin - - - 5.5
PD
Power dissipation at TA = 85 °C
for suffix 6 or TA = 105 °C for
suffix 7(7)
LQFP64 - - 435
mW
LQFP100 - - 465
LQFP144 - - 500
LQFP176 - - 526
UFBGA176 - - 513
WLCSP90 - - 543
TA
Ambient temperature for 6 suffix
version
Maximum power dissipation –40 - 85
°C
Low-power dissipation(8) –40 - 105
Ambient temperature for 7 suffix
version
Maximum power dissipation –40 - 105
°C
Low-power dissipation(8) –40 - 125
TJ Junction temperature range
6 suffix version –40 - 105
°C
7 suffix version –40 - 125
1. The average expected gain in power consumption when VOS = 0 compared to VOS = 1 is around 10% for the whole
temperature range, when the system clock frequency is between 30 and 144 MHz.
2. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of
an external power supply supervisor (refer to Section : Internal reset OFF).
3. When the ADC is used, refer to Table 67: ADC characteristics.
4. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
5. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
6. To sustain a voltage higher than VDD+0.3, the internal pull-up and pull-down resistors must be disabled.
7. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
8. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
Table 14. General operating conditions (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F415xx, STM32F417xx
84/206 DocID022063 Rev 8
Table 15. Limitations depending on the operating power supply range
Operating
power
supply
range
ADC
operation
Maximum
Flash
memory
access
frequency
with no wait
state
(fFlashmax)
Maximum Flash
memory access
frequency
with wait
states(1) (2) I/O operation
Clock output
Frequency on
I/O pins
Possible
Flash
memory
operations
VDD =1.8 to
2.1 V(3)
Conversion
time up to
1.2 Msps
20 MHz(4) 160 MHz with 7
wait states
Degraded
speed
performance
No I/O
compensation
up to 30 MHz
8-bit erase
and program
operations
only
VDD = 2.1 to
2.4 V
Conversion
time up to
1.2 Msps
22 MHz 168 MHz with 7
wait states
Degraded
speed
performance
No I/O
compensation
up to 30 MHz
16-bit erase
and program
operations
VDD = 2.4 to
2.7 V
Conversion
time up to
2.4 Msps
24 MHz 168 MHz with 6
wait states
Degraded
speed
performance
–I/O
compensation
works
up to 48 MHz
16-bit erase
and program
operations
VDD = 2.7 to
3.6 V(5)
Conversion
time up to
2.4 Msps
30 MHz 168 MHz with 5
wait states
Full-speed
operation
–I/O
compensation
works
–up to
60 MHz
when VDD =
3.0 to 3.6 V
–up to
48 MHz
when VDD =
2.7 to 3.0 V
32-bit erase
and program
operations
1. It applies only when code executed from Flash memory access, when code executed from RAM, no wait state is required.
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use
of an external power supply supervisor (refer to Section : Internal reset OFF).
4. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.
5. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.
DocID022063 Rev 8 85/206
STM32F415xx, STM32F417xx Electrical characteristics
5.3.2 VCAP_1/VCAP_2 external capacitor
Stabilization for the main regulator is achieved by connecting an external capacitor CEXT to
the VCAP_1/VCAP_2 pins. CEXT is specified in Table 16.
Figure 23. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance.
5.3.3 Operating conditions at power-up / power-down (regulator ON)
Subject to general operating conditions for TA.
5.3.4 Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Table 16. VCAP_1/VCAP_2 operating conditions(1)
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be
replaced by two 100 nF decoupling capacitors.
Symbol Parameter Conditions
CEXT Capacitance of external capacitor 2.2 µF
ESR ESR of external capacitor < 2 Ω
069
(65
5
/HDN
&
Table 17. Operating conditions at power-up / power-down (regulator ON)
Symbol Parameter Min Max Unit
tVDD
VDD rise time rate 20
µs/V
VDD fall time rate 20
Table 18. Operating conditions at power-up / power-down (regulator OFF)(1)
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below
minimum value of V12.
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate Power-up 20
µs/V
VDD fall time rate Power-down 20
tVCAP
VCAP_1 and VCAP_2 rise time
rate Power-up 20
VCAP_1 and VCAP_2 fall time
rate Power-down 20
Electrical characteristics STM32F415xx, STM32F417xx
86/206 DocID022063 Rev 8
5.3.5 Embedded reset and power control block characteristics
The parameters given in Table 19 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 14.
Table 19. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD
Programmable voltage
detector level selection
PLS[2:0]=000 (rising
edge) 2.09 2.14 2.19 V
PLS[2:0]=000 (falling
edge) 1.98 2.04 2.08 V
PLS[2:0]=001 (rising
edge) 2.23 2.30 2.37 V
PLS[2:0]=001 (falling
edge) 2.13 2.19 2.25 V
PLS[2:0]=010 (rising
edge) 2.39 2.45 2.51 V
PLS[2:0]=010 (falling
edge) 2.29 2.35 2.39 V
PLS[2:0]=011 (rising edge) 2.54 2.60 2.65 V
PLS[2:0]=011 (falling
edge) 2.44 2.51 2.56 V
PLS[2:0]=100 (rising
edge) 2.70 2.76 2.82 V
PLS[2:0]=100 (falling
edge) 2.59 2.66 2.71 V
PLS[2:0]=101 (rising
edge) 2.86 2.93 2.99 V
PLS[2:0]=101 (falling
edge) 2.65 2.84 2.92 V
PLS[2:0]=110 (rising edge) 2.96 3.03 3.10 V
PLS[2:0]=110 (falling
edge) 2.85 2.93 2.99 V
PLS[2:0]=111 (rising edge) 3.07 3.14 3.21 V
PLS[2:0]=111 (falling
edge) 2.95 3.03 3.09 V
VPVDhyst(1) PVD hysteresis - - 100 - mV
VPOR/PDR
Power-on/power-down
reset threshold
Falling edge 1.60 1.68 1.76 V
Rising edge 1.64 1.72 1.80 V
VPDRhyst(1) PDR hysteresis - - 40 - mV
VBOR1
Brownout level 1
threshold
Falling edge 2.13 2.19 2.24 V
Rising edge 2.23 2.29 2.33 V
DocID022063 Rev 8 87/206
STM32F415xx, STM32F417xx Electrical characteristics
5.3.6 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 22: Current consumption
measurement scheme.
All Run mode current consumption measurements given in this section are performed using
a CoreMark-compliant code.
Typical and maximum current consumption
The MCU is placed under the following conditions:
At startup, all I/O pins are configured as analog inputs by firmware.
All peripherals are disabled except if it is explicitly mentioned.
The Flash memory access time is adjusted to fHCLK frequency (0 wait state from 0 to
30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz, 3 wait states
from 90 to 120 MHz, 4 wait states from 120 to 150 MHz, and 5 wait states from 150 to
168 MHz).
When the peripherals are enabled HCLK is the system clock, fPCLK1 = fHCLK/4, and
fPCLK2 = fHCLK/2, except is explicitly mentioned.
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature
(TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.
VBOR2
Brownout level 2
threshold
Falling edge 2.44 2.50 2.56 V
Rising edge 2.53 2.59 2.63 V
VBOR3
Brownout level 3
threshold
Falling edge 2.75 2.83 2.88 V
Rising edge 2.85 2.92 2.97 V
VBORhyst(1) BOR hysteresis - - 100 - mV
TRSTTEMPO(1)(2) Reset temporization - 0.5 1.5 3.0 ms
IRUSH(1)
InRush current on
voltage regulator
power-on (POR or
wakeup from Standby)
- - 160 200 mA
ERUSH(1)
InRush energy on
voltage regulator
power-on (POR or
wakeup from Standby)
VDD = 1.8 V, TA = 105 °C,
IRUSH = 171 mA for 31 µs --5.4µC
1. Guaranteed by design.
2. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant
when first instruction is read by the user application code.
Table 19. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F415xx, STM32F417xx
88/206 DocID022063 Rev 8
Table 20. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled) or RAM (1)
Symbol Parameter Conditions fHCLK
Typ Max(2)
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply current in
Run mode
External clock(3), all
peripherals enabled(4)(5)
168 MHz 87 102 109
mA
144 MHz 67 80 86
120 MHz 56 69 75
90 MHz 44 56 62
60 MHz 30 42 49
30 MHz 16 28 35
25 MHz 12 24 31
16 MHz(6) 92028
8 MHz 5 17 24
4 MHz 3 15 22
2 MHz 2 14 21
External clock(3), all
peripherals disabled(4)(5)
168 MHz 40 54 61
144 MHz 31 43 50
120 MHz 26 38 45
90 MHz 20 32 39
60 MHz 14 26 33
30 MHz 8 20 27
25 MHz 6 18 25
16 MHz(6) 51624
8 MHz 3 15 22
4 MHz 2 14 21
2 MHz 2 14 21
1. Code and data processing running from SRAM1 using boot pins.
2. Guaranteed by characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
3. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for
the analog part.
5. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
6. In this case HCLK = system clock/2.
DocID022063 Rev 8 89/206
STM32F415xx, STM32F417xx Electrical characteristics
Table 21. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled)
Symbol Parameter Conditions fHCLK
Typ Max(1)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
IDD
Supply current
in Run mode
External clock(2),
all peripherals
enabled(3)(4)
168 MHz 93 109 117
mA
144 MHz 76 89 96
120 MHz 67 79 86
90 MHz 53 65 73
60 MHz 37 49 56
30 MHz 20 32 39
25 MHz 16 27 35
16 MHz 11 23 30
8 MHz 6 18 25
4 MHz 4 16 23
2 MHz 3 15 22
External clock(2),
all peripherals
disabled(3)(4)
168 MHz 46 61 69
144 MHz 40 52 60
120 MHz 37 48 56
90 MHz 30 42 50
60 MHz 22 33 41
30 MHz 12 24 31
25 MHz 10 21 29
16 MHz 7 19 26
8 MHz 4 16 23
4 MHz 3 15 22
2 MHz 2 14 21
1. Guaranteed by characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
3. When analog peripheral blocks such as (ADCs, DACs, HSE, LSE, HSI,LSI) are on, an additional power consumption
should be considered.
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC
for the analog part.
Electrical characteristics STM32F415xx, STM32F417xx
90/206 DocID022063 Rev 8
Figure 24. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF
Figure 25. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals ON
-36









        
)$$25.
M!
#05&REQUENCY-
(
Z
#
#
#
#
#
#
-36










      
)$$25.
M!
#05&REQUENCY-
(
Z
#
#
#
#
#
#
DocID022063 Rev 8 91/206
STM32F415xx, STM32F417xx Electrical characteristics
Figure 26. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF
Figure 27. Typical current consumption versus temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON
-36






