Features
High Performance, Low Power AVR® 8-Bit Microcontroller
Advanced RISC Architecture
120 Powerful Instructions – Most Single Clock Cycle Execution
32 x 8 General Purpose Working Registers
Fully Static Operation
Non-volatile Program and Data Memories
2/4/8K Byte of In-System Programmable Program Memory Flash (ATtiny25/45/85)
Endurance: 10,000 Write/Erase Cycles
128/256/512 Bytes In-System Programmable EEPROM (ATtiny25/45/85)
Endurance: 100,000 Write/Erase Cycles
128/256/512 Bytes Internal SRAM (ATtiny25/45/85)
Programming Lock for Self-Programming Flash Program and EEPROM Data
Security
Peripheral Features
8-bit Timer/Counter with Prescaler and Two PWM Channels
8-bit High Speed Timer/Counter with Separate Prescaler
2 High Frequency PWM Outputs with Separate Output Compare Registers
Programmable Dead Time Generator
Universal Serial Interface with Start Condition Detector
10-bit ADC
4 Single Ended Channels
2 Differential ADC Channel Pairs with Programmable Gain (1x, 20x)
Programmable Watchdog Timer with Separate On-chip Oscillator
On-chip Analog Comparator
Special Microcontroller Features
debugWIRE On-chip Debug System
In-System Programmable via SPI Port
External and Internal Interrupt Sources
Low Power Idle, ADC Noise Reduction, and Power-down Modes
Enhanced Power-on Reset Circuit
Programmable Brown-out Detection Circuit
Internal Calibrated Oscillator
I/O and Packages
Six Programmable I/O Lines
8-pin PDIP and 8-pin SOIC
Operating Voltage
1.8 - 5.5V for ATtiny25/45/85V
2.7 - 5.5V for ATtiny25/45/85
Speed Grade
ATtiny25/45/85V: 0 - 4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V
ATtiny25/45/85: 0 - 10 MHz @ 2.7 - 5.5V, 0 - 20 MHz @ 4.5 - 5.5V
Industrial Temperature Range
Low Power Consumption
Active Mode:
1 MHz, 1.8V: 450µA
Power-down Mode:
0.1µA at 1.8V
8-bit
Microcontroller
with 2/4/8K
Bytes In-System
Programmable
Flash
ATtiny25/V
ATtiny45/V
ATtiny85/V
Preliminary
Summary
2586AS–AVR–02/05
Note: This is a summary document. A complete document
is available on our Web site at www.atmel.com.
2
2586AS–AVR–02/05
ATtiny25/45/85
1. Pin Configurations
Figure 1-1. Pinout ATtiny25/45/85
1.1 Disclaimer
Typical values contained in this data sheet are based on simulations and characterization of other AVR microcontrollers
manufactured on the same process technology. Min and Max values will be available after the device is characterized.
1
2
3
4
8
7
6
5
(PCINT5/RESET/ADC0/dW) PB5
(PCINT3/XTAL1/OC1B/ADC3) PB3
(PCINT4/XTAL2/CLKO/OC1B/ADC2) PB4
GND
VCC
PB2 (SCK/USCK/SCL/ADC1/T0/INT0/PCINT2)
PB1 (MISO/DO/AIN1/OC0B/OC1A/PCINT1)
PB0 (MOSI/DI/SDA/AIN0/OC0A/OC1A/AREF/PCINT0)
PDIP/SOIC
3
2586AS–AVR–02/05
ATtiny25/45/85
2. Overview
The ATtiny25/45/85 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced
RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny25/45/85
achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize
power consumption versus processing speed.
2.1 Block Diagram
Figure 2-1. Block Diagram
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
PROGRAM
COUNTER
INTERNAL
OSCILLATOR
WATCHDOG
TIMER
STACK
POINTER
PROGRAM
FLASH SRAM
MCU CONTROL
REGISTER
GENERAL
PURPOSE
REGISTERS
INSTRUCTION
REGISTER
TIMER/
COUNTER0
SERIAL
UNIVERSAL
INTERFACE
TIMER/
COUNTER1
INSTRUCTION
DECODER
DATA DIR.
