@ HARRIS 2N6800 N-Channel Enhancement-Mode August 1991 Power MOS Field-Effect Transistor Features Package TO-205AF 3A, 400V BOTTOM VIEW * rDS(on) = 12 e SOA is Power-Dissipation Limited SOURCE GATE * Nanosecond Switching Speeds * Linear Transfer Characteristics * High Input Impedance DRAIN (CASE) Majority Carrier Device Description The 2N6800 is an n-channel enhancement-mode silicon-gate | Terminal Diagram power MOS field-effect transistor designed for applications such as switching regulators, switching converters, motor drivers, relay N-CHANNEL ENHANCEMENT MODE drivers, and drivers for high-power bipolar switching transistors requiring high speed and low gate-drive power. This type can be D operated directly from an integrated circuit. The 2N6800 is supplied in the JECEC TO-205AF (Low Profile TO-39) metal package. Absolute MaxImum Ratings (Tc = +25C) Unless Otherwise Specified 2N6800 UNITS Drain-Source Voltage ..... 2... ccc cece ence net e crete eres neeere 400* Drain-Gate Voltage (Rgg = 20k) 400* Continuous Drain Current Teal 3hed Ca 3* To = H1009 oe eee etree ne ete e tenes 2* Pulsed Drain Current. .... 0... cc cece cect n eterna eet eee eee 14* Gate-Source Voltage 2.0... . cece cece eee eens +20* Continuous Source Current ......... ccc cece eee 3* Pulse Source Current ..... 0.2.0.6 eee cence eee ete aneee 14* Maximum Power Dissipation To = +259C (See Figure 14)... cece cece teen eee tence eee tenes Pp 25* Above Tc = +259C, Derate Linearly (See Figure 14) .............0.. ease 0.20* Inductive Current, Clamped 2.0.0.0... cece reece eee ence eee re eeenes ILM 14 (L = 100nH) Operating and Storage Junction Temperature Range............ Ty, TSTG -55 to +150* oC Maximum Lead Temperature for Soldering .......... 0. cc cee eee en ee ene TL 300* o (0.063 (1.6mm) from case for 10s} << > Ss PP > *JEDEC registered values CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed. File Number 1 904.1 Copyright Harris Corporation 1991 4-84Specifications 2N6800 Electrical Characteristics @ Te = 25C (Unless Otherwise Specified) See Fig. fale) See Fig. 15 {MOSFET switching times are essentially independent of operating temperature.) Thermal Resistance [Rthyc Junction to-Case [ - [ - [50 [ecw] | FthyA _Junction-to-Ambient L - [ - [175 [ecw | Free air Operation - | . ae ' a Source-Drain Diode Switching Characteristics (Typical) LG ter Reverse Recovery Time 600 [ns] Ty = 150C, Ip = 3.0A, dipidt = 100A/us < $ Qra Reverse Recovered Charge 40 [_ #C | Ty = 150C, Ip = 3.0A, dig/dt = 100Aius = c ton Forward Turn-on Time Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. z WwW *JEDEC registered vatue 4 Pulse Test: Pulse width < 300us, Duty Cycle < 2%. 9 ys PULS| BO yas PULSE 5 ; ; , , 80 2s PULSE T#3T }- - 4 +- Vos * !oton) * ROSioni max ' | a 4 + - + . +, - +--+ 4 = z i z x | {_, = = : \ | ! fl 5 2 fo. | = z [ Ty. 91280 : & [i f 1289C 4 4 3 = 14) = 20g ' z oS 2, + + + = z Ty = 9800 = S 8 9 tr 1 : s o ae ' 1p} i | | wv fe) wae 4 | | J \ Q 50 100 160 200 250 300 350 0 1 2 3 4 $ 6 ? Vg. ORAIN-TO- SOURCE VOLTAGE (VOLTS) Vas, GATE TO-SQURCE VOLTAGE VOLTS! Fig. 1 - Typical output characteristics. Fig. 2 - Typical transfer characteristics. 4-852N6800 90 ys PULSE (p, QRAIN CURRENT (AMPERES) Ip, DRAIN CURRENT (AMPERES) | av 0 2 4 6 8 10 12 14 $02 Vag. ORAIN-TO SOURCE VOLTAGE (VOLTS) \S LIMITED BY = y= 150C MAX. Rinse = 5.0 KW 5 Ww 2 50 100 200 500 Vpg. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 - Typical saturation characteristics. Fig. 4 - Maximum safe operating area. Os a2 O41 0.05 0.02 THERMAL IMPEDANCE) Zrructtl/Ryyyc. NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE (PER UNIT} oo1 152 5 wt 2 5 32 5 2 2 5 ty, SQUARE WAVE PULSE DURATION (SECONDS) 1. DUTY FACTOR, D= iz 2. PER UNIT BASE = Ring = 5.0066 CW 3. Tym Te Pom Zinsctt) 10! 2 5 10 2 5 19 Fig. 5 - Maximum effective transient thermal impedance, junction-to-case versus pulse duration. TEST ; Vos >! pion) * 8aS(an} max Ty = 58? Ty = 25C Ty= 12890 Ty tis, TRANSCONDUCTANCE (SIEMENS) ipa. REVERSE DRAIN CURRENT (AMPERES) q 4 8 12 16 0 Ip. DRAIN CURRENT (AMPERES) Ty = 26C Ty = 18000 1S0C Ty + 26C 1 2 3 4 Vgp. SOURCE. TO-DRAIN VOLTAGE {VOLTS} Fig. 6 - Typical transconductance versus drain current. Fig. 7 - Typical source-drain diode forward voltage. 4-862N6800 22 (NORMALIZED) > o Vgg = 10V 1p = 2.08 RpSlon). GRAIN-TO-SOURCE ON RESISTANCE BVpgs, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) on ~40 0 0 8 120 160 ota Ty, JUNCTION TEMPERATURE (C) 0 4a 80 120 160 Ty, JUNCTION TEMPERATURE (C) Fig. 8 - Breakdown voltage versus temperature. Fig. 9 - Typical normalized on-resistance versus temperature. 20 Ves* : =1MH | 5 t ; - T - Cigg = Cyp + Cog, Coy SHORTED Vg 80V Crp * Coa a Vos 200v 1 Vos = 320V C, Com Batt = Cos* Cog N-CHANNEL POWER MOSFETs C, CAPACITANCE (pF) Vgg. GATE TQ-SQURCE VOLTAGE iVOLTS) o a a 10 20 30 40 50 0 Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Qy, TOTAL GATE CHARGE (nC) Fig. 10 - Typical capacitance versus drain-to-source Fig. 11 - Typical gate charge versus gate-to-source voltage. voltage. 3 3 2 =z 3 Vas * V = s B, A Veg = 20v__| = 2 r = 2 z yr = 3 & @ Zz! o - | 2 a 3 & Ros(on) MEASURED WITH CURRENT PULSE OF 2.0 ua OURATION. INITIAL Ty = 259C. (HEATING EFFECT OF 2.0 us PULSE IS MINIMAL} 1. 4 i 1 a 0 5 0 8 20 a 30 25 50 15 100 125 160 Ip. ORAIN CURRENT (AMPERES) Ip, DRAIN CURRENT {AMPERES} Fig. 12 - Typical on-resistance versus drain current. Fig. 13 - Maximum drain current versus case temperature. 4-87wr. 8010A PULSE GEN. NOTES. 1, LHOOG3 CASE GROUNDED. 2. GROUNDED CONNECTIONS COMMON TO GROUND PLANE ON BOARD. 3. PULSE WIDTH =3 us, PERIOD =1 ms, AMPLITUOE=10V. BLOCKING DIODE Pc, POWER DISSIPATION (WATTS) 2N6800 20 40 60 a0 100 120 140 Tc, CASE TEMPERATURE (9C) Fig. 14 - Power versus temperature derating curve. 472 TEKTRONIX 7623 osc. PULSE WIDTH VGSion) +10V INPUT Vesiott) 8V INPUT PULSE INPUT PULSE RISE TIME FALL TIME Vostati} ouTPUT Vos(on) NOTES: WHEN MEASURING RISE TIME, Vgsign} SHALL BE AS SPECIFIED ON THE INPUT WAVEFORM. WHEN MEASURING FALL TIME, Vgsioq) SHALL BE SPECIFIED ON THE INPUT WAVEFORM. THE INPUT TRANSITION AND DRAIN VOLTAGE RE- SPONSE DETECTOR SHALL HAVE RISE AND FALL RESPONSE TIMES SUCH THAT DOUBLING THESE RESPONSES WILL NGT AFFECT THE RESULTS GREATER THAN THE PRECISION OF MEASUREMENT. THE CURRENT SHALL BE SUFFI- CIENTLY SMALL SO THAT DOUBLING IT DOES NOT AFFECT TESTS RESULTS GREATER THAN THE PRECISION OF MEASUREMENT. Fig. 15 - Switching time test circuit. NOTES: 1. SET Vpg TO THE VALUE SPECIFIED UNDER DETAILS USING AO.1s PULSE WIDTH WITH A MINIMUM OF T MINUTE BETWEEN PULSES. INCREASE Vas UNTIL THE SPECIFIED VALUE OF Ip AND Vog ARE OBTAINED. CASE TEMPERATURE * 25C. 2. SELECT Ag SUCH THAT Ip # Rg = 2.5 + 1.0 Vac. Fig. 16 - Safe operating test circuit. 4-88