       
)$$25.
M!
#05&REQUENCY-
(
Z
#
#
#
#
#
#
-36






      
)$$25.
M!
#05&REQUENCY-
(
Z
#
#
#
#
#
#
Electrical characteristics STM32F415xx, STM32F417xx
92/206 DocID022063 Rev 8
Table 22. Typical and maximum current consumption in Sleep mode
Symbol Parameter Conditions fHCLK
Typ Max(1)
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply current in
Sleep mode
External clock(2),
all peripherals enabled(3)
168 MHz 59 77 84
mA
144 MHz 46 61 67
120 MHz 38 53 60
90 MHz 30 44 51
60 MHz 20 34 41
30 MHz 11 24 31
25 MHz 8 21 28
16 MHz 6 18 25
8 MHz 3 16 23
4 MHz 2 15 22
2 MHz 2 14 21
External clock(2), all
peripherals disabled
168 MHz 12 27 35
144 MHz 9 22 29
120 MHz 8 20 28
90 MHz 7 19 26
60 MHz 5 17 24
30 MHz 3 16 23
25 MHz 2 15 22
16 MHz 2 14 21
8 MHz 1 14 21
4 MHz 1 13 21
2 MHz 1 13 21
1. Guaranteed by characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
DocID022063 Rev 8 93/206
STM32F415xx, STM32F417xx Electrical characteristics
Table 23. Typical and maximum current consumptions in Stop mode
Symbol Parameter Conditions
Typ Max
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD_STOP
Supply
current in
Stop mode
with main
regulator in
Run mode
Flash in Stop mode, low-speed and high-
speed internal RC oscillators and high-speed
oscillator OFF (no independent watchdog)
0.45 1.5 11.00 20.00
mA
Flash in Deep power-down mode, low-speed
and high-speed internal RC oscillators and
high-speed oscillator OFF (no independent
watchdog)
0.40 1.5 11.00 20.00
Supply
current in
Stop mode
with main
regulator in
Low-power
mode
Flash in Stop mode, low-speed and high-
speed internal RC oscillators and high-speed
oscillator OFF (no independent watchdog)
0.31 1.1 8.00 15.00
Flash in Deep power-down mode, low-speed
and high-speed internal RC oscillators and
high-speed oscillator OFF (no independent
watchdog)
0.28 1.1 8.00 15.00
Table 24. Typical and maximum current consumptions in Standby mode
Symbol Parameter Conditions
Typ Max(1)
Unit
TA = 25 °C TA =
85 °C
TA =
105 °C
VDD =
1.8 V
VDD=
2.4 V
VDD =
3.3 V VDD = 3.6 V
IDD_STBY
Supply current
in Standby
mode
Backup SRAM ON, low-
speed oscillator and RTC ON 3.0 3.4 4.0 20 36
µA
Backup SRAM OFF, low-
speed oscillator and RTC ON 2.4 2.7 3.3 16 32
Backup SRAM ON, RTC
OFF 2.4 2.6 3.0 12.5 24.8
Backup SRAM OFF, RTC
OFF 1.7 1.9 2.2 9.8 19.2
1. Guaranteed by characterization.
Electrical characteristics STM32F415xx, STM32F417xx
94/206 DocID022063 Rev 8
Figure 28. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF)
Table 25. Typical and maximum current consumptions in VBAT mode
Symbol Parameter Conditions
Typ Max(1)
Unit
TA = 25 °C TA =
85 °C
TA =
105 °C
VBAT
=
1.8 V
VBAT=
2.4 V
VBAT
=
3.3 V
VBAT = 3.6 V
IDD_VBA
T
Backup
domain
supply
current
Backup SRAM ON, low-speed
oscillator and RTC ON 1.29 1.42 1.68 6 11
µA
Backup SRAM OFF, low-speed
oscillator and RTC ON 0.62 0.73 0.96 3 5
Backup SRAM ON, RTC OFF 0.79 0.81 0.86 5 10
Backup SRAM OFF, RTC OFF 0.10 0.10 0.10 2 4
1. Guaranteed by characterization.
-36
Ϭ
Ϭϱ
ϭ
ϭϱ
Ϯ
Ϯϱ
ϯ
ϯϱ
Ϭ ϭϬϮϬϯϬϰϬϱϬϲϬϳϬϴϬϵϬϭϬϬ
/sdŝŶ;ђͿ
ŵ Ɖ Ğ ƌ Ă ƚ Ƶ ƌ Ğ ŝ Ŷ ; Σ Ϳ
ϭϲϱs
ϭϴs
Ϯs
Ϯϰs
Ϯϳs
ϯs
ϯϯs
ϯϲs
DocID022063 Rev 8 95/206
STM32F415xx, STM32F417xx Electrical characteristics
Figure 29. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON)
-36
Ϭ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
Ϭ ϭϬϮϬϯϬϰϬϱϬϲϬϳϬϴϬϵϬϭϬϬ
/sdŝŶ;ђͿ
ŵ Ɖ Ğ ƌ Ă ƚ Ƶ ƌ Ğ ŝ Ŷ ; Σ Ϳ
ϭϲϱs
ϭϴs
Ϯs
Ϯϰs
Ϯϳs
ϯs
ϯϯs
ϯϲs
Electrical characteristics STM32F415xx, STM32F417xx
96/206 DocID022063 Rev 8
Additional current consumption
The MCU is placed under the following conditions:
All I/O pins are configured in analog mode.
The Flash memory access time is adjusted to fHCLK frequency.
The voltage scaling is adjusted to fHCLK frequency as follows:
Scale 2 for fHCLK 144 MHz
Scale 1 for 144 MHz < fHCLK 168 MHz.
The system clock is HCLK, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2.
The HSE crystal clock frequency is 25 MHz.
TA= 25 °C.
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 48: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
Table 26. Typical current consumption in Run mode, code with data processing
running from Flash memory, regulator ON (ART accelerator enabled
except prefetch), VDD = 1.8 V(1)
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals
(such as ADC or DAC) is not included.
Symbol Parameter Conditions fHCLK (MHz) Typ. at TA =
25 °C Unit
IDD Supply current in
Run mode
All peripheral
disabled
160 36.2
mA
144 29.3
120 24.7
90 19.3
60 13.4
30 7.7
25 6.0
DocID022063 Rev 8 97/206
STM32F415xx, STM32F417xx Electrical characteristics
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 28: Peripheral current consumption), the I/Os used by an application also contribute
to the current consumption. When an I/O pin switches, it uses the current from the MCU
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load
(internal or external) connected to the pin:
ISW VDD fSW C××=
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
Electrical characteristics STM32F415xx, STM32F417xx
98/206 DocID022063 Rev 8
Table 27. Switching output I/O current consumption
Symbol Parameter Conditions(1) I/O toggling
frequency (fSW)Typ Unit
IDDIO
I/O switching
current
VDD = 3.3 V(2)
C = CINT
2 MHz 0.02
mA
8 MHz 0.14
25 MHz 0.51
50 MHz 0.86
60 MHz 1.30
VDD = 3.3 V
CEXT = 0 pF
C = CINT + CEXT+ CS
2 MHz 0.10
8 MHz 0.38
25 MHz 1.18
50 MHz 2.47
60 MHz 2.86
VDD = 3.3 V
CEXT = 10 pF
C = CINT + CEXT+ CS
2 MHz 0.17
8 MHz 0.66
25 MHz 1.70
50 MHz 2.65
60 MHz 3.48
VDD = 3.3 V
CEXT = 22 pF
C = CINT + CEXT+ CS
2 MHz 0.23
8 MHz 0.95
25 MHz 3.20
50 MHz 4.69
60 MHz 8.06
VDD = 3.3 V
CEXT = 33 pF
C = CINT + CEXT+ CS
2 MHz 0.30
8 MHz 1.22
25 MHz 3.90
50 MHz 8.82
60 MHz -(3)
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).
2. This test is performed by cutting the LQFP package pin (pad removal).
3. At 60 MHz, C maximum load is specified 30 pF.
DocID022063 Rev 8 99/206
STM32F415xx, STM32F417xx Electrical characteristics
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 28. The MCU is placed
under the following conditions:
At startup, all I/O pins are configured as analog pins by firmware.
All peripherals are disabled unless otherwise mentioned
The code is running from Flash memory and the Flash memory access time is equal to
5 wait states at 168 MHz.
The code is running from Flash memory and the Flash memory access time is equal to
4 wait states at 144 MHz, and the power scale mode is set to 2.
The ART accelerator is ON.
The given value is calculated by measuring the difference of current consumption
with all peripherals clocked off
with one peripheral clocked on (with only the clock applied)
When the peripherals are enabled: HCLK is the system clock, fPCLK1 = fHCLK/4, and
fPCLK2 = fHCLK/2.
The typical values are obtained for VDD = 3.3 V and TA= 25 °C, unless otherwise
specified.
Table 28. Peripheral current consumption
Peripheral
IDD(Typ)(1)
Unit
Scale1
(up t 168 MHz)
Scale2
(up to 144 MHz)
AHB1
(up to 168 MHz)
GPIOA 2.70 2.40
µA/MHz
GPIOB 2.50 2.22
GPIOC 2.54 2.28
GPIOD 2.55 2.28
GPIOE 2.68 2.40
GPIOF 2.53 2.28
GPIOG 2.51 2.22
GPIOH 2.51 2.22
GPIOI 2.50 2.22
OTG_HS+ULPI 28.33 25.38
CRC 0.41 0.40
BKPSRAM 0.63 0.58
DMA1 37.44 33.58
DMA2 37.69 33.93
ETH_MAC
ETH_MAC_TX
ETH_MAC_RX
ETH_MAC_PTP
20.43 18.39
Electrical characteristics STM32F415xx, STM32F417xx
100/206 DocID022063 Rev 8
AHB2
(up to 168 MHz)
OTG_FS 26.45 26.67
µA/MHz
DCMI 5.87 5.35
RNG 1.50 1.67
Hash 9.73 8.86
Crypto 2.23 2.08
AHB3
(up to 168 MHz) FSMC 12.46 11.31 µA/MHz
Bus matrix(2) 13.10 11.81 µA/MHz
Table 28. Peripheral current consumption (continued)
Peripheral
IDD(Typ)(1)
Unit
Scale1
(up t 168 MHz)
Scale2
(up to 144 MHz)
DocID022063 Rev 8 101/206
STM32F415xx, STM32F417xx Electrical characteristics
APB1
(up to 42 MHz)
TIM2 16.71 16.50
µA/MHz
TIM3 12.33 11.94
TIM4 13.45 12.92
TIM5 17.14 16.58
TIM6 2.43 3.06
TIM7 2.43 2.22
TIM12 6.62 6.83
TIM13 5.05 5.47
TIM14 5.26 5.61
PWR 1.00 0.56
USART2 2.69 2.78
USART3 2.74 2.78
UART4 3.24 3.33
UART5 2.69 2.78
I2C1 2.67 2.50
I2C2 2.83 2.78
I2C3 2.81 2.78
SPI2 2.43 2.22
SPI3 2.43 2.22
I2S2(3) 2.43 2.22
I2S3(3) 2.26 2.22
CAN1 5.12 5.56
CAN2 4.81 5.28
DAC(4) 1.67 1.67
WWDG 1.00 0.83
Table 28. Peripheral current consumption (continued)
Peripheral
IDD(Typ)(1)
Unit
Scale1
(up t 168 MHz)
Scale2
(up to 144 MHz)
Electrical characteristics STM32F415xx, STM32F417xx
102/206 DocID022063 Rev 8
5.3.7 Wakeup time from low-power mode
The wakeup times given in Table 29 is measured on a wakeup phase with a 16 MHz HSI
RC oscillator. The clock source used to wake up the device depends from the current
operating mode:
Stop or Standby mode: the clock source is the RC oscillator
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 14.
APB2
(up to 84 MHz)
SDIO 7.08 7.92
µA/MHz
TIM1 16.79 15.51
TIM8 17.88 16.53
TIM9 7.64 7.28
TIM10 4.89 4.82
TIM11 5.19 4.82
ADC1(5) 4.67 4.58
ADC2(5) 4.67 4.58
ADC3(5) 4.43 4.44
SPI1 1.32 1.39
USART1 3.51 3.72
USART6 3.55 3.75
SYSCFG 0.74 0.56
1. When the I/O compensation cell is ON, IDD typical value increases by 0.22 mA.
2. The BusMatrix is automatically active when at least one master is ON.
3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.
4. When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of
0.8 mA per DAC channel for the analog part.
5. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of
1.6 mA per ADC for the analog part.
Table 28. Peripheral current consumption (continued)
Peripheral
IDD(Typ)(1)
Unit
Scale1
(up t 168 MHz)
Scale2
(up to 144 MHz)
DocID022063 Rev 8 103/206
STM32F415xx, STM32F417xx Electrical characteristics
5.3.8 External clock source characteristics
High-speed external user clock generated from an external source
The characteristics given in Table 30 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
Table 29. Low-power mode wakeup timings
Symbol Parameter Min(1) Typ(1) Max(1) Unit
tWUSLEEP(2) Wakeup from Sleep mode - 5 -
CPU
clock
cycle
tWUSTOP(2)
Wakeup from Stop mode (regulator in Run mode and
Flash memory in Stop mode) -13-
µs
Wakeup from Stop mode (regulator in low-power mode
and Flash memory in Stop mode) -1740
Wakeup from Stop mode (regulator in Run mode and
Flash memory in Deep power-down mode) -105-
Wakeup from Stop mode (regulator in low-power mode
and Flash memory in Deep power-down mode) -110-
tWUSTDBY(2)(3) Wakeup from Standby mode 260 375 480 µs
1. Guaranteed by characterization.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.
3. tWUSTDBY minimum and maximum values are given at 105 °C and –45 °C, respectively.
Table 30. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
External user clock source
frequency(1)
-
1-50MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
1. Guaranteed by design.
5--
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --10
Cin(HSE) OSC_IN input capacitance(1) --5-pF
DuCy(HSE) Duty cycle - 45 - 55 %
ILOSC_IN Input leakage current VSS VIN VDD --±1µA
Electrical characteristics STM32F415xx, STM32F417xx
104/206 DocID022063 Rev 8
Low-speed external user clock generated from an external source
The characteristics given in Table 31 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
Figure 30. High-speed external clock source AC timing diagram
Table 31. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User External clock source
frequency(1)
-
- 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD -V
DD V
VLSEL OSC32_IN input pin low level voltage VSS -0.3V
DD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) --50
Cin(LSE) OSC32_IN input capacitance(1) --5-pF
DuCy(LSE) Duty cycle - 30 - 70 %
ILOSC32_IN Input leakage current VSS VIN VDD --±1µA
1. Guaranteed by design.
AI
/3# ?) .
%XTERNAL
34-&
CLOCKSOURCE
6(3%(
TF(3% T7(3%
),


4(3%
T
TR(3% T7(3%
F(3%?EXT
6(3%,
DocID022063 Rev 8 105/206
STM32F415xx, STM32F417xx Electrical characteristics
Figure 31. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 32. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 32). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Table 32. HSE 4-26 MHz oscillator characteristics (1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency - 4 - 26 MHz
RFFeedback resistor - - 200 - kΩ
GmOscillator transconductance
Startup
5--
mA/V
Gmcritmax Maximum critical crystal Gm--1
tSU(HSE)(2)
2. Guaranteed by characterization. tSU(HSE) is the startup time measured from the moment it is enabled (by
software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal
resonator and can vary significantly with the crystal manufacturer
Startup time VDD is stabilized - 2 - ms
DL
26&B,1
([WHUQDO
670)
FORFNVRXUFH
9/6(+
WI/6( W:/6(
,/


7/6(
W
WU/6( W:/6(
I/6(BH[W
9/6(/
Electrical characteristics STM32F415xx, STM32F417xx
106/206 DocID022063 Rev 8
Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 32. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 33. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Table 33. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency - - 32.768 - MHz
RFFeedback resistor - - 18.4 - MΩ
IDD LSE current consumption - - - 1 µA
GmOscillator transconductance
Startup
2.8 - -
µA/V
Gmcritmax Maximum critical crystal Gm- - 0.56
tSU(LSE)(2)
2. Guaranteed by characterization. tSU(LSE) is the startup time measured from the moment it is enabled (by
software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal
resonator and it can vary significantly with the crystal manufacturer
startup time VDD is stabilized - 2 - s
DL
26&B287
26&B,1 I+6(
&/
5)
670)
0+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
5(;7
&/
DocID022063 Rev 8 107/206
STM32F415xx, STM32F417xx Electrical characteristics
Figure 33. Typical application with a 32.768 kHz crystal
5.3.9 Internal clock source characteristics
The parameters given in Table 34 and Table 35 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 14.
High-speed internal (HSI) RC oscillator
Low-speed internal (LSI) RC oscillator
DL
26&B287
26&B,1 I/6(
&/
5)
670)
N+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
&/
Table 34. HSI oscillator characteristics (1)
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 16 - MHz
ACCHSI
HSI user trimming step(2)
2. Guaranteed by design.
---1%
Accuracy of the HSI oscillator
TA = –40 to 105 °C(3)
3. Guaranteed by characterization.
–8 - 4.5 %
TA = –10 to 85 °C(3) –4 - 4 %
TA = 25 °C(4)
4. Factory calibrated, parts not soldered.
–1 - 1 %
tsu(HSI)(2) HSI oscillator startup time - - 2.2 4 µs
IDD(HSI)(2) HSI oscillator power
consumption - - 60 80 µA
Table 35. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI(2)
2. Guaranteed by characterization.
Frequency 17 32 47 kHz
tsu(LSI)(3)
3. Guaranteed by design.
LSI oscillator startup time - 15 40 µs
IDD(LSI)(3) LSI oscillator power consumption - 0.4 0.6 µA
Electrical characteristics STM32F415xx, STM32F417xx
108/206 DocID022063 Rev 8
Figure 34. ACCLSI versus temperature
5.3.10 PLL characteristics
The parameters given in Table 36 and Table 37 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 14.
-36