REG.PORT B
DATA REGISTER
PORT B
PROGRAMMING
LOGIC
TIMING AND
CONTROL
MCU STATUS
REGISTER
STATUS
REGISTER
ALU
PORT B DRIVERS
PB0-PB5
VCC
GND
CONTROL
LINES
8-BIT DATABUS
Z
ADC /
ANALOG COMPARATOR
INTERRUPT
UNIT
DATA
EEPROM
CALIBRATED
OSCILLATORS
Y
X
RESET
4
2586AS–AVR–02/05
ATtiny25/45/85
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.
The ATtiny25/45/85 provides the following features: 2/4/8K byte of In-System Programmable
Flash, 128/256/512 bytes EEPROM, 128/256/256 bytes SRAM, 6 general purpose I/O lines, 32
general purpose working registers, one 8-bit Timer/Counter with compare modes, one 8-bit high
speed Timer/Counter, Universal Serial Interface, Internal and External Interrupts, a 4-channel,
10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and three software select-
able power saving modes. The Idle mode stops the CPU while allowing the SRAM,
Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. The
Power-down mode saves the register contents, disabling all chip functions until the next Inter-
rupt or Hardware Reset. The ADC Noise Reduction mode stops the CPU and all I/O modules
except ADC, to minimize switching noise during ADC conversions.
The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code
running on the AVR core.
The ATtiny25/45/85 AVR is supported with a full suite of program and system development tools
including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators,
and Evaluation kits.
2.2 Pin Descriptions
2.2.1 VCC
Supply voltage.
2.2.2 GND
Ground.
2.2.3 Port B (PB5..PB0)
Port B is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B also serves the functions of various special features of the ATtiny25/45/85 as listed on
page 60.
On the ATtiny25 device the programmable I/O ports PB3 and PB4 (pins 2 and 3) are exchanged
in the ATtiny15 compatibility mode for supporting the backward compatibility with ATtiny15.
2.2.4 RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 8-1 on page
37. Shorter pulses are not guaranteed to generate a reset.
5
2586AS–AVR–02/05
ATtiny25/45/85
3. Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
0x3F SREG I T H S V N Z C page 7
0x3E SPH SP8 page 10
0x3D SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 page 10
0x3C Reserved
0x3B GIMSK INT0 PCIE page 49
0x3A GIFR INTF0 PCIF page 50
0x39 TIMSK OCIE1A OCIE1B OCIE0A OCIE0B TOIE1 TOIE0 page 81
0x38 TIFR OCF1A OCF1B OCF0A OCF0B TOV1 TOV0 page 81
0x37 SPMCSR CTPB RFLB PGWRT PGERS SPMEN page 146
0x36 Reserved
0x35 MCUCR –PUDSESM1SM0 –ISC01ISC00page 32, page 60, page 49
0x34 MCUSR WDRF BORF EXTRF PORF page 40,
0x33 TCCR0B FOC0A FOC0B WGM02 CS02 CS01 CS00 page 79
0x32 TCNT0 Timer/Counter0 page 80
0x31 OSCCAL Oscillator Calibration Register page 27
0x30 TCCR1 CTC1 PWM1A COM1A1 COM1A0 CS13 CS12 CS11 CS10 page 88, page 100
0x2F TCNT1 Timer/Counter1 page 90, page 101
0x2E OCR1A Timer/Counter1 Output Compare Register A page 90, page 102
0x2D OCR1C Timer/Counter1 Output Compare Register C page 91, page 102
0x2C GTCCR TSM PWM1B COM1B1 COM1B0 FOC1B FOC1A PSR1 PSR0 page 84, page 89, page
0x2B OCR1B Timer/Counter1 Output Compare Register B page 91
0x2A TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 WGM01 WGM00 page 76
0x29 OCR0A Timer/Counter0 – Output Compare Register A page 80
0x28 OCR0B Timer/Counter0 – Output Compare Register B page 80