 
.ORMALIZEDDEVIATI ON

4EMPERAT URE#
MAX
AVG
MIN
Table 36. Main PLL characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN PLL input clock(1) -0.95
(2) 12.10MHz
fPLL_OUT PLL multiplier output clock - 24 - 168 MHz
fPLL48_OUT
48 MHz PLL multiplier output
clock - - 48 75 MHz
fVCO_OUT PLL VCO output - 100 - 432 MHz
tLOCK PLL lock time
VCO freq = 100 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
DocID022063 Rev 8 109/206
STM32F415xx, STM32F417xx Electrical characteristics
Jitter(3)
Cycle-to-cycle jitter
System clock
120 MHz
RMS - 25 -
ps
peak
to
peak
-±150 -
Period Jitter
RMS - 15 -
peak
to
peak
-±200 -
Main clock output (MCO) for
RMII Ethernet
Cycle to cycle at 50 MHz
on 1000 samples -32 -
Main clock output (MCO) for MII
Ethernet
Cycle to cycle at 25 MHz
on 1000 samples -40 -
Bit Time CAN jitter Cycle to cycle at 1 MHz
on 1000 samples - 330 -
IDD(PLL)(4) PLL power consumption on VDD VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLL)(4) PLL power consumption on
VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design.
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.
4. Guaranteed by characterization.
Table 36. Main PLL characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 37. PLLI2S (audio PLL) characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLLI2S_IN PLLI2S input clock(1) -0.95
(2) 12.10MHz
fPLLI2S_OUT PLLI2S multiplier output clock - - - 216 MHz
fVCO_OUT PLLI2S VCO output - 100 - 432 MHz
tLOCK PLLI2S lock time
VCO freq = 100 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Master I2S clock jitter
Cycle to cycle at
12.288 MHz on
48KHz period,
N=432, R=5
RMS - 90 -
peak
to
peak
- ±280 - ps
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-90 -ps
WS I2S clock jitter Cycle to cycle at 48 KHz
on 1000 samples -400 - ps
Electrical characteristics STM32F415xx, STM32F417xx
110/206 DocID022063 Rev 8
5.3.11 PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 44: EMI characteristics). It is available only on the main PLL.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
MODEPER round fPLL_IN 4f
Mod
×()[]=
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
MODEPER round 106410
3
×()[]250==
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
INCSTEP round 215 1()md PLLN××()100 5×MODEPER×()[]=
fVCO_OUT must be expressed in MHz.
IDD(PLLI2S)(4) PLLI2S power consumption on
VDD
VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLLI2S)(4) PLLI2S power consumption on
VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design.
3. Value given with main PLL running.
4. Guaranteed by characterization.
Table 37. PLLI2S (audio PLL) characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 38. SSCG parameters constraint
Symbol Parameter Min Typ Max(1) Unit
fMod Modulation frequency - - 10 KHz
md Peak modulation depth 0.25 - 2 %
MODEPER * INCSTEP - - 2151-
1. Guaranteed by design.
DocID022063 Rev 8 111/206
STM32F415xx, STM32F417xx Electrical characteristics
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
INCSTEP round 215 1()2240××()100 5×250×()[]126md(quantitazed)%==
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
mdquantized% MODEPER INCSTEP×100×5×()215 1()PLLN×()=
As a result:
mdquantized% 250 126×100×5×()215 1()240×()2.002%(peak)==
Figure 35 and Figure 36 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 35. PLL output clock waveforms in center spread mode
&REQUENCY0,,?/54
4IME
&
TMODE XTMODE
MD
AI
MD
Electrical characteristics STM32F415xx, STM32F417xx
112/206 DocID022063 Rev 8
Figure 36. PLL output clock waveforms in down spread mode
5.3.12 Memory characteristics
Flash memory
The characteristics are given at TA = 40 to 105 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
)UHTXHQF\3//B287
7LPH
)
WPRGH [WPRGH
[PG
DLE
Table 39. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max Unit
IDD Supply current
Write / Erase 8-bit mode, VDD = 1.8 V - 5 -
mAWrite / Erase 16-bit mode, VDD = 2.1 V - 8 -
Write / Erase 32-bit mode, VDD = 3.3 V - 12 -
Table 40. Flash memory programming
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
tprog Word programming time Program/erase parallelism
(PSIZE) = x 8/16/32 -16100
(2) µs
tERASE16KB Sector (16 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 400 800
ms
Program/erase parallelism
(PSIZE) = x 16 - 300 600
Program/erase parallelism
(PSIZE) = x 32 - 250 500
tERASE64KB Sector (64 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 1200 2400
ms
Program/erase parallelism
(PSIZE) = x 16 - 700 1400
Program/erase parallelism
(PSIZE) = x 32 - 550 1100
DocID022063 Rev 8 113/206
STM32F415xx, STM32F417xx Electrical characteristics
tERASE128KB Sector (128 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 -24
s
Program/erase parallelism
(PSIZE) = x 16 -1.32.6
Program/erase parallelism
(PSIZE) = x 32 -12
tME Mass erase time
Program/erase parallelism
(PSIZE) = x 8 -1632
s
Program/erase parallelism
(PSIZE) = x 16 -1122
Program/erase parallelism
(PSIZE) = x 32 -816
Vprog Programming voltage
32-bit program operation 2.7 - 3.6 V
16-bit program operation 2.1 - 3.6 V
8-bit program operation 1.8 - 3.6 V
1. Guaranteed by characterization.
2. The maximum programming time is measured after 100K erase operations.
Table 40. Flash memory programming (continued)
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
Electrical characteristics STM32F415xx, STM32F417xx
114/206 DocID022063 Rev 8
5.3.13 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
Table 41. Flash memory programming with VPP
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by design.
Unit
tprog Double word programming
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
-16100
(2)
2. The maximum programming time is measured after 100K erase operations.
µs
tERASE16KB Sector (16 KB) erase time - 230 -
mstERASE64KB Sector (64 KB) erase time - 490 -
tERASE128KB Sector (128 KB) erase time - 875 -
tME Mass erase time - 6.9 - s
Vprog Programming voltage - 2.7 - 3.6 V
VPP VPP voltage range - 7 - 9 V
IPP
Minimum current sunk on
the VPP pin -10--mA
tVPP(3)
3. VPP should only be connected during programming/erasing.
Cumulative time during
which VPP is applied - - - 1 hour
Table 42. Flash memory endurance and data retention
Symbol Parameter Conditions
Value
Unit
Min(1)
1. Guaranteed by characterization.
NEND Endurance TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions) 10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Years1 kcycle(2) at TA = 105 °C 10
10 kcycles(2) at TA = 55 °C 20
DocID022063 Rev 8 115/206
STM32F415xx, STM32F417xx Electrical characteristics
A device reset allows normal operations to be resumed.
The test results are given in Table 43. They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 43. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, LQFP176, TA =
+25 °C, fHCLK = 168 MHz, conforms
to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP176, TA =
+25 °C, fHCLK = 168 MHz, conforms
to IEC 61000-4-2
4A
Electrical characteristics STM32F415xx, STM32F417xx
116/206 DocID022063 Rev 8
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC? code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
5.3.14 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 44. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fCPU]Unit
25/168 MHz
SEMI Peak level
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, code running from Flash with
ART accelerator enabled
0.1 to 30 MHz 32
dBµV30 to 130 MHz 25
130 MHz to 1GHz 29
SAE EMI Level 4 -
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, code running from Flash with
ART accelerator and PLL spread
spectrum enabled
0.1 to 30 MHz 19
dBµV30 to 130 MHz 16
130 MHz to 1GHz 18
SAE EMI level 3.5 -
Table 45. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge
voltage (human body
model)
TA = +25 °C conforming to JESD22-A114 2 2000(2)
V
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C conforming to
ANSI/ESD STM5.3.1 II 500
1. Guaranteed by characterization.
2. On VBAT pin, VESD(HBM) is limited to 1000 V.
DocID022063 Rev 8 117/206
STM32F415xx, STM32F417xx Electrical characteristics
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
5.3.15 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of
5 μA/+0 μA range), or other functional failure (for example reset, oscillator frequency
deviation).
Negative induced leakage current is caused by negative injection and positive induced
leakage current by positive injection.
The test results are given in Table 47.
Table 46. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
Electrical characteristics STM32F415xx, STM32F417xx
118/206 DocID022063 Rev 8
5.3.16 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 48 are derived from tests
performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL
compliant.
Table 47. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ(1)
Injected current on BOOT0 pin 0NA
mA
Injected current on NRST pin 0NA
Injected current on PE2, PE3, PE4, PE5, PE6,
PI8, PC13, PC14, PC15, PI9, PI10, PI11, PF0,
PF1, PF2, PF3, PF4, PF5, PF10, PH0/OSC_IN,
PH1/OSC_OUT, PC0, PC1, PC2, PC3, PB6,
PB7, PB8, PB9, PE0, PE1, PI4, PI5, PI6, PI7,
PDR_ON, BYPASS_REG
0NA
Injected current on all FT pins 5NA
Injected current on any other pin 5+5
1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.
Table 48. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
FT, TTa and NRST I/O input low
level voltage 1.7 V VDD 3.6 V
- - 0.3VDD-0.04(1)
V
- - 0.3VDD(2)
BOOT0 I/O input low level
voltage
1.75 V VDD 3.6 V
-40 °C TA 105 °C
--
0.1VDD-+0.1(1)
1.7 V VDD 3.6 V
0 °C TA 105 °C --
VIH
FT, TTa and NRST I/O input low
level voltage 1.7 V VDD 3.6 V
0.45VDD+0.3(1) --
0.7VDD(2) --
BOOT0 I/O input low level
voltage
1.75 V VDD 3.6 V
-40 °C TA 105 °C 0.17VDD+0.7(1)
--
1.7 V VDD 3.6 V
0 °C TA 105 °C --
DocID022063 Rev 8 119/206
STM32F415xx, STM32F417xx Electrical characteristics
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters.
VHYS
FT, TTa and NRST I/O input
hysteresis 1.7 V VDD 3.6 V 10%VDD(3) --
V
BOOT0 I/O input hysteresis
1.75 V VDD 3.6 V
-40 °C TA 105 °C 0.1 - -
1.7 V VDD 3.6 V
0 °C TA 105 °C
Ilkg
I/O input leakage current (4) VSS VIN VDD --±1
µA
I/O FT input leakage current (5) VIN = 5 V - - 3
RPU
Weak pull-up
equivalent
resistor(6)
All pins
except for
PA10 and
PB12
(OTG_FS_ID,
OTG_HS_ID)
VIN = VSS 30 40 50
kΩ
PA10 and
PB12
(OTG_FS_ID,
OTG_HS_ID)
-71014
RPD
Weak pull-down
equivalent
resistor(7)
All pins
except for
PA10 and
PB12
VIN = VDD 30 40 50
PA10 and
PB12 -71014
CIO(8) I/O pin
capacitance -5-pF
1. Guaranteed by design.
2. Tested in production.
3. With a minimum of 200 mV.
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 47: I/O
current injection susceptibility
5. To sustain a voltage higher than VDD + 0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 47: I/O current injection
susceptibility.
6. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS. This PMOS
contribution to the series resistance is minimum (~10% order).
7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS
contribution to the series resistance is minimum (~10% order).
8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization.
Table 48. I/O static characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F415xx, STM32F417xx
120/206 DocID022063 Rev 8
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the speed
should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2. In particular:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 12).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 12).
Output voltage levels
Unless otherwise specified, the parameters given in Table 49 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 14. All I/Os are CMOS and TTL compliant.
Table 49. Output voltage characteristics(1)
1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited
amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed
should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current
source (e.g. to drive an LED).
Symbol Parameter Conditions Min Max Unit
VOL(2)
2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage CMOS port
IIO = +8 mA
2.7 V < VDD < 3.6 V
-0.4
V
VOH(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage VDD–0.4 -
VOL (2) Output low level voltage TTL port
IIO =+ 8mA
2.7 V < VDD < 3.6 V
-0.4
V
VOH (3) Output high level voltage 2.4 -
VOL(2)(4)
4. Guaranteed by characterization.
Output low level voltage IIO = +20 mA
2.7 V < VDD < 3.6 V
-1.3
V
VOH(3)(4) Output high level voltage VDD–1.3 -
VOL(2)(4) Output low level voltage IIO = +6 mA
2 V < VDD < 2.7 V
-0.4
V
VOH(3)(4) Output high level voltage VDD–0.4 -
DocID022063 Rev 8 121/206
STM32F415xx, STM32F417xx Electrical characteristics
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 37 and
Table 50, respectively.
Unless otherwise specified, the parameters given in Table 50 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 14.
Table 50. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
00
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD > 2.70 V - - 4
MHz
CL = 50 pF, VDD > 1.8 V - - 2
CL = 10 pF, VDD > 2.70 V - - 8
CL = 10 pF, VDD > 1.8 V - - 4
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD = 1.8 V to
3.6 V --100ns
01
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD > 2.70 V - - 25
MHz
CL = 50 pF, VDD > 1.8 V - - 12.5
CL = 10 pF, VDD > 2.70 V - - 50(4)
CL = 10 pF, VDD > 1.8 V - - 20
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD >2.7 V - - 10
ns
CL = 50 pF, VDD > 1.8 V - - 20
CL = 10 pF, VDD > 2.70 V - - 6
CL = 10 pF, VDD > 1.8 V - - 10
10
fmax(IO)out Maximum frequency(3)
CL = 40 pF, VDD > 2.70 V - - 50(4)
MHz
CL = 40 pF, VDD > 1.8 V - - 25
CL = 10 pF, VDD > 2.70 V - - 100(4)
CL = 10 pF, VDD > 1.8 V - - 50(4)
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 40 pF, VDD > 2.70 V - - 6
ns
CL = 40 pF, VDD > 1.8 V - - 10
CL = 10 pF, VDD > 2.70 V - - 4
CL = 10 pF, VDD > 1.8 V - - 6
Electrical characteristics STM32F415xx, STM32F417xx
122/206 DocID022063 Rev 8
Figure 37. I/O AC characteristics definition
11
Fmax(IO)out Maximum frequency(3)
CL = 30 pF, VDD > 2.70 V - - 100(4)
MHz
CL = 30 pF, VDD > 1.8 V - - 50(4)
CL = 10 pF, VDD > 2.70 V - - 180(4)
CL = 10 pF, VDD > 1.8 V - - 100(4)
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 30 pF, VDD > 2.70 V - - 4
ns
CL = 30 pF, VDD > 1.8 V - - 6
CL = 10 pF, VDD > 2.70 V - - 2.5
CL = 10 pF, VDD > 1.8 V - - 4
-t
EXTIpw
Pulse width of external signals
detected by the EXTI
controller
10 - - ns
1. Guaranteed by characterization.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of
the GPIOx_SPEEDR GPIO port output speed register.
3. The maximum frequency is defined in Figure 37.
4. For maximum frequencies above 50 MHz, the compensation cell should be used.
Table 50. I/O AC characteristics(1)(2) (continued)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
DLG



WU,2RXW
287387
(;7(51$/
21&/
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´



7
WI,2RXW
DocID022063 Rev 8 123/206
STM32F415xx, STM32F417xx Electrical characteristics
5.3.17 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 48).
Unless otherwise specified, the parameters given in Table 51 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 14.
Figure 38. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 51. Otherwise the reset is not taken into account by the device.
Table 51. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST)(1)
1. Guaranteed by design.
NRST Input low level voltage TTL ports
2.7 V VDD
3.6 V
--0.8
V
VIH(NRST)(1) NRST Input high level voltage 2 - -
VIL(NRST)(1) NRST Input low level voltage CMOS ports
1.8 V VDD
3.6 V
--0.3V
DD
VIH(NRST)(1) NRST Input high level voltage 0.7VDD --
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis --200-mV
RPU Weak pull-up equivalent resistor(2)
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
the series resistance must be minimum (~10% order).
VIN = VSS 30 40 50 kΩ
VF(NRST)(1) NRST Input filtered pulse - - 100 ns
VNF(NRST)(1) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns
TNRST_OUT Generated reset pulse duration Internal
Reset source 20 - - µs
DLF
670)
538
1567

9''
)LOWHU
,QWHUQDO5HVHW
)
([WHUQDO
UHVHWFLUFXLW 
Electrical characteristics STM32F415xx, STM32F417xx
124/206 DocID022063 Rev 8
5.3.18 TIM timer characteristics
The parameters given in Table 52 and Table 53 are guaranteed by design.
Refer to Section 5.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 52. Characteristics of TIMx connected to the APB1 domain(1)
1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
AHB/APB1
prescaler distinct
from 1, fTIMxCLK =
84 MHz
1-t
TIMxCLK
11.9 - ns
AHB/APB1
prescaler = 1,
fTIMxCLK = 42 MHz
1-t
TIMxCLK
23.8 - ns
fEXT
Timer external clock
frequency on CH1 to CH4
fTIMxCLK = 84 MHz
APB1= 42 MHz
0f
TIMxCLK/2 MHz
042MHz
ResTIM Timer resolution - 16/32 bit
tCOUNTER
16-bit counter clock
period when internal clock
is selected
1 65536 tTIMxCLK
0.0119 780 µs
32-bit counter clock
period when internal clock
is selected
1-t
TIMxCLK
0.0119 51130563 µs
tMAX_COUNT Maximum possible count
- 65536 × 65536 tTIMxCLK
- 51.1 s
DocID022063 Rev 8 125/206
STM32F415xx, STM32F417xx Electrical characteristics
5.3.19 Communications interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
Standard-mode (Sm): with a bit rate up to 100 kbit/s
Fast-mode (Fm): with a bit rate up to 400 kbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to RM0090 reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDD is disabled, but is still present. Refer to
Section 5.3.16: I/O port characteristics for more details on the I2C I/O characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
Table 53. Characteristics of TIMx connected to the APB2 domain(1)
1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
AHB/APB2
prescaler distinct
from 1, fTIMxCLK =
168 MHz
1-t
TIMxCLK
5.95 - ns
AHB/APB2
prescaler = 1,
fTIMxCLK = 84 MHz
1-t
TIMxCLK
11.9 - ns
fEXT
Timer external clock
frequency on CH1 to
CH4
fTIMxCLK =
168 MHz
APB2 = 84 MHz
0f
TIMxCLK/2 MHz
084MHz
ResTIM Timer resolution - 16 bit
tCOUNTER
16-bit counter clock
period when internal
clock is selected
1 65536 tTIMxCLK
tMAX_COUNT Maximum possible count - 32768 tTIMxCLK
Table 54. I2C analog filter characteristics(1)
1. Guaranteed by design.
Symbol Parameter Min Max Unit
tAF
Maximum pulse width of spikes
that are suppressed by the analog
filter
50(2)
2. Spikes with widths below tAF(min) are filtered.
260(3)
3. Spikes with widths above tAF(max) are not filtered
ns
Electrical characteristics STM32F415xx, STM32F417xx
126/206 DocID022063 Rev 8
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 55 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 14 with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5 VDD
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO).
Table 55. SPI dynamic characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
SPI clock frequency
Master mode, SPI1,
2.7V < VDD < 3.6V
--
42
MHz
Slave mode, SPI1,
2.7V < VDD < 3.6V 42
1/tc(SCK)
Master mode, SPI1/2/3,
1.7V < VDD < 3.6V
--
21
Slave mode, SPI1/2/3,
1.7V < VDD < 3.6V 21
Duty(SCK) Duty cycle of SPI clock
frequency Slave mode 30 50 70 %
DocID022063 Rev 8 127/206
STM32F415xx, STM32F417xx Electrical characteristics
tw(SCKH)
SCK high and low time
Master mode, SPI presc = 2,
2.7V < VDD < 3.6V TPCLK-0.5 TPCLK TPCLK+0.5
ns
tw(SCKL)
Master mode, SPI presc = 2,
1.7V < VDD < 3.6V TPCLK-2 TPCLK TPCLK+2
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4 x TPCLK --
th(NSS) NSS hold time Slave mode, SPI presc = 2 2 x TPCLK
tsu(MI) Data input setup time
Master mode 6.5 - -
tsu(SI) Slave mode 2.5 - -
th(MI) Data input hold time
Master mode 2.5 - -
th(SI) Slave mode 4 - -
ta(SO)(2) Data output access time Slave mode, SPI presc = 2 0 - 4 x TPCLK
tdis(SO)(3) Data output disable time
Slave mode, SPI1,
2.7V < VDD < 3.6V 0-7.5
Slave mode, SPI1/2/3
1.7V < VDD < 3.6V 0-16.5
tv(SO)
th(SO)
Data output valid/hold time
Slave mode (after enable edge),
SPI1, 2.7V < VDD < 3.6V -1113
Slave mode (after enable edge),
SPI2/3, 2.7V < VDD < 3.6V -1216.5
Slave mode (after enable edge),
SPI1, 1.7V < VDD < 3.6V - 15.5 19
Slave mode (after enable edge),
SPI2/3, 1.7V < VDD < 3.6V -1820.5
tv(MO) Data output valid time
Master mode (after enable edge),
SPI1, 2.7V < VDD < 3.6V --2.5
Master mode (after enable edge),
SPI1/2/3, 1.7V < VDD < 3.6V --4.5
th(MO) Data output hold time Master mode (after enable edge) 0 - -
1. Guaranteed by characterization.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.
Table 55. SPI dynamic characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F415xx, STM32F417xx
128/206 DocID022063 Rev 8
Figure 39. SPI timing diagram - slave mode and CPHA = 0
Figure 40. SPI timing diagram - slave mode and CPHA = 1
06Y9
166LQSXW
&3+$ 
&32/ 
6&.LQSXW
&3+$ 
&32/ 
0,62RXWSXW
026,LQSXW
WVX6,
WK6,
WZ6&./
WZ6&.+
WF6&.
WU6&.
WK166
WGLV62
WVX166
WD62 WY62
1H[WELWV,1
/DVWELW287
)LUVWELW,1
)LUVWELW287 1H[WELWV287
WK62 WI6&.
/DVWELW,1
06Y9
166LQSXW
&3+$ 
&32/ 
6&.LQSXW
&3+$ 
&32/ 
0,62RXWSXW
026,LQSXW
WVX6, WK6,
WZ6&./
WZ6&.+
WVX166
WF6&.
WD62 WY62
)LUVWELW287 1H[WELWV287
1H[WELWV,1
/DVWELW287
WK62 WU6&.
WI6&. WK166
WGLV62
)LUVWELW,1 /DVWELW,1
DocID022063 Rev 8 129/206
STM32F415xx, STM32F417xx Electrical characteristics
Figure 41. SPI timing diagram - master mode
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
Electrical characteristics STM32F415xx, STM32F417xx
130/206 DocID022063 Rev 8
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 56 for the i2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 14, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5 VDD
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
Note: Refer to the I2S section of RM0090 reference manual for more details on the sampling
frequency (FS). fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The
value of these parameters might be slightly impacted by the source clock accuracy. DCK
depends mainly on the value of ODD bit. The digital contribution leads to a minimum value
of I2SDIV / (2 x I2SDIV + ODD) and a maximum value of (I2SDIV + ODD) / (2 x I2SDIV +
ODD). FS maximum value is supported for each mode/condition.
Table 56. I2S dynamic characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCK I2S main clock output - 256 x
8K 256 x FS(2) MHz
fCK I2S clock frequency
Master data: 32 bits - 64 x FSMHz
Slave data: 32 bits - 64 x FS
DCK I2S clock frequency duty cycle Slave receiver 30 70 %
tv(WS) WS valid time Master mode 0 6
ns
th(WS) WS hold time Master mode 0 -
tsu(WS) WS setup time Slave mode 1 -
th(WS) WS hold time Slave mode 0 -
tsu(SD_MR) Data input setup time
Master receiver 7.5 -
tsu(SD_SR) Slave receiver 2 -
th(SD_MR) Data input hold time
Master receiver 0 -
th(SD_SR) Slave receiver 0 -
tv(SD_ST)
th(SD_ST) Data output valid time
Slave transmitter (after enable edge) - 27
tv(SD_MT) Master transmitter (after enable edge) - 20
th(SD_MT) Data output hold time Master transmitter (after enable edge) 2.5 -
1. Guaranteed by characterization.
2. The maximum value of 256 x FS is 42 MHz (APB1 maximum frequency).
DocID022063 Rev 8 131/206
STM32F415xx, STM32F417xx Electrical characteristics
Figure 42. I2S slave timing diagram (Philips protocol)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 43. I2S master timing diagram (Philips protocol)(1)
1. Guaranteed by characterization.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
&.,QSXW
&32/ 
&32/ 
WF&.
:6LQSXW
6'WUDQVPLW
6'UHFHLYH
WZ&.+ WZ&./
WVX:6 WY6'B67 WK6'B67
WK:6
WVX6'B65 WK6'B65
06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH
06%WUDQVPLW %LWQWUDQVPLW /6%WUDQVPLW
DLE
/6%UHFHLYH
/6%WUDQVPLW
#+OUTPUT
#0/,
#0/,
TC#+
73OUTPUT
3$RECEIVE
3$TRANSMIT
TW#+(
TW#+,
TSU3$?-2
TV3$?-4 TH3$?-4
TH73
TH3$?-2
-3"RECEIVE "ITNRECEIVE ,3"RECEIVE
-3"TRANSMIT "ITNTRANSMIT ,3"TRANSMIT
AIB
TF#+ TR#+
TV73
,3"RECEIVE
,3"TRANSMIT
Electrical characteristics STM32F415xx, STM32F417xx
132/206 DocID022063 Rev 8
USB OTG FS characteristics
This interface is present in both the USB OTG HS and USB OTG FS controllers.
Table 57. USB OTG FS startup time
Symbol Parameter Max Unit
tSTARTUP(1)
1. Guaranteed by design.
USB OTG FS transceiver startup time 1 µs
Table 58. USB OTG FS DC electrical characteristics
Symbol Parameter Conditions Min.(1)
1. All the voltages are measured from the local ground potential.
Typ. Max.(1) Unit
Input
levels
VDD
USB OTG FS operating
voltage -3.0
(2)
2. The STM32F415xx and STM32F417xx USB OTG FS functionality is ensured down to 2.7 V but not the full
USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
-3.6V
VDI(3)
3. Guaranteed by design.
Differential input sensitivity I(USB_FS_DP/DM,
USB_HS_DP/DM) 0.2 - -
VVCM(3) Differential common mode
range Includes VDI range 0.8 - 2.5
VSE(3) Single ended receiver
threshold - 1.3 - 2.0
Output
levels
VOL Static output level low RL of 1.5 kΩ to 3.6 V(4)
4. RL is the load connected on the USB OTG FS drivers
--0.3
V
VOH Static output level high RL of 15 kΩ to VSS(4) 2.8 - 3.6
RPD
PA11, PA12, PB14, PB15
(USB_FS_DP/DM,
USB_HS_DP/DM)
VIN = VDD
17 21 24
kΩ
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
0.65 1.1 2.0
RPU
PA12, PB15 (USB_FS_DP,
USB_HS_DP) VIN = VSS 1.5 1.8 2.1
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
VIN = VSS 0.25 0.37 0.55
DocID022063 Rev 8 133/206
STM32F415xx, STM32F417xx Electrical characteristics
Figure 44. USB OTG FS timings: definition of data signal rise and fall time
USB HS characteristics
Unless otherwise specified, the parameters given in Table 62 for ULPI are derived from
tests performed under the ambient temperature, fHCLK frequency summarized in Table 61
and VDD supply voltage conditions summarized in Table 60, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD.
Refer to Section Section 5.3.16: I/O port characteristics for more details on the input/output
characteristics.
Table 59. USB OTG FS electrical characteristics(1)
1. Guaranteed by design.
Driver characteristics
Symbol Parameter Conditions Min Max Unit
trRise time(2)
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
CL = 50 pF 420ns
tfFall time(2) CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf90 110 %
VCRS Output signal crossover voltage - 1.3 2.0 V
Table 60. USB HS DC electrical characteristics
Symbol Parameter Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input level VDD USB OTG HS operating voltage 2.7 3.6 V
Table 61. USB HS clock timing parameters(1)
Parameter Symbol Min Nominal Max Unit
fHCLK value to guarantee proper operation of
USB HS interface -30--MHz
Frequency (first transition) 8-bit ±10% FSTART_8BIT 54 60 66 MHz
DLE
&URVVRYHU
SRLQWV
'LIIHUHQWLDO
GDWDOLQHV
9&56
966
WIWU
Electrical characteristics STM32F415xx, STM32F417xx
134/206 DocID022063 Rev 8
Figure 45. ULPI timing diagram
Frequency (steady state) ±500 ppm FSTEADY 59.97 60 60.03 MHz
Duty cycle (first transition) 8-bit ±10% DSTART_8BIT 40 50 60 %
Duty cycle (steady state) ±500 ppm DSTEADY 49.975 50 50.025 %
Time to reach the steady state frequency and
duty cycle after the first transition TSTEADY --1.4ms
Clock startup time after the
de-assertion of SuspendM
Peripheral TSTART_DEV --5.6
ms
Host TSTART_HOST ---
PHY preparation time after the first transition
of the input clock TPREP ---µs
1. Guaranteed by design.
Table 62. ULPI timing
Parameter Symbol
Value(1)
1. VDD = 2.7 V to 3.6 V and TA = –40 to 85 °C.
Unit
Min. Max.
Control in (ULPI_DIR) setup time
tSC
-2.0
ns
Control in (ULPI_NXT) setup time - 1.5
Control in (ULPI_DIR, ULPI_NXT) hold time tHC 0-
Data in setup time tSD -2.0
Data in hold time tHD 0-
Control out (ULPI_STP) setup time and hold time tDC -9.2
Data out available from clock rising edge tDD -10.7
Table 61. USB HS clock timing parameters(1)
Parameter Symbol Min Nominal Max Unit
#LOCK
#ONTROL)N
5,0)?$)2
5,0)?.84
DATA)N
BIT
#ONTROLOUT
5,0)?340
DATAOUT
BIT
T$$
T$#
T($
T3$
T(#
T3#
AIC
T$#
DocID022063 Rev 8 135/206
STM32F415xx, STM32F417xx Electrical characteristics
Ethernet characteristics
Unless otherwise specified, the parameters given in Table 64, Table 65 and Table 66 for
SMI, RMII and MII are derived from tests performed under the ambient temperature, fHCLK
frequency summarized in Tabl e 14 and VDD supply voltage conditions summarized in
Table 63, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD.
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output
characteristics.
Table 64 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 46 shows the corresponding timing diagram.
Figure 46. Ethernet SMI timing diagram
Table 65 gives the list of Ethernet MAC signals for the RMII and Figure 47 shows the
corresponding timing diagram.
Table 63. Ethernet DC electrical characteristics
Symbol Parameter Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input level VDD Ethernet operating voltage 2.7 3.6 V
Table 64. Dynamic characteristics: Eternity MAC signals for SMI(1)
1. Guaranteed by characterization.
Symbol Parameter Min Typ Max Unit
tMDC MDC cycle time(2.38 MHz) 411 420 425
ns
Td(MDIO) Write data valid time 6 10 13
tsu(MDIO) Read data setup time 12 - -
th(MDIO) Read data hold time 0 - -
069
(7+B0'&
(7+B0',22
(7+B0',2,
W0'&
WG0',2
WVX0',2 WK0',2
Electrical characteristics STM32F415xx, STM32F417xx
136/206 DocID022063 Rev 8
Figure 47. Ethernet RMII timing diagram
Table 66 gives the list of Ethernet MAC signals for MII and Figure 47 shows the
corresponding timing diagram.
Figure 48. Ethernet MII timing diagram
Table 65. Dynamic characteristics: Ethernet MAC signals for RMII
Symbol Rating Min Typ Max Unit
tsu(RXD) Receive data setup time 2 - - ns
tih(RXD) Receive data hold time 1 - - ns
tsu(CRS) Carrier sense set-up time 0.5 - - ns
tih(CRS) Carrier sense hold time 2 - - ns
td(TXEN) Transmit enable valid delay time 8 9.5 11 ns
td(TXD) Transmit data valid delay time 8.5 10 11.5 ns
2-))?2%&?#,+
2-))?48?%.
2-))?48$;=
2-))?28$;=
2-))?#23?$6
TD48%.
TD48$
TSU28$
TSU#23
TIH28$
TIH#23
AI
-))?28?#,+
-))?28$;=
-))?28?$6
-))?28?%2
TD48%.
TD48$
TSU28$
TSU%2
TSU$6
TIH28$
TIH%2
TIH$6
AI
-))?48?#,+
-))?48?%.
-))?48$;=
DocID022063 Rev 8 137/206
STM32F415xx, STM32F417xx Electrical characteristics
5.3.20 CAN (controller area network) interface
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CANTX and CANRX).
5.3.21 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 67 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 14.
Table 66. Dynamic characteristics: Ethernet MAC signals for MII(1)
1. Guaranteed by characterization.
Symbol Parameter Min Typ Max Unit
tsu(RXD) Receive data setup time 9 -
ns
tih(RXD) Receive data hold time 10 -
tsu(DV) Data valid setup time 9 -
tih(DV) Data valid hold time 8 -
tsu(ER) Error setup time 6 -
tih(ER) Error hold time 8 -
td(TXEN) Transmit enable valid delay time 0 10 14
td(TXD) Transmit data valid delay time 0 10 15
Table 67. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply - 1.8(1) -3.6
VVREF+ Positive reference voltage - 1.8(1)(2)(3) -V
DDA
VREFNegative reference voltage - - 0 -
fADC ADC clock frequency
VDDA = 1.8(1)(3) to
2.4 V 0.6 15 18 MHz
VDDA = 2.4 to 3.6 V(3) 0.6 30 36 MHz
fTRIG(4) External trigger frequency
fADC = 30 MHz,
12-bit resolution - - 1764 kHz
---171/f
ADC
VAIN Conversion voltage range(5) -0 (VSSA or VREF-
tied to ground) -V
REF+ V
RAIN(4) External input impedance See Equation 1 for
details --50κΩ
RADC(4)(6) Sampling switch resistance - - - 6 κΩ
CADC(4) Internal sample and hold
capacitor --4-pF
Electrical characteristics STM32F415xx, STM32F417xx
138/206 DocID022063 Rev 8
tlat(4) Injection trigger conversion
latency
fADC = 30 MHz - - 0.100 µs
--3
(7) 1/fADC
tlatr(4) Regular trigger conversion
latency
fADC = 30 MHz - - 0.067 µs
--2
(7) 1/fADC
tS(4) Sampling time
fADC = 30 MHz 0.100 - 16 µs
- 3 - 480 1/fADC
tSTAB(4) Power-up time - - 2 3 µs
tCONV(4) Total conversion time (including
sampling time)
fADC = 30 MHz
12-bit resolution 0.50 - 16.40 µs
fADC = 30 MHz
10-bit resolution 0.43 - 16.34 µs
fADC = 30 MHz
8-bit resolution 0.37 - 16.27 µs
fADC = 30 MHz
6-bit resolution 0.30 - 16.20 µs
9 to 492 (tS for sampling +n-bit resolution for successive
approximation) 1/fADC
fS(4)
Sampling rate
(fADC = 30 MHz, and
tS = 3 ADC cycles)
12-bit resolution
Single ADC - - 2 Msps
12-bit resolution
Interleave Dual ADC
mode
- - 3.75 Msps
12-bit resolution
Interleave Triple ADC
mode
- - 6 Msps
IVREF+(4)
ADC VREF DC current
consumption in conversion
mode
- - 300 500 µA
IVDDA(4)
ADC VDDA DC current
consumption in conversion
mode
--1.61.8mA
1. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of
an external power supply supervisor (refer to Section : Internal reset OFF).
2. It is recommended to maintain the voltage difference between VREF+ and VDDA below 1.8 V.
3. VDDA -VREF+ < 1.2 V.
4. Guaranteed by characterization.
5. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
6. RADC maximum value is given for VDD=1.8 V, and minimum value for VDD=3.3 V.
7. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 67.
Table 67. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID022063 Rev 8 139/206
STM32F415xx, STM32F417xx Electrical characteristics
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
a
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and SIINJ(PIN) in
Section 5.3.16 does not affect the ADC accuracy.
Table 68. ADC accuracy at fADC = 30 MHz
Symbol Parameter Test conditions Typ Max(1)
1. Guaranteed by characterization.
Unit
ET Total unadjusted error
fPCLK2 = 60 MHz,
fADC = 30 MHz, RAIN < 10 kΩ,
VDDA = 1.8(2) to 3.6 V
2. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range,
and with the use of an external power supply supervisor (refer to Section : Internal reset OFF).
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±1.5 ±3
RAIN
k0.5()
fADC CADC 2N2+
()ln××
---------------------------------------------------------------- RADC
=
Electrical characteristics STM32F415xx, STM32F417xx
140/206 DocID022063 Rev 8
Figure 49. ADC accuracy characteristics
1. See also Table 68.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
Figure 50. Typical connection diagram using the ADC
1. Refer to Table 67 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
AIC
%/
%'
, 3")$%!,



    


%4
%$
%,

6$$!
633!
62%&
 ORDEPENDINGONPACKAGE=
6$$!

;,3" )$%!,

DL
670)
9''
$,1[
,/$
9
97
5$,1
&SDUDVLWLF
9$,1
9
97
5$'&
&$'&
ELW
FRQYHUWHU
6DPSOHDQGKROG$'&
FRQYHUWHU
DocID022063 Rev 8 141/206
STM32F415xx, STM32F417xx Electrical characteristics
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 51 or Figure 52,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 51. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA.
670)
)Q)
)Q)
95()
9''$
966$95()

DLE
Electrical characteristics STM32F415xx, STM32F417xx
142/206 DocID022063 Rev 8
Figure 52. Power supply and reference decoupling (VREF+ connected to VDDA)
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA.
5.3.22 Temperature sensor characteristics
670)
)Q)
DLF
95()9''$
95()966$ 