0x27 PLLCSR SM ––– PCKE PLLE PLOCK page 93, page 103
0x26 CLKPR CLKPCE CLKPS3 CLKPS2 CLKPS1 CLKPS0 page 30
0x25 DT1A DT1AH3 DT1AH2 DT1AH1 DT1AH0 DT1AL3 DT1AL2 DT1AL1 DT1AL0 page 108
0x24 DT1B DT1BH3 DT1BH2 DT1BH1 DT1BH0 DT1BL3 DT1BL2 DT1BL1 DT1BL0 page 109
0x23 DTPS1 - - - - - - DTPS11 DTPS10 page 108
0x22 DWDR DWDR[7:0] page 143
0x21 WDTCR WDTIF WDTIE WDP3 WDCE WDE WDP2 WDP1 WDP0 page 42
0x20 PRR PRTIM1 PRTIM0 PRUSI PRADC page 33
0x1F EEARH EEAR8 page 16
0x1E EEARL EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 page 16
0x1D EEDR EEPROM Data Register page 16
0x1C EECR EEPM1 EEPM0 EERIE EEMWE EEWE EERE page 17
0x1B Reserved
0x1A Reserved
0x19 Reserved
0x18 PORTB PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 page 64
0x17 DDRB DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 page 64
0x16 PINB PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 page 64
0x15 PCMSK PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 page 51
0x14 DIDR0 ADC0D ADC2D ADC3D ADC1D EIN1D AIN0D page 124, page 141
0x13 GPIOR2 General Purpose I/O Register 2
0x12 GPIOR1 General Purpose I/O Register 1
0x11 GPIOR0 General Purpose I/O Register 0
0x10 USIBR USI Buffer Register page 118
0x0F USIDR USI Data Register page 117
0x0E USISR USICIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 page 118
0x0D USICR USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC page 119
0x0C Reserved
0x0B Reserved
0x0A Reserved
0x09 Reserved
0x08 ACSR ACD ACBG ACO ACI ACIE ACIS1 ACIS0 page 122
0x07 ADMUX REFS1 REFS0 ADLAR REFS2 MUX3 MUX2 MUX1 MUX0 page 137
0x06 ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 page 138
0x05 ADCH ADC Data Register High Byte page 140
0x04 ADCL ADC Data Register Low Byte page 140
0x03 ADCSRB BIN ACME IPR ADTS2 ADTS1 ADTS0 page 122, page 140
0x02 Reserved
0x01 Reserved
0x00 Reserved
6
2586AS–AVR–02/05
ATtiny25/45/85
Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.
7
2586AS–AVR–02/05
ATtiny25/45/85
4. Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd Rd + Rr + C Z,C,N,V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl Rdh:Rdl + K Z,C,N,V,S 2
SUB Rd, Rr Subtract two Registers Rd Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd Rd - Rr - C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd Rd - K - C Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl Rdh:Rdl - K Z,C,N,V,S 2
AND Rd, Rr Logical AND Registers Rd Rd Rr Z,N,V 1
ANDI Rd, K Logical AND Register and Constant Rd Rd K Z,N,V 1
OR Rd, Rr Logical OR Registers Rd Rd v Rr Z,N,V 1
ORI Rd, K Logical OR Register and Constant Rd Rd v K Z,N,V 1
EOR Rd, Rr Exclusive OR Registers Rd Rd Rr Z,N,V 1
COM Rd One’s Complement Rd 0xFF Rd Z,C,N,V 1
NEG Rd Two’s Complement Rd 0x00 Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd Rd v K Z,N,V 1
CBR Rd,K Clear Bit(s) in Register Rd Rd (0xFF - K) Z,N,V 1
INC Rd Increment Rd Rd + 1 Z,N,V 1
DEC Rd Decrement Rd Rd 1 Z,N,V 1
TST Rd Test for Zero or Minus Rd Rd Rd Z,N,V 1
CLR Rd Clear Register Rd Rd Rd Z,N,V 1
SER Rd Set Register Rd 0xFF None 1
BRANCH INSTRUCTIONS
RJMP k Relative Jump PC PC + k + 1 None 2
IJMP Indirect Jump to (Z) PC Z None 2
RCALL k Relative Subroutine Call PC PC + k + 1 None 3
ICALL Indirect Call to (Z) PC ZNone3
RET Subroutine Return PC STACK None 4
RETI Interrupt Return PC STACK I 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC PC + 2 or 3 None 1/2/3
CP Rd,Rr Compare Rd Rr Z, N,V,C,H 1
CPC Rd,Rr Compare with Carry Rd Rr C Z, N,V,C,H 1
CPI Rd,K Compare Register with Immediate Rd K Z, N,V,C,H 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC PC + 2 or 3 None 1/2/3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC PC + 2 or 3 None 1/2/3
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC PC + 2 or 3 None 1/2/3
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC PC + 2 or 3 None 1/2/3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PCPC+k + 1 None 1/2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PCPC+k + 1 None 1/2
BREQ k Branch if Equal if (Z = 1) then PC PC + k + 1 None 1/2
BRNE k Branch if Not Equal if (Z = 0) then PC PC + k + 1 None 1/2
BRCS k Branch if Carry Set if (C = 1) then PC PC + k + 1 None 1/2
BRCC k Branch if Carry Cleared if (C = 0) then PC PC + k + 1 None 1/2
BRSH k Branch if Same or Higher if (C = 0) then PC PC + k + 1 None 1/2
BRLO k Branch if Lower if (C = 1) then PC PC + k + 1 None 1/2
BRMI k Branch if Minus if (N = 1) then PC PC + k + 1 None 1/2
BRPL k Branch if Plus if (N = 0) then PC PC + k + 1 None 1/2
BRGE k Branch if Greater or Equal, Signed if (N V= 0) then PC PC + k + 1 None 1/2
BRLT k Branch if Less Than Zero, Signed if (N V= 1) then PC PC + k + 1 None 1/2
BRHS k Branch if Half Carry Flag Set if (H = 1) then PC PC + k + 1 None 1/2
BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC PC + k + 1 None 1/2
BRTS k Branch if T Flag Set if (T = 1) then PC PC + k + 1 None 1/2
BRTC k Branch if T Flag Cleared if (T = 0) then PC PC + k + 1 None 1/2
BRVS k Branch if Overflow Flag is Set if (V = 1) then PC PC + k + 1 None 1/2
BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC PC + k + 1 None 1/2
BRIE k Branch if Interrupt Enabled if ( I = 1) then PC PC + k + 1 None 1/2
BRID k Branch if Interrupt Disabled if ( I = 0) then PC PC + k + 1 None 1/2
BIT AND BIT-TEST INSTRUCTIONS
SBI P,b Set Bit in I/O Register I/O(P,b) 1None2
CBI P,b Clear Bit in I/O Register I/O(P,b) 0None2
LSL Rd Logical Shift Left Rd(n+1) Rd(n), Rd(0) 0 Z,C,N,V 1
LSR Rd Logical Shift Right Rd(n) Rd(n+1), Rd(7) 0 Z,C,N,V 1
ROL Rd Rotate Left Through Carry Rd(0)C,Rd(n+1) Rd(n),CRd(7) Z,C,N,V 1
8
2586AS–AVR–02/05
ATtiny25/45/85
ROR Rd Rotate Right Through Carry Rd(7)C,Rd(n) Rd(n+1),CRd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) Rd(n+1), n=0..6 Z,C,N,V 1
SWAP Rd Swap Nibbles Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0) None 1
BSET s Flag Set SREG(s) 1 SREG(s) 1
BCLR s Flag Clear SREG(s) 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) TNone1
SEC Set Carry C 1C1
CLC Clear Carry C 0 C 1
SEN Set Negative Flag N 1N1
CLN Clear Negative Flag N 0 N 1
SEZ Set Zero Flag Z 1Z1
CLZ Clear Zero Flag Z 0 Z 1
SEI Global Interrupt Enable I 1I1
CLI Global Interrupt Disable I 0 I 1
SES Set Signed Test Flag S 1S1
CLS Clear Signed Test Flag S 0 S 1
SEV Set Twos Complement Overflow. V 1V1
CLV Clear Twos Complement Overflow V 0 V 1
SET Set T in SREG T 1T1
CLT Clear T in SREG T 0 T 1
SEH Set Half Carry Flag in SREG H 1H1
CLH Clear Half Carry Flag in SREG H 0 H 1
DATA TRANSFER INSTRUCTIONS
MOV Rd, Rr Move Between Registers Rd Rr None 1
MOVW Rd, Rr Copy Register Word Rd+1:Rd Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd KNone1