Table 69. Temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope - 2.5 mV/°C
V25(1) Voltage at 25 °C - 0.76 V
tSTART(2) Startup time - 6 10 µs
TS_temp(2) ADC sampling time when reading the temperature (1 °C accuracy) 10 - - µs
1. Guaranteed by characterization.
2. Guaranteed by design.
Table 70. Temperature sensor calibration values
Symbol Parameter Memory address
TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA=3.3 V 0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA=3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F
DocID022063 Rev 8 143/206
STM32F415xx, STM32F417xx Electrical characteristics
5.3.23 VBAT monitoring characteristics
5.3.24 Embedded reference voltage
The parameters given in Table 72 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 14.
5.3.25 DAC electrical characteristics
Table 71. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -50-KΩ
Q Ratio on VBAT measurement - 2 -
Er(1) Error on Q –1 - +1 %
TS_vbat(2)(2) ADC sampling time when reading the VBAT
1 mV accuracy 5--µs
1. Guaranteed by design.
2. Shortest sampling time can be determined in the application by multiple iterations.
Table 72. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.18 1.21 1.24 V
TS_vrefint(1) ADC sampling time when reading the
internal reference voltage -10--µs
VRERINT_s(2) Internal reference voltage spread over the
temperature range VDD = 3 V - 3 5 mV
TCoeff(2) Temperature coefficient - - 30 50 ppm/°C
tSTART(2) Startup time - - 6 10 µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
Table 73. Internal reference voltage calibration values
Symbol Parameter Memory address
VREFIN_CAL Raw data acquired at temperature of 30 °C, VDDA=3.3 V 0x1FFF 7A2A - 0x1FFF 7A2B
Table 74. DAC characteristics
Symbol Parameter Min Typ Max Unit Comments
VDDA Analog supply voltage 1.8(1) -3.6 V
VREF+ Reference supply voltage 1.8(1) -3.6VV
REF+ VDDA
VSSA Ground 0 - 0 V
Electrical characteristics STM32F415xx, STM32F417xx
144/206 DocID022063 Rev 8
RLOAD(2) Resistive load with buffer
ON 5- - kΩ
RO(2) Impedance output with
buffer OFF -- 15 kΩ
When the buffer is OFF, the
Minimum resistive load between
DAC_OUT and VSS to have a 1%
accuracy is 1.5 MΩ
CLOAD(2) Capacitive load - - 50 pF
Maximum capacitive load at
DAC_OUT pin (when the buffer is
ON).
DAC_OUT
min(2)
Lower DAC_OUT voltage
with buffer ON 0.2 - - V
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ =
3.6 V and (0x1C7) to (0xE38) at
VREF+ = 1.8 V
DAC_OUT
max(2)
Higher DAC_OUT voltage
with buffer ON --V
DDA – 0.2 V
DAC_OUT
min(2)
Lower DAC_OUT voltage
with buffer OFF -0.5 - mV
It gives the maximum output
excursion of the DAC.
DAC_OUT
max(2)
Higher DAC_OUT voltage
with buffer OFF --V
REF+ – 1LSB V
IVREF+(4)
DAC DC VREF current
consumption in quiescent
mode (Standby mode)
- 170 240
µA
With no load, worst code (0x800)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
-50 75
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
IDDA(4)
DAC DC VDDA current
consumption in quiescent
mode(3)
- 280 380 µA With no load, middle code (0x800)
on the inputs
- 475 625 µA
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
DNL(4)
Differential non linearity
Difference between two
consecutive code-1LSB)
-- ±0.5 LSB
Given for the DAC in 10-bit
configuration.
-- ±2 LSB
Given for the DAC in 12-bit
configuration.
INL(4)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
-- ±1 LSB
Given for the DAC in 10-bit
configuration.
-- ±4 LSB
Given for the DAC in 12-bit
configuration.
Table 74. DAC characteristics (continued)
Symbol Parameter Min Typ Max Unit Comments
DocID022063 Rev 8 145/206
STM32F415xx, STM32F417xx Electrical characteristics
Offset(4)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value
= VREF+/2)
-- ±10 mV
Given for the DAC in 12-bit
configuration
-- ±3 LSB
Given for the DAC in 10-bit at
VREF+ = 3.6 V
-- ±12 LSB
Given for the DAC in 12-bit at
VREF+ = 3.6 V
Gain
error(4) Gain error - - ±0.5 % Given for the DAC in 12-bit
configuration
tSETTLING(4)
Settling time (full scale: for a
10-bit input code transition
between the lowest and the
highest input codes when
DAC_OUT reaches final
value ±4LSB
-3 6 µs
CLOAD 50 pF,
RLOAD 5 kΩ
THD(4) Total Harmonic Distortion
Buffer ON -- - dB
CLOAD 50 pF,
RLOAD 5 kΩ
Update
rate(2)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-- 1 MS/s
CLOAD 50 pF,
RLOAD 5 kΩ
tWAKEUP(4)
Wakeup time from off state
(Setting the ENx bit in the
DAC Control register)
- 6.5 10 µs
CLOAD 50 pF, RLOAD 5 kΩ
input code between lowest and
highest possible ones.
PSRR+ (2)
Power supply rejection ratio
(to VDDA) (static DC
measurement)
- –67 –40 dB No RLOAD, CLOAD = 50 pF
1. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of
an external power supply supervisor (refer to Section : Internal reset OFF).
2. Guaranteed by design.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic
consumption occurs.
4. Guaranteed by characterization.
Table 74. DAC characteristics (continued)
Symbol Parameter Min Typ Max Unit Comments
Electrical characteristics STM32F415xx, STM32F417xx
146/206 DocID022063 Rev 8
Figure 53. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
5.3.26 FSMC characteristics
Unless otherwise specified, the parameters given in Table 75 to Table 86 for the FSMC
interface are derived from tests performed under the ambient temperature, fHCLK frequency
and VDD supply voltage conditions summarized in Table 14, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section Section 5.3.16: I/O port characteristics for more details on the input/output
characteristics.
Asynchronous waveforms and timings
Figure 54 through Figure 57 represent asynchronous waveforms and Table 75 through
Table 78 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
AddressSetupTime = 1
AddressHoldTime = 0x1
DataSetupTime = 0x1
BusTurnAroundDuration = 0x0
In all timing tables, the THCLK is the HCLK clock period.
5/
&/
%XIIHUHG1RQEXIIHUHG'$&
'$&B287[
%XIIHU
ELW
GLJLWDOWR
DQDORJ
FRQYHUWHU
AI6
DocID022063 Rev 8 147/206
STM32F415xx, STM32F417xx Electrical characteristics
Figure 54. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 2THCLK–0.5 2 THCLK+1 ns
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 0.5 3 ns
tw(NOE) FSMC_NOE low time 2THCLK–2 2THCLK+ 2 ns
th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 4.5 ns
th(A_NOE) Address hold time after FSMC_NOE high 4 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns
th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 - ns
tsu(Data_NE) Data to FSMC_NEx high setup time THCLK+4 - ns
tsu(Data_NOE) Data to FSMC_NOEx high setup time THCLK+4 - ns
th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns
th(Data_NE) Data hold time after FSMC_NEx high 0 - ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2 ns
tw(NADV) FSMC_NADV low time - THCLK ns
$ATA
&3-#?.%
&3-#?.",;=
&3-#?$;=
T
V",?.%
TH$ATA?.%
&3-#?./%
!DDRESS
&3-#?!;=
T
V!?.%
&3-#?.7%
TSU$ATA?.%
TW.%
AIC
W./%
TTV./%?.% TH.%?./%
TH$ATA?./%
TH!?./%
TH",?./%
TSU$ATA?./%
&3-#?.!$6
TV.!$6?.%
TW.!$6
Electrical characteristics STM32F415xx, STM32F417xx
148/206 DocID022063 Rev 8
Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 3THCLK 3THCLK+ 4 ns
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK–0.5 THCLK+0.5 ns
tw(NWE) FSMC_NWE low time THCLK–1 THCLK+2 ns
th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK–1 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns
th(A_NWE) Address hold time after FSMC_NWE high THCLK– 2 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns
th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK– 1 - ns
tv(Data_NE) Data to FSMC_NEx low to Data valid - THCLK+3 ns
th(Data_NWE) Data hold time after FSMC_NWE high THCLK–1 - ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 2 ns
tw(NADV) FSMC_NADV low time - THCLK+0.5 ns
1%/
'DWD
)60&B1([
)60&B1%/>@
)60&B'>@
W
Y%/B1(
WK'DWDB1:(
)60&B12(
$GGUHVV
)60&B$>@
W
Y$B1(
WZ1:(
)60&B1:(
WY1:(B1( WK1(B1:(
WK$B1:(
WK%/B1:(
WY'DWDB1(
WZ1(
DL
)60&B1$'9
WY1$'9B1(
WZ1$'9
DocID022063 Rev 8 149/206
STM32F415xx, STM32F417xx Electrical characteristics
Figure 56. Asynchronous multiplexed PSRAM/NOR read waveforms
.",
$ATA
&3-#?.",;=
&3-#?
!$;=
T
V",?.%
TH$ATA?.%
!DDRESS
&3-#?!;=
T
V!?.%
&3-#?.7%
TV!?.%
AIB
!DDRESS
&3-#?.!$6
TV.!$6?.%
TW.!$6
TSU$ATA?.%
T
H!$?.!$6
&3-#?.%
&3-#?./%
TW.%
TW./%
TV./%?.% TH.%?./%
TH!?./%
TH",?./%
TSU$ATA?./% TH$ATA?./%
Table 77. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 3THCLK–1 3THCLK+1 ns
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 2THCLK–0.5 2THCLK+0.5 ns
tw(NOE) FSMC_NOE low time THCLK–1 THCLK+1 ns
th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time 0 - ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 3 ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2 ns
tw(NADV) FSMC_NADV low time THCLK– 2 THCLK+1 ns
th(AD_NADV) FSMC_AD(adress) valid hold time after FSMC_NADV high) THCLK -ns
th(A_NOE) Address hold time after FSMC_NOE high THCLK–1 - ns
th(BL_NOE) FSMC_BL time after FSMC_NOE high 0 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 2 ns
tsu(Data_NE) Data to FSMC_NEx high setup time THCLK+4 - ns
tsu(Data_NOE) Data to FSMC_NOE high setup time THCLK+4 - ns
th(Data_NE) Data hold time after FSMC_NEx high 0 - ns
th(Data_NOE) Data hold time after FSMC_NOE high 0 - ns
1. CL = 30 pF.
2. Guaranteed by characterization.
Electrical characteristics STM32F415xx, STM32F417xx
150/206 DocID022063 Rev 8
Figure 57. Asynchronous multiplexed PSRAM/NOR write waveforms
Table 78. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)
1. CL = 30 pF.
Symbol Parameter Min Max Unit
tw(NE) FSMC_NE low time 4THCLK–0.5 4THCLK+3 ns
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK–0.5 THCLK -0.5 ns
tw(NWE) FSMC_NWE low tim e 2THCLK–0.5 2THCLK+3 ns
th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK -ns
tv(A_NE) FSMC_NEx low to FSMC_A valid - 0 ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 1 2 ns
tw(NADV) FSMC_NADV low time THCLK– 2 THCLK+ 1 ns
th(AD_NADV)
FSMC_AD(address) valid hold time after
FSMC_NADV high) THCLK–2 - ns
th(A_NWE) Address hold time after FSMC_NWE high THCLK -ns
th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK–2 - ns
tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 1.5 ns
tv(Data_NADV) FSMC_NADV high to Data valid - THCLK–0.5 ns
th(Data_NWE) Data hold time after FSMC_NWE high THCLK -ns
1%/
'DWD
)60&B1([
)60&B1%/>@
)60&B$'>@
W
Y%/B1(
WK'DWDB1:(
)60&B12(
$GGUHVV
)60&B$>@
W
Y$B1(
WZ1:(
)60&B1:(
WY1:(B1( WK1(B1:(
WK$B1:(
WK%/B1:(
WY$B1(
WZ1(
DL%
$GGUHVV
)60&B1$'9
WY1$'9B1(
WZ1$'9
WY'DWDB1$'9
W
K$'B1$'9
DocID022063 Rev 8 151/206
STM32F415xx, STM32F417xx Electrical characteristics
Synchronous waveforms and timings
Figure 58 through Figure 61 represent synchronous waveforms and Table 80 through
Table 82 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
BurstAccessMode = FSMC_BurstAccessMode_Enable;
MemoryType = FSMC_MemoryType_CRAM;
WriteBurst = FSMC_WriteBurst_Enable;
CLKDivision = 1; (0 is not supported, see the STM32F40xxx/41xxx reference manual)
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
In all timing tables, the THCLK is the HCLK clock period (with maximum
FSMC_CLK = 60 MHz).
Figure 58. Synchronous multiplexed NOR/PSRAM read timings
2. Guaranteed by characterization.
&3-#?#,+
&3-#?.%X
&3-#?.!$6
&3-#?!;=
&3-#?./%
&3-#?!$;= !$;= $ $
&3-#?.7!)4
7!)4#&'B7!)40/,B
&3-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+,.%X(
TD#,+,.!$6,
TD#,+,!6
TD#,+,.!$6(
TD#,+,!)6
TD#,+,./%, TD#,+,./%(
TD#,+,!$6
TD#,+,!$)6
TSU!$6#,+(
TH#,+(!$6
TSU!$6#,+( TH#,+(!$6
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
AIG
Electrical characteristics STM32F415xx, STM32F417xx
152/206 DocID022063 Rev 8
Table 79. Synchronous multiplexed NOR/PSRAM read timings(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK -ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 2 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 2 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 0 - ns
td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 0 ns
td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 2 - ns
td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 4.5 ns
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns
tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high 6 - ns
th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 0 - ns
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 4 - ns
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 0 - ns
DocID022063 Rev 8 153/206
STM32F415xx, STM32F417xx Electrical characteristics
Figure 59. Synchronous multiplexed PSRAM write timings
Table 80. Synchronous multiplexed PSRAM write timings(1)(2)
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK -ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 0 ns
td(CLKL-
NADVH)
FSMC_CLK low to FSMC_NADV high 0 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 8 - ns
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 0.5 ns
td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 0 - ns
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - ns
td(CLKL-DATA)
FSMC_A/D[15:0] valid data after FSMC_CLK
low -3ns
&3-#?#,+
&3-#?.%X
&3-#?.!$6
&3-#?!;=
&3-#?.7%
&3-#?!$;= !$;= $ $
&3-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+,.%X(
TD#,+,.!$6,
TD#,+,!6
TD#,+,.!$6(
TD#,+,!)6
TD#,+,.7%(
TD#,+,.7%,
TD#,+,.",(
TD#,+,!$6
TD#,+,!$)6 TD#,+,$ATA
TSU.7!)46#,+( TH#,+(.7!)46
AIG
TD#,+,$ATA
&3-#?.",
Electrical characteristics STM32F415xx, STM32F417xx
154/206 DocID022063 Rev 8
Figure 60. Synchronous non-multiplexed NOR/PSRAM read timings
td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 0 - ns
tsu(NWAIT-
CLKH)
FSMC_NWAIT valid before FSMC_CLK high 4 - ns
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 0 - ns
1. CL = 30 pF.
2. Guaranteed by characterization.
Table 80. Synchronous multiplexed PSRAM write timings(1)(2) (continued)
Symbol Parameter Min Max Unit
&3-#?#,+
&3-#?.%X
&3-#?!;=
&3-#?./%
&3-#?$;= $ $
&3-#?.7!)4
7!)4#&'B7!)40/,B
&3-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+,.%X(
TD#,+,!6 TD#,+,!)6
TD#,+,./%, TD#,+,./%(
TSU$6#,+( TH#,+($6
TSU$6#,+( TH#,+($6
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
AIF
&3-#?.!$6
TD#,+,.!$6, TD#,+,.!$6(
DocID022063 Rev 8 155/206
STM32F415xx, STM32F417xx Electrical characteristics
Table 81. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK –0.5 - ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 0.5 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 0 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 2 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 3 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 2 - ns
td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low - 0.5 ns
td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1.5 - ns
tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 6 - ns
th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 3 - ns
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 4 - ns
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 0 - ns
Electrical characteristics STM32F415xx, STM32F417xx
156/206 DocID022063 Rev 8
Figure 61. Synchronous non-multiplexed PSRAM write timings
Table 82. Synchronous non-multiplexed PSRAM write timings(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization.
Symbol Parameter Min Max Unit
tw(CLK) FSMC_CLK period 2THCLK -ns
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) - 1 ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2) 1 - ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 7 ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 6 - ns
td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16…25) - 0 ns
td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x=16…25) 6 - ns
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low - 1 ns
td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high 2 - ns
td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 3 ns
td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 3 - ns
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 4 - ns
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 0 - ns
&3-#?#,+
&3-#?.%X
&3-#?!;=
&3-#?.7%
&3-#?$;= $ $
&3-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+,.%X(
TD#,+,!6 TD#,+,!)6
TD#,+,.7%(
TD#,+,.7%,
TD#,+,$ATA
TSU.7!)46#,+(
TH#,+(.7!)46
AIG
&3-#?.!$6
TD#,+,.!$6, TD#,+,.!$6(
TD#,+,$ATA
&3-#?.",
TD#,+,.",(
DocID022063 Rev 8 157/206
STM32F415xx, STM32F417xx Electrical characteristics
PC Card/CompactFlash controller waveforms and timings
Figure 62 through Figure 67 represent synchronous waveforms, and Table 83 and Table 84
provide the corresponding timings. The results shown in this table are obtained with the
following FSMC configuration:
COM.FSMC_SetupTime = 0x04;
COM.FSMC_WaitSetupTime = 0x07;
COM.FSMC_HoldSetupTime = 0x04;
COM.FSMC_HiZSetupTime = 0x00;
ATT.FSMC_SetupTime = 0x04;
ATT.FSMC_WaitSetupTime = 0x07;
ATT.FSMC_HoldSetupTime = 0x04;
ATT.FSMC_HiZSetupTime = 0x00;
IO.FSMC_SetupTime = 0x04;
IO.FSMC_WaitSetupTime = 0x07;
IO.FSMC_HoldSetupTime = 0x04;
IO.FSMC_HiZSetupTime = 0x00;
TCLRSetupTime = 0;
TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
Figure 62. PC Card/CompactFlash controller waveforms for common memory read
access
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.
)60&B1:(
WZ12(
)60&B1
2(
)60&B'>@
)60&B$>@
)60&B1&(B
)60&B1&(B
)60&B15(*
)60&B1,2:5
)60&B1,25'
WG1&(B12(
WVX'12( WK12('
WY1&([$
WG15(*1&([
WG1,25'1&([
WK1&([$,
WK1&([15(*
WK1&([1,25'
WK1&([
1,2:5
DLE
Electrical characteristics STM32F415xx, STM32F417xx
158/206 DocID022063 Rev 8
Figure 63. PC Card/CompactFlash controller waveforms for common memory write
access
WG1&(B1:( WZ1:(
WK1:('
WY1&(B$
WG15(*1&(B
WG1,25'1&(B
WK1&(B$,
0(0[+,= 
WY1:('
WK1&(B15(*
WK1&(B1,25'
WK1&(B1,2:5
DL
)60&B1:(
)60&B1
2(
)60&B'>@
)60&B$>@
)60&B1&(B
)60&B15(*
)60&B1,2:5
)60&B1,25'
WG1:(1&(B
WG'1:(
)60&B1&(B +LJK
DocID022063 Rev 8 159/206
STM32F415xx, STM32F417xx Electrical characteristics
Figure 64. PC Card/CompactFlash controller waveforms for attribute memory read
access
1. Only data bits 0...7 are read (bits 8...15 are disregarded).
WG1&(B12( WZ12(
WVX'12( WK12('
WY1&(B$ WK1&(B$,
WG15(*1&(B WK1&(B15(*
DLE
)60&B1:(
)60&B12(
)60&B'>@
)60&B$>@
)60&B1&(B
)60&B1&(B
)60&B15(*
)60&B1,2:5
)60&B1,25'
WG12(1&(B
+LJK
Electrical characteristics STM32F415xx, STM32F417xx
160/206 DocID022063 Rev 8
Figure 65. PC Card/CompactFlash controller waveforms for attribute memory write
access
1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).
Figure 66. PC Card/CompactFlash controller waveforms for I/O space read access
WZ1:(
WY1&(B$
WG15(*1&(B
WK1&(B$,
WK1&(B15(*
WY1:('
DLE
)60&B1:(
)60&B12(
)60&B'>@
)60&B$>@
)60&B1&(B
)60&B1&(B
)60&B15(*
)60&B1,2:5
)60&B1,25'
WG1:(1&(B
+LJK
WG1&(B1:(
WG1,25'1&(B WZ1,25'
WVX'1,25' WG1,25''
WY1&([$ WK1&(B$,
DL%
)60&B1:(
)60&B12(
)60&B'>@
)60&B$>@
)60&B1&(B
)60&B1&(B
)60&B15(*
)60&B1,2:5
)60&B1,25'
DocID022063 Rev 8 161/206
STM32F415xx, STM32F417xx Electrical characteristics
Figure 67. PC Card/CompactFlash controller waveforms for I/O space write access
WG1&(B1,2:5 WZ1,2:5
WY1&([$ WK1&(B$,
WK1,2:5'
$77[+,= 
WY1,2:5'
DLF
)60&B1:(
)60&B12(
)60&B'>@
)60&B$>@
)60&B1&(B
)60&B1&(B
)60&B15(*
)60&B1,2:5
)60&B1,25'
Table 83. Switching characteristics for PC Card/CF read and write cycles
in attribute/common space(1)(2)
Symbol Parameter Min Max Unit
tv(NCEx-A) FSMC_Ncex low to FSMC_Ay valid - 0 ns
th(NCEx_AI) FSMC_NCEx high to FSMC_Ax invalid 4 - ns
td(NREG-NCEx) FSMC_NCEx low to FSMC_NREG valid - 3.5 ns
th(NCEx-NREG) FSMC_NCEx high to FSMC_NREG invalid THCLK+4 - ns
td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5THCLK+0.5 ns
td(NCEx-NOE) FSMC_NCEx low to FSMC_NOE low - 5THCLK +0.5 ns
tw(NOE) FSMC_NOE low width 8THCLK–1 8THCLK+1 ns
td(NOE_NCEx) FSMC_NOE high to FSMC_NCEx high 5THCLK+2.5 - ns
tsu (D-NOE) FSMC_D[15:0] valid data before FSMC_NOE high 4.5 - ns
th(N0E-D) FSMC_N0E high to FSMC_D[15:0] invalid 3 - ns
tw(NWE) FSMC_NWE low width 8THCLK–0.5 8THCLK+ 3 ns
td(NWE_NCEx) FSMC_NWE high to FSMC_NCEx high 5THCLK–1 -ns
td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low - 5THCLK+ 1 ns
tv(NWE-D) FSMC_NWE low to FSMC_D[15:0] valid - 0 ns
th (NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid 8THCLK –1 - ns
td (D-NWE) FSMC_D[15:0] valid before FSMC_NWE high 13THCLK –1 - ns
1. CL = 30 pF.
2. Guaranteed by characterization.
Electrical characteristics STM32F415xx, STM32F417xx
162/206 DocID022063 Rev 8
NAND controller waveforms and timings
Figure 68 through Figure 71 represent synchronous waveforms, and Table 85 and Table 86
provide the corresponding timings. The results shown in this table are obtained with the
following FSMC configuration:
COM.FSMC_SetupTime = 0x01;
COM.FSMC_WaitSetupTime = 0x03;
COM.FSMC_HoldSetupTime = 0x02;
COM.FSMC_HiZSetupTime = 0x01;
ATT.FSMC_SetupTime = 0x01;
ATT.FSMC_WaitSetupTime = 0x03;
ATT.FSMC_HoldSetupTime = 0x02;
ATT.FSMC_HiZSetupTime = 0x01;
Bank = FSMC_Bank_NAND;
MemoryDataWidth = FSMC_MemoryDataWidth_16b;
ECC = FSMC_ECC_Enable;
ECCPageSize = FSMC_ECCPageSize_512Bytes;
TCLRSetupTime = 0;
TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
Table 84. Switching characteristics for PC Card/CF read and write cycles
in I/O space(1)(2)
Symbol Parameter Min Max Unit
tw(NIOWR) FSMC_NIOWR low width 8THCLK –1 - ns
tv(NIOWR-D) FSMC_NIOWR low to FSMC_D[15:0] valid - 5THCLK– 1 ns
th(NIOWR-D) FSMC_NIOWR high to FSMC_D[15:0] invalid 8THCLK– 2 - ns
td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid - 5THCLK+ 2.5 ns
th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid 5THCLK–1.5 - ns
td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid - 5THCLK+ 2 ns
th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD) valid 5THCLK– 1.5 - ns
tw(NIORD) FSMC_NIORD low width 8THCLK–0.5 - ns
tsu(D-NIORD) FSMC_D[15:0] valid before FSMC_NIORD high 9 - ns
td(NIORD-D) FSMC_D[15:0] valid after FSMC_NIORD high 0 - ns
1. CL = 30 pF.
2. Guaranteed by characterization.
DocID022063 Rev 8 163/206
STM32F415xx, STM32F417xx Electrical characteristics
Figure 68. NAND controller waveforms for read access
Figure 69. NAND controller waveforms for write access
&3-#?.7%
&3-#?./%.2%
&3-#?$;=
TSU$./% TH./%$
AIC
!,%&3-#?!
#,%&3-#?!
&3-#?.#%X
TD!,%./% TH./%!,%
AIC
WK1:('
WY1:('
)60&B1:(
)60&B12(15(
)60&B'>@
$/()60&B$
&/()60&B$
)60&B1&([
WG$/(1:( WK1:($/(
Electrical characteristics STM32F415xx, STM32F417xx
164/206 DocID022063 Rev 8
Figure 70. NAND controller waveforms for common memory read access
Figure 71. NAND controller waveforms for common memory write access
Table 85. Switching characteristics for NAND Flash read cycles(1)
1. CL = 30 pF.
Symbol Parameter Min Max Unit
tw(N0E) FSMC_NOE low width 4THCLK
0.5 4THCLK+ 3 ns
tsu(D-NOE) FSMC_D[15-0] valid data before FSMC_NOE high 10 - ns
th(NOE-D) FSMC_D[15-0] valid data after FSMC_NOE high 0 - ns
td(ALE-NOE) FSMC_ALE valid before FSMC_NOE low - 3THCLK ns
th(NOE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK– 2 - ns
)60&B1:(
)60&B1
2(
)60&B'>@
W
Z12(
W
VX'12(
W
K12('
DLF
$/()60&B$
&/()60&B$
)60&B1&([
W
G$/(12(
W
K12($/(
DLF
WZ1:(
WK1:('
WY1:('
)60&B1:(
)60&B1
2(
)60&B'>@
WG'1:(
$/()60&B$
&/()60&B$
)60&B1&([
WG$/(12( WK12($/(
DocID022063 Rev 8 165/206
STM32F415xx, STM32F417xx Electrical characteristics
5.3.27 Camera interface (DCMI) timing specifications
Unless otherwise specified, the parameters given in Table 87 for DCMI are derived from
tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage
summarized in Table 13, with the following configuration:
PCK polarity: falling
VSYNC and HSYNC polarity: high
Data format: 14 bits
Figure 72. DCMI timing diagram
Table 86. Switching characteristics for NAND Flash write cycles(1)
1. CL = 30 pF.
Symbol Parameter Min Max Unit
tw(NWE) FSMC_NWE low width 4THCLK–1 4THCLK+ 3 ns
tv(NWE-D) FSMC_NWE low to FSMC_D[15-0] valid - 0 ns
th(NWE-D) FSMC_NWE high to FSMC_D[15-0] invalid 3THCLK –2 - ns
td(D-NWE) FSMC_D[15-0] valid before FSMC_NWE high 5THCLK–3 - ns
td(ALE-NWE) FSMC_ALE valid before FSMC_NWE low - 3THCLK ns
th(NWE-ALE) FSMC_NWE high to FSMC_ALE invalid 3THCLK–2 - ns
Table 87. DCMI characteristics(1)
Symbol ParameterMinMaxUnit
Frequency ratio DCMI_PIXCLK/fHCLK -0.4
DCMI_PIXCLK Pixel clock input - 54 MHz
Dpixel Pixel clock input duty cycle 30 70 %
069
'&0,B3,;&/.
WVX96<1&
WVX+6<1&
'&0,B+6<1&
'&0,B96<1&
'$7$>@
'&0,B3,;&/.
WK+6<1&
WK+6<1&
WVX'$7$ WK'$7$
Electrical characteristics STM32F415xx, STM32F417xx
166/206 DocID022063 Rev 8
5.3.28 SD/SDIO MMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Table 88 are derived from tests
performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions
summarized in Table 14 with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output
characteristics.
Figure 73. SDIO high-speed mode
tsu(DATA) Data input setup time 2.5 -
ns
th(DATA) Data hold time 1 -
tsu(HSYNC),
tsu(VSYNC)
HSYNC/VSYNC input setup time 2 -
th(HSYNC),
th(VSYNC)
HSYNC/VSYNC input hold time 0.5 -
1. Guaranteed by characterization.
Table 87. DCMI characteristics(1) (continued)
Symbol ParameterMinMaxUnit
tW(CKH)
CK
D, CMD
(output)
D, CMD
(input)
tC
tW(CKL)
tOV tOH
tISU tIH
tftr
ai14887
DocID022063 Rev 8 167/206
STM32F415xx, STM32F417xx Electrical characteristics
Figure 74. SD default mode
5.3.29 RTC characteristics
CK
D, CMD
(output)
tOVD tOHD
ai14888
Table 88. Dynamic characteristics: SD / MMC characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode 0 48 MHz
SDIO_CK/fPCLK2 frequency ratio - - 8/3 -
tW(CKL) Clock low time fPP = 48 MHz 8.5 9 -
ns
tW(CKH) Clock high time fPP = 48 MHz 8.3 10 -
CMD, D inputs (referenced to CK) in MMC and SD HS mode
tISU Input setup time HS fPP = 48 MHz 3 - -
ns
tIH Input hold time HS fPP = 48 MHz 0 - -
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV Output valid time HS fPP = 48 MHz - 4.5 6
ns
tOH Output hold time HS fPP = 48 MHz 1 - -
CMD, D inputs (referenced to CK) in SD default mode
tISUD Input setup time SD fPP = 24 MHz 1.5 - -
ns
tIHD Input hold time SD fPP = 24 MHz 0.5 - -
CMD, D outputs (referenced to CK) in SD default mode
tOVD Output valid default time SD fPP = 24 MHz - 4.5 7
ns
tOHD Output hold default time SD fPP = 24 MHz 0.5 - -
1. Guaranteed by characterization.
Table 89. RTC characteristics
Symbol Parameter Conditions Min Max
-f
PCLK1/RTCCLK frequency ratio Any read/write operation
from/to an RTC register 4-
Package information STM32F415xx, STM32F417xx
168/206 DocID022063 Rev 8
6 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
6.1 WLCSP90 package information
Figure 75. WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale
package outline
1. Drawing is not to scale.
!*7?-%?6
6,'(9,(:
'HWDLO$
$
'HWDLO$
5RWDWHG
HHH
'
6HDWLQJSODQH
$
$
E
(
H
H
H
*
H
$
$EDOOORFDWLRQ
%277209,(:
%8036,'(
$
$
$
)52179,(:
7239,(:
:$)(5%$&.6,'(
EEE =