LD Rd, X Load Indirect Rd (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd (X), X X + 1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X X - 1, Rd (X) None 2
LD Rd, Y Load Indirect Rd (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd (Y), Y Y + 1 None 2
LD Rd, - Y Load Indirect and Pre-Dec. Y Y - 1, Rd (Y) None 2
LDD Rd,Y+q Load Indirect with Displacement Rd (Y + q) None 2
LD Rd, Z Load Indirect Rd (Z) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd (Z), Z Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z Z - 1, Rd (Z) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd (Z + q) None 2
LDS Rd, k Load Direct from SRAM Rd (k) None 2
ST X, Rr Store Indirect (X) Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X) Rr, X X + 1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X X - 1, (X) Rr None 2
ST Y, Rr Store Indirect (Y) Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. (Y) Rr, Y Y + 1 None 2
ST - Y, Rr Store Indirect and Pre-Dec. Y Y - 1, (Y) Rr None 2
STD Y+q,Rr Store Indirect with Displacement (Y + q) Rr None 2
ST Z, Rr Store Indirect (Z) Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z) Rr, Z Z + 1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z Z - 1, (Z) Rr None 2
STD Z+q,Rr Store Indirect with Displacement (Z + q) Rr None 2
STS k, Rr Store Direct to SRAM (k) Rr None 2
LPM Load Program Memory R0 (Z) None 3
LPM Rd, Z Load Program Memory Rd (Z) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd (Z), Z Z+1 None 3
SPM Store Program Memory (z) R1:R0 None
IN Rd, P In Port Rd PNone1
OUT P, Rr Out Port P Rr None 1
PUSH Rr Push Register on Stack STACK Rr None 2
POP Rd Pop Register from Stack Rd STACK None 2
MCU CONTROL INSTRUCTIONS
NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset (see specific descr. for WDR/Timer) None 1
BREAK Break For On-chip Debug Only None N/A
Mnemonics Operands Description Operation Flags #Clocks
9
2586AS–AVR–02/05
ATtiny25/45/85
5. Ordering Information
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc-
tive). Also Halide free and fully Green.
3. For Speed vs. VCC,see Figure 23.4 on page 168
5.1 ATtiny25
Speed (MHz)(3) Power Supply Ordering Code Package(1) Operational Range
10 1.8 - 5.5V
ATtiny25V-10PI
ATtiny25V-10PU(2)
ATtiny25V-10SI
ATtiny25V-10SU(2)
8P3
8P3
8S2
8S2
Industrial
(-40°C to 85°C)
20 2.7 - 5.5V
ATtiny25-20PI
ATtiny25-20PU(2)
ATtiny25-20SI
ATtiny25-20SU(2)
8P3
8P3
8S2
8S2
Industrial
(-40°C to 85°C)
Package Type
8P3 8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S2 8-lead, 0.209" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC)
10
2586AS–AVR–02/05
ATtiny25/45/85
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc-
tive). Also Halide free and fully Green.
3. For Speed vs. VCC,see Figure 23.4 on page 168
5.2 ATtiny45
Speed (MHz)(3) Power Supply Ordering Code Package(1) Operational Range
10 1.8 - 5.5V
ATtiny45V-10PI
ATtiny45V-10PU(2)
ATtiny45V-10SI
ATtiny45V-10SU(2)
8P3
8P3
8S2
8S2
Industrial
(-40°C to 85°C)
20 2.7 - 5.5V
ATtiny45-20PI
ATtiny45-20PU(2)
ATtiny45-20SI
ATtiny45-20SU(2)
8P3
8P3
8S2
8S2
Industrial
(-40°C to 85°C)
Package Type
8P3 8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S2 8-lead, 0.209" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC)
11
2586AS–AVR–02/05
ATtiny25/45/85
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS direc-
tive). Also Halide free and fully Green.