*
!
)
CCC
DDD :
:89
:
"UMP
!ORIENTATION
REFERENCE
AAA
8
DocID022063 Rev 8 169/206
STM32F415xx, STM32F417xx Package information
Figure 76. WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale
recommended footprint
Table 90. WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch wafer level chip scale
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.540 0.570 0.600 0.0213 0.0224 0.0236
A1 - 0.190 - - 0.0075 -
A2 - 0.380 - - 0.0150 -
A3(2)
2. Back side coating.
- 0.025 - - 0.0010 -
b(3)
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
0.240 0.270 0.300 0.0094 0.0106 0.0118
D 4.188 4.223 4.258 0.1649 0.1663 0.1676
E 3.934 3.969 4.004 0.1549 0.1563 0.1576
e - 0.400 - - 0.0157 -
e1 - 3.600 - - 0.1417 -
e2 - 3.200 - - 0.1260 -
F - 0.3115 - - 0.0123 -
G - 0.3845 - - 0.0151 -
aaa - 0.100 - - 0.0039 -
bbb - 0.100 - - 0.0039 -
ccc - 0.100 - - 0.0039 -
ddd - 0.050 - - 0.0020 -
eee - 0.050 - - 0.0020 -
069
'VP
'SDG
Package information STM32F415xx, STM32F417xx
170/206 DocID022063 Rev 8
Device marking for WLCSP90
The following figure gives an example of topside marking and ball A1 position identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 77. WLCSP90 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
Table 91. WLCSP90 recommended PCB design rules
Dimension Recommended values
Pitch 0.4 mm
Dpad 260 µm max. (circular)
220 µm recommended
Dsm 300 µm min. (for 260 µm diameter pad)
PCB pad design Non-solder mask defined via underbump allowed
06Y9
%DOO$
LQGHQWLIHU
3URGXFWLGHQWLILFDWLRQ
)2*
5
5HYLVLRQFRGH
'DWHFRGH
<::
DocID022063 Rev 8 171/206
STM32F415xx, STM32F417xx Package information
6.2 LQFP64 package information
Figure 78. LQFP64 – 64-pin, 10 x 10 mm low-profile quad flat package outline
1. Drawing is not to scale.
Table 92. LQFP64 – 64-pin 10 x 10 mm low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
:B0(B9
$
$
$
6($7,1*3/$1(
FFF &
E
&
F
$
/
/
.
,'(17,),&$7,21
3,1
'
'
'
H







(
(
(
*$8*(3/$1(
PP
Package information STM32F415xx, STM32F417xx
172/206 DocID022063 Rev 8
Figure 79. LQFP64 – 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint
1. Dimensions are in millimeters.
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
K 0°3.5°7° 0°3.5°7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 92. LQFP64 – 64-pin 10 x 10 mm low-profile quad flat package
mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max



 










AIC
DocID022063 Rev 8 173/206
STM32F415xx, STM32F417xx Package information
Device marking for LQFP64
The following figure gives an example of topside marking and pin 1 position identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 80. LPQF64 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
06Y9
3LQLGHQWLILHU
5
5HYLVLRQFRGH
670)
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
<::
5*7
Package information STM32F415xx, STM32F417xx
174/206 DocID022063 Rev 8
6.3 LQPF100 package information
Figure 81. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline
1. Drawing is not to scale.
E
)$%.4)&)#!4)/.
0).
'!5'%0,!.%
MM
3%!4).'0,!.%
$
$
$
%
%
%
+
CCC #
#




 

,?-%?6
!
!
!
,
,
C
B
!
Table 93. LQPF100 – 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data(1)
Symbol
millimeters inches
Min Typ Max Min Typ Max
A - -1.600 - -0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.80 16.000 16.200 0.6220 0.6299 0.6378
DocID022063 Rev 8 175/206
STM32F415xx, STM32F417xx Package information
Figure 82. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint
1. Dimensions are expressed in millimeters.
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - -0.080 - -0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 93. LQPF100 – 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data(1) (continued)
Symbol
millimeters inches
Min Typ Max Min Typ Max
 
 

 
 




AIC
Package information STM32F415xx, STM32F417xx
176/206 DocID022063 Rev 8
Device marking for LFP100
The following figure gives an example of topside marking and pin 1 position identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 83. LQFP100 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
06Y9
'DWHFRGH
3LQLGHQWLILHU
670)
9*75
3URGXFW
LGHQWLILFDWLRQ
^důŽŐŽ
5HYLVLRQ
FRGH
<::
DocID022063 Rev 8 177/206
STM32F415xx, STM32F417xx Package information
6.4 LQFP144 package information
Figure 84. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline
1. Drawing is not to scale.
H
,'(17,),&$7,21
3,1
*$8*(3/$1(
PP
6($7,1*
3/$1(
'
'
'
(
(
(
.
FFF &
&




 

$B0(B9
$
$
$
/
/
F
E
$
Package information STM32F415xx, STM32F417xx
178/206 DocID022063 Rev 8
Table 94. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.874
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 - 17.500 - - 0.689 -
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 - 17.500 - - 0.6890 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID022063 Rev 8 179/206
STM32F415xx, STM32F417xx Package information
Figure 85. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint
1. Dimensions are in millimeters.