3. For Speed vs. VCC,see Figure 23.4 on page 168
5.3 ATtiny85
Speed (MHz)(3) Power Supply Ordering Code Package(1) Operational Range
10 1.8 - 5.5V
ATtiny85V-10PI
ATtiny85V-10PU(2)
ATtiny85V-10SI
ATtiny85V-10SU(2)
8P3
8P3
8S2
8S2
Industrial
(-40°C to 85°C)
20 2.7 - 5.5V
ATtiny85-20PI
ATtiny85-20PU(2)
ATtiny85-20SI
ATtiny85-20SU(2)
8P3
8P3
8S2
8S2
Industrial
(-40°C to 85°C)
Package Type
8P3 8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S2 8-lead, 0.209" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC)
12
2586AS–AVR–02/05
ATtiny25/45/85
6. Packaging Information
6.1 8P3
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
8P3, 8-lead, 0.300" Wide Body, Plastic Dual
In-line Package (PDIP)
01/09/02
8P3 B
D
D1
E
E1
e
L
b2
b
A2 A
1
N
eA
c
b3
4 PLCS
Top View
Side View
End View
COMMON DIMENSIONS
(Unit of Measure = inches)
SYMBOL MIN NOM MAX NOTE
Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA for additional information.
2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
4. E and eA measured with the leads constrained to be perpendicular to datum.
5. Pointed or rounded lead tips are preferred to ease insertion.
6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).
A 0.210 2
A2 0.115 0.130 0.195
b 0.014 0.018 0.022 5
b2 0.045 0.060 0.070 6
b3 0.030 0.039 0.045 6
c 0.008 0.010 0.014
D 0.355 0.365 0.400 3
D1 0.005 3
E 0.300 0.310 0.325 4
E1 0.240 0.250 0.280 3
e 0.100 BSC
eA 0.300 BSC 4
L 0.115 0.130 0.150 2
13
2586AS–AVR–02/05
ATtiny25/45/85
6.2 8S2
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
8S2, 8-lead, 0.209" Body, Plastic Small
Outline Package (EIAJ)
10/7/03
8S2
C
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
Notes: 1. This drawing is for general information only; refer to EIAJ Drawing EDR-7320 for additional information.
2. Mismatch of the upper and lower dies and resin burrs are not included.
3. It is recommended that upper and lower cavities be equal. If they are different, the larger dimension shall be regarded.
4. Determines the true geometric position.
5. Values b and C apply to pb/Sn solder plated terminal. The standard thickness of the solder layer shall be 0.010 +0.010/0.005 mm.
A 1.70 2.16
A1 0.05 0.25
b 0.35 0.48 5
C 0.15 0.35 5
D 5.13 5.35
E1 5.18 5.40 2, 3
E 7.70 8.26
L 0.51 0.85
e 1.27 BSC 4
End View
Side View
eb
A
A1
D
E
N
1
C
E1
L
Top View
14
2586AS–AVR–02/05
ATtiny25/45/85
7. Errata
The revision letter in this section refers to the revision of the ATtiny25/45/85 device.
7.1 ATtiny25/45/85 Rev. A
Too high power down power consumption
DebugWIRE looses communication when single stepping into interrupts
PLL not locking
1. Too high power down power consumption
Three situations will lead to a too high power down power consumption. These are:
An external clock is selected by fuses, but the IO PORT is still enabled as an output.
The EEPROM is read before entering power down.
VCC is 4.5 volts or higher.
Problem fix / Workaround
When using external clock, avoid setting the clock pin as Output.
Do not read the EEPROM if power down power consumption is important.
Use VCC lower than 4.5 Volts.
2. DebugWIRE looses communication when single stepping into interrupts
When receiving an interrupt during single stepping, debugwire will loose
communication.
Problem fix / Workaround
When singlestepping disable interrupts.
When debugging interrupts, use breakpoints within the interrupt routine, and run into
the interrupt.
3. PLL not locking
When running at frequencies below 6.0 MHz, the PLL will not lock
Problem fix / Workaround
When using the PLL, run at 6.0 MHz or higher.
15
2586AS–AVR–02/05
ATtiny25/45/85
8. Datasheet Revision History
8.1 Rev. 2586A-02/05
1. Initial revision.
Printed on recycled paper.
2586AS–AVR–02/05
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not
intended, authorized, or warranted for use as components in applications intended to support or sustain life.
Atmel Corporation Atmel Operations
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Literature Requests
www.atmel.com/literature
© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, AVR®, and AVR Studio® are registered trademarks,
and Everywhere You AreSM are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of
others.