 




DLH






Package information STM32F415xx, STM32F417xx
180/206 DocID022063 Rev 8
Device marking for LQPF144
The following figure gives an example of topside marking and pin 1 position identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 86. LQFP144 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
06Y9
'DWHFRGH
3LQLGHQWLILHU
670)=*7
5
3URGXFWLGHQWLILFDWLRQ
5HYLVLRQFRGH
<::
2SWLRQDO
HMHFWRUKROH
2SWLRQDOHMHFWRUKROH
DocID022063 Rev 8 181/206
STM32F415xx, STM32F417xx Package information
6.5 UFBGA176+25 package information
Figure 87. UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch
ball grid array package outline
1. Drawing is not to scale.
Table 95. UFBGA176+25 ball, 10 × 10 × 0.65 mm pitch, ultra thin fine pitch
ball grid array mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 0.600 - - 0.0236
A1 - - 0.110 - - 0.0043
A2 - 0.130 - - 0.0051 -
A3 - 0.450 - - 0.0177 -
A4 - 0.320 - - 0.0126 -
b 0.240 0.290 0.340 0.0094 0.0114 0.0134
D 9.850 10.000 10.150 0.3878 0.3937 0.3996
D1 - 9.100 - - 0.3583 -
E 9.850 10.000 10.150 0.3878 0.3937 0.3996
E1 - 9.100 - - 0.3583 -
e - 0.650 - - 0.0256 -
Z - 0.450 - - 0.0177 -
ddd - - 0.080 - - 0.0031
$(B0(B9
'
^ĞĂƚŝŶŐƉůĂŶĞ
ϯ
ĚĚĚ
ϭ
Ğ
Ğ
Z
ϭϱ ϭ
KddKDs/t
dKWs/t
EEDOOV
$
HHH 0
III0
&
&
$
&
$EDOO
LGHQWLILHU
$EDOO
LQGH[
DUHD
ď
ϰ
(
$
Package information STM32F415xx, STM32F417xx
182/206 DocID022063 Rev 8
Figure 88. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch
ball grid array recommended footprint
Note: Non solder mask defined (NSMD) pads are recommended.
4 to 6 mils solder paste screen printing process.
Stencil opening is 0.300 mm.
Stencil thickness is between 0.100 mm and 0.125 mm.
Pad trace width is 0.100 mm.
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 96. UFBGA176+2 recommended PCB design rules (0.65 mm pitch BGA)
Dimension Recommended values
Pitch 0.65
Dpad 0.300 mm
Dsm 0.400 mm typ. (depends on the soldermask
registration tolerance)
Table 95. UFBGA176+25 ball, 10 × 10 × 0.65 mm pitch, ultra thin fine pitch
ball grid array mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
Ϭϳͺ&Wͺsϭ
'SDG
'VP
DocID022063 Rev 8 183/206
STM32F415xx, STM32F417xx Package information
Device marking for UFBGA176+25
The following figure gives an example of topside marking and ball A 1 position identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 89. UFBGA176+25 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
06Y9
5HYLVLRQFRGH
%DOO
$LGHQWLILHU
5
670
3URGXFWLGHQWLILFDWLRQ
),*+
'DWHFRGH
Package information STM32F415xx, STM32F417xx
184/206 DocID022063 Rev 8
6.6 LQFP176 package information
Figure 90. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline
1. Drawing is not to scale.
4?-%?6
!
!
E
%(%
$
($
:$
:%
B
MM
GAUGEPLANE
! ,
,
K
C
)$%.4)&)#!4)/.
0).
3EATINGPLANE
#
!
Table 97. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package
mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 - 1.450 0.0531 - 0.0571
b 0.170 - 0.270 0.0067 - 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 23.900 - 24.100 0.9409 - 0.9488
HD 25.900 - 26.100 1.0197 - 1.0276
DocID022063 Rev 8 185/206
STM32F415xx, STM32F417xx Package information
ZD - 1.250 - - 0.0492 -
E 23.900 - 24.100 0.9409 - 0.9488
HE 25.900 - 26.100 1.0197 - 1.0276
ZE - 1.250 - - 0.0492 -
e - 0.500 - - 0.0197 -
L(2) 0.450 - 0.750 0.0177 - 0.0295
L1 - 1.000 - - 0.0394 -
k0° - 7°0° - 7°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.
Table 97. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package
mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
Package information STM32F415xx, STM32F417xx
186/206 DocID022063 Rev 8
Figure 91. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended
footprint
1. Dimensions are expressed in millimeters.
4?&0?6






 







DocID022063 Rev 8 187/206
STM32F415xx, STM32F417xx Package information
Device marking for LQFP176
The following figure gives an example of topside marking and pin 1 position identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 92. LQFP176 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
06Y9
::<
3LQLGHQWLILHU
5
670),*7
'DWHFRGH
3URGXFWLGHQWLILFDWLRQ
5HYLVLRQFRGH
Package information STM32F415xx, STM32F417xx
188/206 DocID022063 Rev 8
6.7 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 98. Package thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch 46
°C/W
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch 43
Thermal resistance junction-ambient
LQFP144 - 20 × 20 mm / 0.5 mm pitch 40
Thermal resistance junction-ambient
LQFP176 - 24 × 24 mm / 0.5 mm pitch 38
Thermal resistance junction-ambient
UFBGA176 - 10× 10 mm / 0.65 mm pitch 39
Thermal resistance junction-ambient
WLCSP90 - 0.400 mm pitch 38.1
DocID022063 Rev 8 189/206
STM32F415xx, STM32F417xx Part numbering
7 Part numbering
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Table 99. Ordering information scheme
Example: STM32 F 415 R E T 6 xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
415 = STM32F41xxx, connectivity, cryptographic acceleration
417= STM32F41xxx, connectivity, camera interface, Ethernet
cryptographic acceleration
Pin count
R = 64 pins
O = 90 pins
V = 100 pins
Z = 144 pins
I = 176 pins
Flash memory size
E = 512 Kbytes of Flash memory
G = 1024 Kbytes of Flash memory
Package
T = LQFP
H = UFBGA
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Options
xxx = programmed parts
TR = tape and reel
Application block diagrams STM32F415xx, STM32F417xx
190/206 DocID022063 Rev 8
Appendix A Application block diagrams
A.1 USB OTG full speed (FS) interface solutions
Figure 93. USB controller configured as peripheral-only and used
in Full speed mode
1. External voltage regulator only needed when building a VBUS powered device.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
Figure 94. USB controller configured as host-only and used in full speed mode
1. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
34-&XX
6TO6$$
6OLATGEREGULATOR 
6$$
6"53
$0
633
0!0"
0!0"
53"3TD"CONNECTOR
$-
/3#?).
/3#?/54
-36
34-&XX
6$$
6"53
$0
633
53"3TD!CONNECTOR
$-
'0)/)21
'0)/
%.
/VERCURRENT
60WR
/3#?).
/3#?/54
-36
#URRENTLIMITER
POWERSWITCH
0!0"
0!0"
DocID022063 Rev 8 191/206
STM32F415xx, STM32F417xx Application block diagrams
Figure 95. USB controller configured in dual mode and used in full speed mode
1. External voltage regulator only needed when building a VBUS powered device.
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
3. The ID pin is required in dual role only.
4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
34-&XX
6$$
6"53
$0
633
0!0"
0!0"
0!0"
53"MICRO!"CONNECTOR
$-
'0)/)21
'0)/
%.
/VERCURRENT
60WR
6TO6
$$
VOLTAGEREGULATOR 
6$$
)$
0!0"
/3#?).
/3#?/54
-36
#URRENTLIMITER
POWERSWITCH
Application block diagrams STM32F415xx, STM32F417xx
192/206 DocID022063 Rev 8
A.2 USB OTG high speed (HS) interface solutions
Figure 96. USB controller configured as peripheral, host, or dual-mode
and used in high speed mode
1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the
STM32F41xxx with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example
of a possible connection.
2. The ID pin is required in dual role only.
$0
34-&XX
$-
6"53
633
$-
$0
)$
53"
53"(3
/4'#TRL
&30(9
5,0)
(IGHSPEED
/4'0(9
5,0)?#,+
5,0)?$;=
5,0)?$)2
5,0)?340
5,0)?.84
NOTCONNECTED
CONNECTOR
-#/OR-#/
OR-(Z84
0,, 84
8)
-36
DocID022063 Rev 8 193/206
STM32F415xx, STM32F417xx Application block diagrams
A.3 Ethernet interface solutions
Figure 97. MII mode using a 25 MHz crystal
1. fHCLK must be greater than 25 MHz.
2. Pulse per second when using IEEE1588 PTP optional signal.
Figure 98. RMII with a 50 MHz oscillator
1. fHCLK must be greater than 25 MHz.
-#5
%THERNET
-!#
%THERNET
0(9
0,, (#,+
84
0(9?#,+-(Z
-))?28?#,+
-))?28$;=
-))?28?$6
-))?28?%2
-))?48?#,+
-))?48?%.
-))?48$;=
-))?#23
-))?#/,
-$)/
-$#
(#,+
003?/54
84!,
-(Z
34-
/3#
4)- 4IMESTAMP
COMPARATOR
4IMER
INPUT
TRIGGER
)%%%040
-))
PINS
-))-$#
PINS
-36
-#/-#/
-#5
%THERNET
-!#
%THERNET
0(9
0,, (#,+
84
0(9?#,+-(Z
2-))?28$;=
2-))?#28?$6
2-))?2%&?#,+
2-))?48?%.
2-))?48$;=
-$)/
-$#
(#,+
34-
/3#
-(Z
4)- 4IMESTAMP
COMPARATOR
4IMER
INPUT
TRIGGER
)%%%040
2-))
PINS
2-))-$#
PINS
-36
OR
SYNCHRONOUS
OR-(Z -(Z
-(Z
Application block diagrams STM32F415xx, STM32F417xx
194/206 DocID022063 Rev 8
Figure 99. RMII with a 25 MHz crystal and PHY with PLL
1. fHCLK must be greater than 25 MHz.
2. The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block.
-#5
%THERNET
-!#
%THERNET
0(9
0,, (#,+
84
0(9?#,+-(Z
2-))?28$;=
2-))?#28?$6
2-))?2%&?#,+
2-))?48?%.
2-))?48$;=
-$)/
-$#
(#,+
34-&
4)- 4IMESTAMP
COMPARATOR
4IMER
INPUT
TRIGGER
)%%%040
2-))
PINS
2-))-$#
PINS
-36
OR
SYNCHRONOUS
OR-(Z -(Z
84!,
-(Z /3# 0,,
2%&?#,+
-#/-#/
DocID022063 Rev 8 195/206
STM32F415xx, STM32F417xx Revision history
8 Revision history
Table 100. Document revision history
Date Revision Changes
15-Sep-2011 1 Initial release.
24-Jan-2012 2
Added WLCSP90 package on cover page.
Renamed USART4 and USART5 into UART4 and UART5,
respectively.
Updated number of USB OTG HS and FS in Table 2: STM32F415xx
and STM32F417xx: features and peripheral counts.
Updated Figure 3: Compatible board design between
STM32F10xx/STM32F2/STM32F41xxx for LQFP144 package and
Figure 4: Compatible board design between STM32F2 and
STM32F41xxx for LQFP176 and BGA176 packages, and removed
note 1 and 2.
Updated Section 2.2.9: Flexible static memory controller (FSMC).
Modified I/Os used to reprogram the Flash memory for CAN2 and
USB OTG FS in Section 2.2.13: Boot modes.
Updated note in Section 2.2.14: Power supply schemes.
PDR_ON no more available on LQFP100 package. Updated
Section 2.2.16: Voltage regulator. Updated condition to obtain a
minimum supply voltage of 1.7 V in the whole document.
Renamed USART4/5 to UART4/5 and added LIN and IrDA feature for
UART4 and UART5 in Table 5: USART feature comparison.
Removed support of I2C for OTG PHY in Section 2.2.30: Universal
serial bus on-the-go full-speed (OTG_FS).
Added Table 6: Legend/abbreviations used in the pinout table.
Table 7: STM32F41xxx pin and ball definitions: replaced VSS_3,
VSS_4, and VSS_8 by VSS; reformatted Table 7: STM32F41xxx pin and
ball definitions to better highlight I/O structure, and alternate functions
versus additional functions; signal corresponding to LQFP100 pin 99
changed from PDR_ON to VSS; EVENTOUT added in the list of
alternate functions for all I/Os; ADC3_IN8 added as alternate function
for PF10; FSMC_CLE and FSMC_ALE added as alternate functions
for PD11 and PD12, respectively; PH10 alternate function
TIM15_CH1_ETR renamed TIM5_CH1; updated PA4 and PA5 I/O
structure to TTa.
Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in Table 7:
STM32F41xxx pin and ball definitions and Table 9: Alternate function
mapping.
Changed TCM data RAM to CCM data RAM in Figure 18:
STM32F41xxx memory map.
Added IVDD and IVSS maximum values in Table 12: Current
characteristics.
Added Note 1 related to fHCLK, updated Note 2 in Table 14: General
operating conditions, and added maximum power dissipation values.
Updated Table 15: Limitations depending on the operating power
supply range.
Revision history STM32F415xx, STM32F417xx
196/206 DocID022063 Rev 8
24-Jan-2012 2
(continued)
Added V12 in Table 19: Embedded reset and power control block
characteristics.
Updated Table 21: Typical and maximum current consumption in Run
mode, code with data processing running from Flash memory (ART
accelerator disabled) and Table 20: Typical and maximum current
consumption in Run mode, code with data processing running from
Flash memory (ART accelerator enabled) or RAM. Added Figure ,
Figure 25, Figure 26, and Figure 27.
Updated Table 22: Typical and maximum current consumption in Sleep
mode and removed Note 1.
Updated Table 23: Typical and maximum current consumptions in Stop
mode and Table 24: Typical and maximum current consumptions in
Standby mode, Table 25: Typical and maximum current consumptions
in VBAT mode, and Table 27: Switching output I/O current
consumption.
Section : On-chip peripheral current consumption: modified conditions,
and updated Table 28: Peripheral current consumption and Note 2.
Changed fHSE_ext to 50 MHz and tr(HSE)/tf(HSE) maximum value in
Table 30: High-speed external user clock characteristics.
Added Cin(LSE) in Table 31: Low-speed external user clock
characteristics.
Updated maximum PLL input clock frequency, removed related note,
and deleted jitter for MCO for RMII Ethernet typical value in Table 36:
Main PLL characteristics. Updated maximum PLLI2S input clock
frequency and removed related note in Table 37: PLLI2S (audio PLL)
characteristics.
Updated Section : Flash memory to specify that the devices are
shipped to customers with the Flash memory erased. Updated
Table 39: Flash memory characteristics, and added tME in Table 40:
Flash memory programming.
Updated Table 43: EMS characteristics, and Table 44: EMI
characteristics.
Updated Table 56: I2S dynamic characteristics
Updated Figure 45: ULPI timing diagram and Table 62: ULPI timing.
Added tCOUNTER and tMAX_COUNT in Table 52: Characteristics of TIMx
connected to the APB1 domain and Table 53: Characteristics of TIMx
connected to the APB2 domain. Updated Table 65: Dynamic
characteristics: Ethernet MAC signals for RMII.
Removed USB-IF certification in Section : USB OTG FS
characteristics.
Table 100. Document revision history (continued)
Date Revision Changes
DocID022063 Rev 8 197/206
STM32F415xx, STM32F417xx Revision history
24-Jan-2012 2
(continued)
Updated Table 61: USB HS clock timing parameters
Updated Table 67: ADC characteristics.
Updated Table 68: ADC accuracy at fADC = 30 MHz.
Updated Note 1 in Table 74: DAC characteristics.
Section 5.3.26: FSMC characteristics: updated Table 75 toTable 86,
changed CL value to 30 pF, and modified FSMC configuration for
asynchronous timings and waveforms. Updated Figure 59:
Synchronous multiplexed PSRAM write timings.
Updated Table 98: Package thermal characteristics.
Appendix A.1: USB OTG full speed (FS) interface solutions: modified
Figure 93: USB controller configured as peripheral-only and used in
Full speed mode added Note 2, updated Figure 94: USB controller
configured as host-only and used in full speed mode and added
Note 2, changed Figure 95: USB controller configured in dual mode
and used in full speed mode and added Note 3.
Appendix A.2: USB OTG high speed (HS) interface solutions: removed
figures USB OTG HS device-only connection in FS mode and USB
OTG HS host-only connection in FS mode, and updated Figure 96:
USB controller configured as peripheral, host, or dual-mode and used
in high speed mode and added Note 2.
Added Appendix A.3: Ethernet interface solutions.
Table 100. Document revision history (continued)
Date Revision Changes
Revision history STM32F415xx, STM32F417xx
198/206 DocID022063 Rev 8
31-May-2012 3
Updated Figure 5: STM32F41xxx block diagram and Figure 7: Power
supply supervisor interconnection with internal reset OFF
Added SDIO, added notes related to FSMC and SPI/I2S in Table 2:
STM32F415xx and STM32F417xx: features and peripheral counts.
Starting from Silicon revision Z, USB OTG full-speed interface is now
available for all STM32F415xx devices.
Added full information on WLCSP90 package together with
corresponding part numbers.
Changed number of AHB buses to 3.
Modified available Flash memory sizes in Section 2.2.4: Embedded
Flash memory.
Modified number of maskable interrupt channels in Section 2.2.10:
Nested vectored interrupt controller (NVIC).
Updated case of Regulator ON/internal reset ON, Regulator
ON/internal reset OFF, and Regulator OFF/internal reset ON in
Section 2.2.16: Voltage regulator.
Updated standby mode description in Section 2.2.19: Low-power
modes.
Added Note 1 below Figure 16: STM32F41xxx UFBGA176 ballout.
Added Note 1 below Figure 17: STM32F41xxx WLCSP90 ballout.
Updated Table 7: STM32F41xxx pin and ball definitions.
Added Table 8: FSMC pin definition.
Removed OTG_HS_INTN alternate function in Table 7: STM32F41xxx
pin and ball definitions and Table 9: Alternate function mapping.
Removed I2S2_WS on PB6/AF5 in Table 9: Alternate function
mapping.
Replaced JTRST by NJTRST, removed
ETH_RMII _TX_CLK, and
modified I2S3ext_SD on PC11 in Table 9: Alternate function mapping.
Added Table 10: STM32F41x register boundary addresses.
Updated Figure 18: STM32F41xxx memory map.
Updated VDDA and VREF+ decoupling capacitor in Figure 21: Power
supply scheme.
Added power dissipation maximum value for WLCSP90 in Table 14:
General operating conditions.
Updated VPOR/PDR in Table 19: Embedded reset and power control
block characteristics.
Updated notes in Table 21: Typical and maximum current consumption
in Run mode, code with data processing running from Flash memory
(ART accelerator disabled), Table 20: Typical and maximum current
consumption in Run mode, code with data processing running from
Flash memory (ART accelerator enabled) or RAM, and Table 22:
Typical and maximum current consumption in Sleep mode.
Updated maximum current consumption at TA = 25 °n Table 23:
Typical and maximum current consumptions in Stop mode.
Table 100. Document revision history (continued)
Date Revision Changes
DocID022063 Rev 8 199/206
STM32F415xx, STM32F417xx Revision history
31-May-2012 3
(continued)
Removed fHSE_ext typical value in Table 30: High-speed external user
clock characteristics. Updated Table 32: HSE 4-26 MHz oscillator
characteristics and Table 33: LSE oscillator characteristics (fLSE =
32.768 kHz).
Added fPLL48_OUT maximum value in Table 36: Main PLL
characteristics.
Modified equation 1 and 2 in Section 5.3.11: PLL spread spectrum
clock generation (SSCG) characteristics.
Updated Table 39: Flash memory characteristics, Table 40: Flash
memory programming, and Table 41: Flash memory programming with
VPP.
Updated Section : Output driving current.
Table 56: I2C characteristics: Note 4 updated and applied to th(SDA) in
Fast mode, and removed note 4 related to th(SDA) minimum value.
Updated Table 67: ADC characteristics. Updated note concerning ADC
accuracy vs. negative injection current below Table 68: ADC accuracy
at fADC = 30 MHz.
Added WLCSP90 thermal resistance in Table 98: Package thermal
characteristics.
Updated Table 90: WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch
wafer level chip scale package mechanical data.
Updated Figure 87: UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package outline and Table 95:
UFBGA176+25 ball, 10 × 10 × 0.65 mm pitch, ultra thin fine pitch ball
grid array mechanical data.
Added Figure 91: LQFP176 - 176-pin, 24 x 24 mm low profile quad flat
recommended footprint.
Removed 256 and 768 Kbyte Flash memory density from Table 99:
Ordering information scheme.
Table 100. Document revision history (continued)
Date Revision Changes
Revision history STM32F415xx, STM32F417xx
200/206 DocID022063 Rev 8
04-Jun-2013 4
Modified Note 1 below Table 2: STM32F415xx and STM32F417xx:
features and peripheral counts.
Updated Figure 4 title.
Updated Note 3 below Figure 21: Power supply scheme.
Changed simplex mode into half-duplex mode in Section 2.2.25: Inter-
integrated sound (I2S).
Replaced DAC1_OUT and DAC2_OUT by DAC_OUT1 and
DAC_OUT2, respectively.
Updated pin 36 signal in Figure 15: STM32F41xxx LQFP176 pinout.
Changed pin number from F8 to D4 for PA13 pin in Table 7:
STM32F41xxx pin and ball definitions.
Replaced TIM2_CH1/TIM2_ETR by TIM2_CH1_ETR for PA0 and PA5
pins in Table 9: Alternate function mapping.
Changed system memory into System memory + OTP in Figure 18:
STM32F41xxx memory map.
Added Note 1 below Table 16: VCAP_1/VCAP_2 operating conditions.
Updated IDDA description in Table 74: DAC characteristics.
Removed PA9/PB13 connection to VBUS in Figure 93: USB controller
configured as peripheral-only and used in Full speed mode and
Figure 94: USB controller configured as host-only and used in full
speed mode.
Updated SPI throughput on front page and Section 2.2.24: Serial
peripheral interface (SPI)
Updated operating voltages in Table 2: STM32F415xx and
STM32F417xx: features and peripheral counts
Updated note in Section 2.2.14: Power supply schemes
Updated Section 2.2.15: Power supply supervisor
Updated “Regulator ON” paragraph in Section 2.2.16: Voltage
regulator
Removed note in Section 2.2.19: Low-power modes
Corrected wrong reference manual in Section 2.2.28: Ethernet MAC
interface with dedicated DMA and IEEE 1588 support
Updated Table 15: Limitations depending on the operating power
supply range
Updated Table 24: Typical and maximum current consumptions in
Standby mode
Updated Table 25: Typical and maximum current consumptions in
VBAT mode
Updated Table 37: PLLI2S (audio PLL) characteristics
Updated Table 44: EMI characteristics
Updated Table 49: Output voltage characteristics
Updated Table 51: NRST pin characteristics
Updated Table 55: SPI dynamic characteristics
Updated Table 56: I2S dynamic characteristics
Deleted Table 59
Updated Table 62: ULPI timing
Updated Figure 46: Ethernet SMI timing diagram
Table 100. Document revision history (continued)
Date Revision Changes
DocID022063 Rev 8 201/206
STM32F415xx, STM32F417xx Revision history
04-Jun-2013 4
(continued)
Updated Figure 87: UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package outline
Updated Table 95: UFBGA176+25 ball, 10 × 10 × 0.65 mm pitch, ultra
thin fine pitch ball grid array mechanical data
Updated Figure 5: STM32F41xxx block diagram
Updated Section 2: Description
Updated footnote (3) in Table 2: STM32F415xx and STM32F417xx:
features and peripheral counts
Updated Figure 3: Compatible board design between
STM32F10xx/STM32F2/STM32F41xxx for LQFP144 package
Updated Figure 4: Compatible board design between STM32F2 and
STM32F41xxx for LQFP176 and BGA176 packages
Updated Section 2.2.14: Power supply schemes
Updated Section 2.2.15: Power supply supervisor
Updated Section 2.2.16: Voltage regulator, including figures.
Updated Table 14: General operating conditions, including footnote (2).
Updated Table 15: Limitations depending on the operating power
supply range, including footnote (3).
Updated footnote (1) in Table 67: ADC characteristics.
Updated footnote (2) in Table 68: ADC accuracy at fADC = 30 MHz.
Updated footnote (1) in Table 74: DAC characteristics.
Updated Figure 9: Regulator OFF.
Updated Figure 7: Power supply supervisor interconnection with
internal reset OFF.
Added Section 2.2.17: Regulator ON/OFF and internal reset ON/OFF
availability.
Updated footnote (2) of Figure 21: Power supply scheme.
Replaced respectively “I2S3S_WS" by "I2S3_WS”, “I2S3S_CK” by
“I2S3_CK” and “FSMC_BLN1” by “FSMC_NBL1” in Table 9: Alternate
function mapping.
Added “EVENTOUT” as alternate function “AF15” for pin PC13, PC14,
PC15, PH0, PH1, PI8 in Table 9: Alternate function mapping
Replaced “DCMI_12” by “DCMI_D12” in Table 7: STM32F41xxx pin
and ball definitions.
Removed the following sentence from Section : I2C interface
characteristics: ”Unless otherwise specified, the parameters
given in Table 56 are derived from tests performed under the
ambient temperature, fPCLK1 frequency and VDD supply voltage
conditions summarized in Table 14.”.
In Table 7: STM32F41xxx pin and ball definitions on page 50:
For pin PC13, replaced “RTC_AF1” by “RTC_OUT, RTC_TAMP1,
RTC_TS”
for pin PI8, replaced “RTC_AF2” by “RTC_TAMP1, RTC_TAMP2,
RTC_TS”.
for pin PB15, added RTC_REFIN in Alternate functions column.
In Table 9: Alternate function mapping on page 65, for port
PB15, replaced “RTC_50Hz” by “RTC_REFIN”.
Table 100. Document revision history (continued)
Date Revision Changes
Revision history STM32F415xx, STM32F417xx
202/206 DocID022063 Rev 8
04-Jun-2013 4
(continued)
Updated Figure 6: Multi-AHB matrix.
Updated Figure 7: Power supply supervisor interconnection with
internal reset OFF
Changed 1.2 V to V12 in Section : Regulator OFF
Updated LQFP176 pin 48.
Updated Section 1: Introduction.
Updated Section 2: Description.
Updated operating voltage in Table 2: STM32F415xx and
STM32F417xx: features and peripheral counts.
Updated Note 1.
Updated Section 2.2.15: Power supply supervisor.
Updated Section 2.2.16: Voltage regulator.
Updated Figure 9: Regulator OFF.
Updated Table 3: Regulator ON/OFF and internal reset ON/OFF
availability.
Updated Section 2.2.19: Low-power modes.
Updated Section 2.2.20: VBAT operation.
Updated Section 2.2.22: Inter-integrated circuit interface (I²C) .
Updated pin 48 in Figure 15: STM32F41xxx LQFP176 pinout.
Updated Table 6: Legend/abbreviations used in the pinout table.
Updated Table 7: STM32F41xxx pin and ball definitions.
Updated Table 14: General operating conditions.
Updated Table 15: Limitations depending on the operating power
supply range.
Updated Section 5.3.7: Wakeup time from low-power mode.
Updated Table 34: HSI oscillator characteristics.
Updated Section 5.3.15: I/O current injection characteristics.
Updated Table 48: I/O static characteristics.
Updated Table 51: NRST pin characteristics.
Updated Table 56: I2C characteristics.
Updated Figure 39: I2C bus AC waveforms and measurement circuit.
Updated Section 5.3.19: Communications interfaces.
Updated Table 67: ADC characteristics.
Added Table 70: Temperature sensor calibration values.
Added Table 73: Internal reference voltage calibration values.
Updated Section 5.3.26: FSMC characteristics.
Updated Section 5.3.28: SD/SDIO MMC card host interface (SDIO)
characteristics.
Updated Table 23: Typical and maximum current consumptions in Stop
mode.
Updated Section : SPI interface characteristics included Table 55.
Updated Section : I2S interface characteristics included Table 56.
Updated Table 64: Dynamic characteristics: Eternity MAC signals for
SMI.
Updated Table 66: Dynamic characteristics: Ethernet MAC signals for
MII.
Table 100. Document revision history (continued)
Date Revision Changes
DocID022063 Rev 8 203/206
STM32F415xx, STM32F417xx Revision history
04-Jun-2013 4
(continued)
Updated Table 64: Dynamic characteristics: Eternity MAC signals for
SMI.
Updated Table 66: Dynamic characteristics: Ethernet MAC signals for
MII.
Updated Table 79: Synchronous multiplexed NOR/PSRAM read
timings.
Updated Table 80: Synchronous multiplexed PSRAM write timings.
Updated Table 81: Synchronous non-multiplexed NOR/PSRAM read
timings.
Updated Table 82: Synchronous non-multiplexed PSRAM write
timings.
Updated Section 5.3.27: Camera interface (DCMI) timing specifications
including Table 87: DCMI characteristics and addition of Figure 72:
DCMI timing diagram.
Updated Section 5.3.28: SD/SDIO MMC card host interface (SDIO)
characteristics including Table 88.
Updated Chapter Figure 9.
Table 100. Document revision history (continued)
Date Revision Changes
Revision history STM32F415xx, STM32F417xx
204/206 DocID022063 Rev 8
06-Mar-2015 5
Replace Cortex-M4F by Cortex-M4 with FPU throughout the
document.
Updated Section : Regulator OFF and Table 3: Regulator ON/OFF and
internal reset ON/OFF availability for LQFP176.
Updated Figure 15: STM32F41xxx LQFP176 pinout and Table 7:
STM32F41xxx pin and ball definitions.
Updated Figure 6: Multi-AHB matrix.
Added note 1 below Figure 12: STM32F41xxx LQFP64 pinout,
Figure 13: STM32F41xxx LQFP100 pinout, Figure 14: STM32F41xxx
LQFP144 pinout and Figure 15: STM32F41xxx LQFP176 pinout.
Updated IVDD and IVSS in Table 12: Current characteristics.
Updated PLS[2:0]=101 (falling edge) configuration in Table 19:
Embedded reset and power control block characteristics.
Added Section : Additional current consumption. Updated Section :
On-chip peripheral current consumption.
Updated Table 29: Low-power mode wakeup timings.
Updated Table 32: HSE 4-26 MHz oscillator characteristics and
Table 33: LSE oscillator characteristics (fLSE = 32.768 kHz).
Changed condition related to VESD(CDM) in Table 45: ESD absolute
maximum ratings.
Updated Table 47: I/O current injection susceptibility, Table 48: I/O
static characteristics, Table 49: Output voltage characteristics
conditions, Table 50: I/O AC characteristics and Figure 37: I/O AC
characteristics definition.
Updated Section : I2C interface characteristics.
Remove note 3 in Table 69: Temperature sensor characteristics.
Updated Figure 72: DCMI timing diagram.
Modified Figure 75: WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch
wafer level chip scale package outline and Table 90: WLCSP90 - 4.223
x 3.969 mm, 0.400 mm pitch wafer level chip scale package
mechanical data. Added Figure 76: WLCSP90 - 4.223 x 3.969 mm,
0.400 mm pitch wafer level chip scale recommended footprint and
Table 91: WLCSP90 recommended PCB design rules. /
Modified Figure 78: LQFP64 – 64-pin, 10 x 10 mm low-profile quad flat
package outline and Table 92: LQFP64 – 64-pin 10 x 10 mm low-profile
quad flat package mechanical data.
Updated Figure 87: UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package outline and Table 95:
UFBGA176+25 ball, 10 × 10 × 0.65 mm pitch, ultra thin fine pitch ball
grid array mechanical data. Added Figure 88: UFBGA176+25 - 201-
ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array
recommended footprint and Table 96: UFBGA176+2 recommended
PCB design rules (0.65 mm pitch BGA).
Updated Figure 90: LQFP176 - 176-pin, 24 x 24 mm low profile quad
flat package outline.
Added Section : Device marking for WLCSP90, Section : Device
marking for LQFP64, Section : Device marking for LFP100, Section :
Device marking for LQPF144, Section : Device marking for
UFBGA176+25 and Section : Device marking for LQFP176.
Table 100. Document revision history (continued)
Date Revision Changes
DocID022063 Rev 8 205/206
STM32F415xx, STM32F417xx Revision history
22-Oct-2015 6
In the whole document, updated notes related to values guaranteed by
design or by characterization.
Updated Table 34: HSI oscillator characteristics.
Changed fVCO_OUT minimum value and VCO freq to 100 MHz in
Table 36: Main PLL characteristics and Table 37: PLLI2S (audio PLL)
characteristics.
Updated Figure 39: SPI timing diagram - slave mode and CPHA = 0.
Updated Figure 53: 12-bit buffered /non-buffered DAC.
Removed note 1 related to better performance using a restricted VDD
range in Table 68: ADC accuracy at fADC = 30 MHz.
Upated Figure 84: LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat
package outline.
Updated Figure 87: UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package outline and Table 95:
UFBGA176+25 ball, 10 × 10 × 0.65 mm pitch, ultra thin fine pitch ball
grid array mechanical data.
16-Mar-2016 7
Updated Figure 2: Compatible board design
STM32F10xx/STM32F2/STM32F41xxx for LQFP100 package.
Updated |VSSX VSS| in Table 11: Voltage characteristics to add VREF
.
Added VREF in Table 67: ADC characteristics.
Updated Table 90: WLCSP90 - 4.223 x 3.969 mm, 0.400 mm pitch
wafer level chip scale package mechanical data.
09-Sep-2016 8
Removed note 1 below Figure 5: STM32F41xxx block diagram.
Updated definition of stresses above maximum ratings in Section 5.2:
Absolute maximum ratings.
Updated th(NSS) in Figure 39: SPI timing diagram - slave mode and
CPHA = 0Figure and Figure 40: SPI timing diagram - slave mode and
CPHA = 1.
Added note related to optional marking and inset/upset marks in all
package marking sections.
Updated Figure 87: UFBGA176+25 ball, 10 x 10 mm, 0.65 mm pitch,
ultra fine pitch ball grid array package outline and Table 95:
UFBGA176+25 ball, 10 × 10 × 0.65 mm pitch, ultra thin fine pitch ball
grid array mechanical data.
Table 100. Document revision history (continued)
Date Revision Changes
STM32F415xx, STM32F417xx
206/206 DocID022063 Rev 8
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved