MC7900 Series 1.0 A Negative Voltage Regulators The MC7900 series of fixed output negative voltage regulators are intended as complements to the popular MC7800 series devices. These negative regulators are available in the same seven-voltage options as the MC7800 devices. In addition, one extra voltage option commonly employed in MECL systems is also available in the negative MC7900 series. Available in fixed output voltage options from - 5.0 V to - 24 V, these regulators employ current limiting, thermal shutdown, and safe-area compensation - making them remarkably rugged under most operating conditions. With adequate heatsinking they can deliver output currents in excess of 1.0 A. * No External Components Required * Internal Thermal Overload Protection * Internal Short Circuit Current Limiting * Output Transistor Safe-Area Compensation * Available in 2% Voltage Tolerance (See Ordering Information) * Pb-Free Package May be Available. The G-Suffix Denotes a Pb-Free Lead Finish http://onsemi.com TO-220 T SUFFIX CASE 221AB Heatsink surface connected to Pin 2. D2PAK D2T SUFFIX CASE 936 2.0 k 14.7 k 4.0 k 1.0 k 12 k 1.2 k 4.0 k 1.0 k 3 1 2 3 Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2. 25 2.4 k 8.0 k 3.6 k 2 Pin 1. Ground 2. Input 3. Output Gnd 2.0 k 1 R1 STANDARD APPLICATION 1.6 k R2 MC79XX Input VO 10 k Cin* 0.33 mF Output CO** 1.0 mF 20 pF 10 pF 2.0 k 20 k 20 k 10 k 240 0.3 1.1 k 750 VI This device contains 26 active transistors. Figure 1. Representative Schematic Diagram A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above more negative even during the high point of the input ripple voltage. XX, These two digits of the type number indicate nominal voltage. ** Cin is required if regulator is located an appreciable distance from power supply filter. ** CO improve stability and transient response. ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet. DEVICE MARKING INFORMATION See general marking information in the device marking section on page 14 of this data sheet. (c) Semiconductor Components Industries, LLC, 2011 November, 2011 - Rev. 17 1 Publication Order Number: MC7900/D MC7900 Series MAXIMUM RATINGS (TA = +25C, unless otherwise noted.) Symbol Value Unit VI -35 -40 Vdc PD qJA qJC Internally Limited 65 5.0 W C/W C/W PD qJA qJC Internally Limited 70 5.0 W C/W C/W Storage Junction Temperature Range Tstg -65 to +150 C Junction Temperature TJ +150 C Rating Input Voltage (-5.0 V VO -18 V) Input Voltage (24 V) Power Dissipation Case 221A TA = +25C Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case Case 936 (D2PAK) TA = +25C Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. *This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL_STD_883, Method 3015 Machine Model Method 200 V MC7905B, MC7905C ELECTRICAL CHARACTERISTICS (VI = -10 V, IO = 500 mA, Tlow* < TJ < +125C, unless otherwise noted.) Characteristics Symbol Min Typ Max Unit Output Voltage (TJ = +25C) VO -4.8 -5.0 -5.2 Vdc Line Regulation (Note 1) (TJ = +25C, IO = 100 mA) -7.0 Vdc VI - 25 Vdc -8.0 Vdc VI -12 Vdc (TJ = +25C, IO = 500 mA) -7.0 Vdc VI - 25 Vdc -8.0 Vdc VI -12 Vdc Regline Load Regulation, TJ = +25C (Note 1) 5.0 mA IO 1.5 A 250 mA IO 750 mA Regload Output Voltage -7.0 Vdc VI - 20 Vdc, 5.0 mA IO 1.0 A, P 15 W VO Input Bias Current (TJ = +25C) IIB Input Bias Current Change -7.0 Vdc VI - 25 Vdc 5.0 mA IO 1.5 A DIIB mV - - 7.0 2.0 50 25 - - 35 8.0 100 50 - - 11 4.0 100 50 -4.75 - -5.25 - 4.3 8.0 - - - - 1.3 0.5 mV Vdc mA mA Output Noise Voltage (TA = +25C, 10 Hz f 100 kHz) Vn - 40 - mV Ripple Rejection (IO = 20 mA, f = 120 Hz) RR - 70 - dB - 1.3 - - -1.0 - Dropout Voltage IO = 1.0 A, TJ = +25C VI-VO Average Temperature Coefficient of Output Voltage IO = 5.0 mA, Tlow* TJ +125C DVO/DT Vdc mV/C 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. *Tlow = -40C for MC7905B and Tlow = 0C for MC7905C. http://onsemi.com 2 MC7900 Series MC7905AC ELECTRICAL CHARACTERISTICS (VI = -10 V, IO = 500 mA, 0C < TJ < +125C, unless otherwise noted.) Characteristics Output Voltage (TJ = +25C) Symbol Min Typ Max Unit VO -4.9 -5.0 -5.1 Vdc - - - - 2.0 7.0 7.0 6.0 25 50 50 50 - - - 11 4.0 9.0 100 50 100 -4.80 - -5.20 - 4.4 8.0 - - - - - - 1.3 0.5 0.5 Line Regulation (Note 2) -8.0 Vdc VI -12 Vdc; IO = 1.0 A, TJ = +25C -8.0 Vdc VI -12 Vdc; IO = 1.0 A -7.5 Vdc VI - 25 Vdc; IO = 500 mA -7.0 Vdc VI - 20 Vdc; IO = 1.0 A, TJ = +25C Regline Load Regulation (Note 2) 5.0 mA IO 1.5 A, TJ = +25C 250 mA IO 750 mA 5.0 mA IO 1.0 A Regload Output Voltage -7.5 Vdc VI - 20 Vdc, 5.0 mA IO 1.0 A, P 15 W VO Input Bias Current IIB Input Bias Current Change -7.5 Vdc VI - 25 Vdc 5.0 mA IO 1.0 A 5.0 mA IO 1.5 A, TJ = +25C DIIB mV mV Vdc mA mA Output Noise Voltage (TA = +25C, 10 Hz f 100 kHz) Vn - 40 - mV Ripple Rejection (IO = mA, f = 120 Hz) RR - 70 - dB VI-VO - 1.3 - Vdc - -1.0 - Dropout Voltage (IO = 1.0 A. TJ = +25C) Average Temperature Coefficient of Output Voltage IO = 5.0 A, 0C TJ +125C DVO/DT mV/C MC7905.2C ELECTRICAL CHARACTERISTICS (VI = -10 V, IO = 500 mA, 0C < TJ < +125C, unless otherwise noted.) Symbol Min Typ Max Unit Output Voltage (TJ = +25C) VO -5.0 -5.2 -5.4 Vdc Line Regulation (Note 2) (TJ = +25C, IO = 100 mA) -7.2 Vdc VI - 25 Vdc -8.0 Vdc VI -12 Vdc (TJ = +25C, IO = 500 mA) -7.2 Vdc VI - 25 Vdc -8.0 Vdc VI -12 Vdc Regline Load Regulation, TJ = +25C (Note 2) 5.0 mA IO 1.5 A 250 mA IO 750 mA Regload Characteristics Output Voltage -7.2 Vdc VI - 20 Vdc, 5.0 mA IO 1.0 A, P 15 W VO Input Bias Current (TJ = +25C) IIB Input Bias Current Change -7.2 Vdc VI - 25 Vdc 5.0 mA IO 1.5 A DIIB mV - - 8.0 2.2 52 27 - - 37 8.5 105 52 - - 12 4.5 105 52 -4.95 - -5.45 - 4.3 8.0 - - - - 1.3 0.5 mV Vdc mA mA Output Noise Voltage (TA = +25C, 10 Hz f 100 kHz) Vn - 42 - mV Ripple Rejection (IO = 20 mA, f = 120 Hz) RR - 68 - dB VI-VO - 1.3 - Dropout Voltage (IO = 1.0 A, TJ = +25C) Average Temperature Coefficient of Output Voltage IO = 5.0 mA, 0C TJ +125C DVO/DT Vdc mV/C - -1.0 - 2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. http://onsemi.com 3 MC7900 Series MC7906C ELECTRICAL CHARACTERISTICS (VI = -11 V, IO = 500 mA, 0C < TJ < +125C, unless otherwise noted.) Characteristics Symbol Min Typ Max Unit Output Voltage (TJ = +25C) VO -5.75 -6.0 -6.25 Vdc Line Regulation (Note 3) (TJ = +25C, IO = 100 mA) -8.0 Vdc VI - 25 Vdc -9.0 Vdc VI -13 Vdc (TJ = +25C, IO = 500 mA) -8.0 Vdc VI - 25 Vdc -9.0 Vdc VI -13 Vdc Regline Load Regulation, TJ = +25C (Note 3) 5.0 mA IO 1.5 A 250 mA IO 750 mA Regload Output Voltage -8.0 Vdc VI - 21 Vdc, 5.0 mA IO 1.0 A, P 15 W VO Input Bias Current (TJ = +25C) IIB Input Bias Current Change -8.0 Vdc VI - 25 Vdc 5.0 mA IO 1.5 A DIIB mV - - 9.0 3.0 60 30 - - 43 10 120 60 - - 13 5.0 120 60 -5.7 - -6.3 - 4.3 8.0 - - - - 1.3 0.5 mV Vdc mA mA Output Noise Voltage (TA = +25C, 10 Hz f 100 kHz) Vn - 45 - mV Ripple Rejection (IO = 20 mA, f = 120 Hz) RR - 65 - dB Dropout Voltage (IO = 1.0 A, TJ = +25C) VI-VO - 1.3 - Vdc - -1.0 - Average Temperature Coefficient of Output Voltage IO = 5.0 A, 0C TJ +125C DVO/DT mV/C MC7908C ELECTRICAL CHARACTERISTICS (VI = -14 V, IO = 500 mA, 0C < TJ < +125C, unless otherwise noted.) Characteristics Output Voltage (TJ = +25C) Symbol Min Typ Max Unit VO -7.7 -8.0 -8.3 Vdc Line Regulation (Note 3) (TJ = +25C, IO = 100 mA) -10.5 Vdc VI -25 Vdc -11 Vdc VI -17 Vdc (TJ = +25C, IO = 500 mA) -10.5 Vdc VI -25 Vdc -11 Vdc VI -17 Vdc Regline Load Regulation, TJ = +25C (Note 3) 5.0 mA IO 1.5 A 250 mA IO 750 mA Regload Output Voltage -10.5 Vdc VI - 23 Vdc, 5.0 mA IO 1.0 A, P 15 W VO Input Bias Current (TJ = +25C) IIB Input Bias Current Change -10.5 Vdc VI - 25 Vdc 5.0 mA IO 1.5 A DIIB mV - - 12 5.0 80 40 - - 50 22 160 80 - - 26 9.0 160 80 -7.6 - -8.4 - 4.3 8.0 - - - - 1.0 0.5 mV Vdc mA mA Output Noise Voltage (TA = +25C, 10 Hz f 100 kHz) Vn - 52 - mV Ripple Rejection (IO = 20 mA, f = 120 Hz) RR - 62 - dB VI-VO - 1.3 - Dropout Voltage (IO = 1.0 A, TJ = +25C) Average Temperature Coefficient of Output Voltage IO = 5.0 mA, 0C TJ +125C DVO/DT Vdc mV/C - -1.0 - 3. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. http://onsemi.com 4 MC7900 Series MC7912B, MC7912C ELECTRICAL CHARACTERISTICS (VI = -19 V, IO = 500 mA, Tlow* < TJ < +125C, unless otherwise noted.) Characteristics Output Voltage (TJ = +25C) Symbol Min Typ Max Unit VO -11.5 -12 -12.5 Vdc Line Regulation (Note 4) (TJ = +25C, IO = 100 mA) -14.5 Vdc VI - 30 Vdc -16 Vdc VI - 22 Vdc (TJ = +25C, IO = 500 mA) -14.5 Vdc VI - 30 Vdc -16 Vdc VI - 22 Vdc Regline Load Regulation, TJ = +25C (Note 4) 5.0 mA IO 1.5 A 250 mA IO 750 mA Regload Output Voltage -14.5 Vdc VI - 27 Vdc, 5.0 mA IO 1.0 A, P 15 W VO Input Bias Current (TJ = +25C) IIB Input Bias Current Change -14.5 Vdc VI - 30 Vdc 5.0 mA IO 1.5 A DIIB mV - - 13 6.0 120 60 - - 55 24 240 120 - - 46 17 240 120 -11.4 - -12.6 - 4.4 8.0 - - - - 1.0 0.5 mV Vdc mA mA Output Noise Voltage (TA = +25C, 10 Hz f 100 kHz) Vn - 75 - mV Ripple Rejection (IO = 20 mA, f = 120 Hz) RR - 61 - dB Dropout Voltage (IO = 1.0 A, TJ = +25C) VI-VO - 1.3 - Vdc - -1.0 - Average Temperature Coefficient of Output Voltage IO = 5.0 mA, Tlow* TJ +125C DVO/DT mV/C MC7912AC ELECTRICAL CHARACTERISTICS (VI = -19 V, IO = 500 mA, Tlow* < TJ < +125C, unless otherwise noted.) Characteristics Output Voltage (TJ = +25C) Symbol Min Typ Max Unit VO -11.75 -12 -12.25 Vdc - - - - 6.0 24 24 13 60 120 120 120 - - - 46 17 35 150 75 150 -11.5 - -12.5 - 4.4 8.0 - - - - - - 0.8 0.5 0.5 Line Regulation (Note 4) -16 Vdc VI - 22 Vdc; IO = 1.0 A, TJ = +25C -16 Vdc VI - 22 Vdc; IO = 1.0 A -14.8 Vdc VI - 30 Vdc; IO = 500 mA -14.5 Vdc VI - 27 Vdc; IO = 1.0 A, TJ = +25C Regline Load Regulation (Note 4) 5.0 mA IO 1.5 A, TJ = +25C 250 mA IO 750 mA 5.0 mA IO 1.0 A Regload Output Voltage -14.8 Vdc VI - 27 Vdc, 5.0 mA IO 1.0 A, P 15 W VO Input Bias Current IIB Input Bias Current Change -15 Vdc VI - 30 Vdc 5.0 mA IO 1.0 A 5.0 mA IO 1.5 A, TJ = +25C DIIB mV mV Vdc mA mA Output Noise Voltage (TA = +25C, 10 Hz f 100 kHz) Vn - 75 - mV Ripple Rejection (IO = 20 mA, f = 120 Hz) RR - 61 - dB VI-VO - 1.3 - Dropout Voltage (IO = 1.0 A, TJ = +25C) Average Temperature Coefficient of Output Voltage IO = 5.0 A, Tlow* TJ +125C DVO/DT Vdc mV/C - -1.0 - 4. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. *Tlow = -40C for MC7912B and Tlow = 0C for MC7912C. http://onsemi.com 5 MC7900 Series MC7915B, MC7915C ELECTRICAL CHARACTERISTICS (VI = - 23 V, IO = 500 mA, Tlow* < TJ < +125C, unless otherwise noted.) Characteristics Output Voltage (TJ = +25C) Symbol Min Typ Max Unit VO -14.4 -15 -15.6 Vdc Line Regulation (Note 5) (TJ = +25C, IO = 100 mA) -17.5 Vdc VI - 30 Vdc -20 Vdc VI - 26 Vdc (TJ = +25C, IO = 500 mA) -17.5 Vdc VI - 30 Vdc -20 Vdc VI - 26 Vdc Regline Load Regulation, TJ = +25C (Note 5) 5.0 mA IO 1.5 A 250 mA IO 750 mA Regload Output Voltage -17.5 Vdc VI - 30 Vdc, 5.0 mA IO 1.0 A, P 15 W VO Input Bias Current (TJ = +25C) IIB Input Bias Current Change -17.5 Vdc VI - 30 Vdc 5.0 mA IO 1.5 A DIIB mV - - 14 6.0 150 75 - - 57 27 300 150 - - 68 25 300 150 -14.25 - -15.75 - 4.4 8.0 - - - - 1.0 0.5 mV Vdc mA mA Output Noise Voltage (TA = +25C, 10 Hz f 100 kHz) Vn - 90 - mV Ripple Rejection (IO = 20 mA, f = 120 Hz) RR - 60 - dB Dropout Voltage (IO = 1.0 A, TJ = +25C) VI-VO - 1.3 - Vdc - -1.0 - Average Temperature Coefficient of Output Voltage IO = 5.0 A, Tlow* TJ +125C DVO/DT mV/C MC7915AC ELECTRICAL CHARACTERISTICS (VI = - 23 V, IO = 500 mA, Tlow* < TJ < +125C, unless otherwise noted.) Characteristics Output Voltage (TJ = +25C) Symbol Min Typ Max Unit VO -14.7 -15 -15.3 Vdc - - - - 27 57 57 57 75 150 150 150 - - - 68 25 40 150 75 150 -14.4 - -15.6 - 4.4 8.0 - - - - - - 0.8 0.5 0.5 Line Regulation (Note 5) -20 Vdc VI - 26 Vdc, IO = 1.0 A, TJ = +25C -20 Vdc VI - 26 Vdc, IO = 1.0 A, -17.9 Vdc VI - 30 Vdc, IO = 500 mA -17.5 Vdc VI - 30 Vdc, IO = 1.0 A, TJ = +25C Regline Load Regulation (Note 5) 5.0 mA IO 1.5 A, TJ = +25C 250 mA IO 750 mA 5.0 mA IO 1.0 A Regload Output Voltage -17.9 Vdc VI - 30 Vdc, 5.0 mA IO 1.0 A, P 15 W VO Input Bias Current IIB Input Bias Current Change -17.5 Vdc VI - 30 Vdc 5.0 mA IO 1.0 A 5.0 mA IO 1.5 A, TJ = +25C DIIB mV mV Vdc mA mA Output Noise Voltage (TA = +25C, 10 Hz f 100 kHz) Vn - 90 - mV Ripple Rejection (IO = 20 mA, f = 120 Hz) RR - 60 - dB VI-VO - 1.3 - Dropout Voltage (IO = 1.0 A, TJ = +25C) Average Temperature Coefficient of Output Voltage IO = 5.0 mA, Tlow* TJ +125C DVO/DT Vdc mV/C - -1.0 - 5. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. *Tlow = -40C for MC7915B and Tlow = 0C for MC7915C. http://onsemi.com 6 MC7900 Series MC7918C ELECTRICAL CHARACTERISTICS (VI = - 27 V, IO = 500 mA, 0C < TJ < +125C, unless otherwise noted.) Characteristics Symbol Min Typ Max Unit Output Voltage (TJ = +25C) VO -17.3 -18 -18.7 Vdc Line Regulation (Note 6) (TJ = +25C, IO = 100 mA) -21 Vdc VI - 33 Vdc -24 Vdc VI - 30 Vdc (TJ = +25C, IO = 500 mA) -21 Vdc VI - 33 Vdc -24 Vdc VI - 30 Vdc Regline Load Regulation, TJ = +25C (Note 6) 5.0 mA IO 1.5 A 250 mA IO 750 mA Regload Output Voltage -21 Vdc VI - 33 Vdc, 5.0 mA IO 1.0 A, P 15 W VO Input Bias Current (TJ = +25C) IIB Input Bias Current Change -21 Vdc VI - 33 Vdc 5.0 mA IO 1.5 A DIIB mV - - 25 10 180 90 - - 90 50 360 180 - - 110 55 360 180 -17.1 - -18.9 - 4.5 8.0 - - - - 1.0 0.5 mV Vdc mA mA Output Noise Voltage (TA = +25C, 10 Hz f 100 kHz) Vn - 110 - mV Ripple Rejection (IO = 20 mA, f = 120 Hz) RR - 59 - dB Dropout Voltage (IO = 1.0 A, TJ = +25C) VI-VO - 1.3 - Vdc - -1.0 - Average Temperature Coefficient of Output Voltage IO = 5.0 mA, 0C TJ +125C DVO/DT mV/C MC7924B, MC7924C ELECTRICAL CHARACTERISTICS (VI = - 33 V, IO = 500 mA, Tlow* < TJ < +125C, unless otherwise noted.) Symbol Min Typ Max Unit Output Voltage (TJ = +25C) VO -23 -24 -25 Vdc Line Regulation (Note 6) (TJ = +25C, IO = 100 mA) -27 Vdc VI - 38 Vdc -30 Vdc VI - 36 Vdc (TJ = +25C, IO = 500 mA) -27 Vdc VI - 38 Vdc -30 Vdc VI - 36 Vdc Regline Load Regulation, TJ = +25C (Note 6) 5.0 mA IO 1.5 A 250 mA IO 750 mA Regload Characteristics Output Voltage -27 Vdc VI - 38 Vdc, 5.0 mA IO 1.0 A, P 15 W VO Input Bias Current (TJ = +25C) IIB Input Bias Current Change -27 Vdc VI - 38 Vdc 5.0 mA IO 1.5 A DIIB mV - - 31 14 240 120 - - 118 70 470 240 - - 150 85 480 240 -22.8 - -25.2 - 4.6 8.0 - - - - 1.0 0.5 mV Vdc mA mA Output Noise Voltage (TA = +25C, 10 Hz f 100 kHz) Vn - 170 - mV Ripple Rejection (IO = 20 mA, f = 120 Hz) RR - 56 - dB VI-VO - 1.3 - Dropout Voltage (IO = 1.0 A, TJ = +25C) Average Temperature Coefficient of Output Voltage IO = 5.0 mA, Tlow* TJ +125C DVO/DT Vdc mV/C - -1.0 - 6. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. *Tlow = -40C for MC7924B and Tlow = 0C for MC7924C. http://onsemi.com 7 MC7900 Series 20 10 qHS = 5C/W 5.0 4.0 qHS = 15C/W 3.0 2.0 I O , OUTPUT CURRENT (A) PD, POWER DISSIPATION (W) 2.5 Infinite Heatsink No Heatsink 1.0 0.5 0.4 0.3 0.2 qJC = 5 C/W qJA = 65 C/W PD(max) = 15W 0.1 25 50 75 100 125 1.0 0.5 0 3.0 6.0 9.0 12 15 18 21 24 27 |VI -VO| INPUT-OUTPUT VOLTAGE DIFFERENTIAL (V) Figure 2. Worst Case Power Dissipation as a Function of Ambient Temperature Figure 3. Peak Output Current as a Function of Input-Output Differential Voltage 30 80 Vin = -11 V VO = -6.0 V IO = 20 mA 80 RR, RIPPLE REJECTION (dB) RR, RIPPLE REJECTION (dB) 1.5 TA, AMBIENT TEMPERATURE (C) 60 40 20 10 100 1.0 k 10 k 60 50 f, FREQUENCY (Hz) 8.0 10 12 14 16 VO, OUTPUT VOLTAGE (V) Figure 4. Ripple Rejection as a Function of Frequency Figure 5. Ripple Rejection as a Function of Output Voltage 2.0 4.0 6.0 18 20 22 I IB , INPUT BIAS CURRENT (mA) 5.2 6.22 6.18 6.14 Vin = -11 V VD = -6.0 V IO = 20 mA 6.10 6.06 -25 f = 120 Hz IO = 20 mA DVin = 1.0 V(RMS) 70 40 100 k 6.26 VO, OUTPUT VOLTAGE (-V) TJ = +25C 0 150 100 0 2.0 5.0 4.8 4.4 4.2 0 25 50 75 100 125 150 175 Vin = -11 V VO = -6.0 V IO = 20 mA 4.6 0 25 50 75 100 TJ, JUNCTION TEMPERATURE (C) TJ, JUNCTION TEMPERATURE (C) Figure 6. Output Voltage as a Function of Junction Temperature Figure 7. Quiescent Current as a Function of Temperature http://onsemi.com 8 125 MC7900 Series APPLICATIONS INFORMATION Design Considerations -10 V Input The MC7900 Series of fixed voltage regulators are designed with Thermal overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 mF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The capacitor chosen should have an equivalent series resistance of less than 0.7 W. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended. -20 V Input MC7905 10 IO = 200 mA R VO 10 V -5.0 V Output 0.56 2N3055* or Equiv 0.56 0.56 MJE200* or Equiv MC7905* 5.6 10 mF + Gnd + 1.0 mF Figure 9. Current Boost Regulator (-5.0 V @ 4.0 A, with 5.0 A Current Limiting) When a boost transistor is used, short circuit currents are equal to the sum of the series pass and regulator limits, which are measured at 3.2 A and 1.8 A respectively in this case. Series pass limiting is approximately equal to 0.6 V/RSC. Operation beyond this point to the peak current capability of the MC7905C is possible if the regulator is mounted on a heatsink; otherwise thermal shutdown will occur when the additional load current is picked up by the regulator. 1N4001G or Equiv +20 V Input 0.33 mF +15 V Output MC7815 + 1.0 mF + + + 1.0 mF Gnd Gnd 1.0 mF + 1.0 mF 1.0 mF + Clamp diode 1N4001G or Equiv Gnd 1N4001G or Equiv MC7915 Figure 8. Current Regulator -20 V Input The MC7905, -5.0 V regulator can be used as a constant current source when connected as above. The output current is the sum of resistor R current and quiescent bias current as follows: IO + Gnd *Mounted on heatsink. Gnd 1.0 mF 1.0 mF + -15 V Output 1N4001G or Equiv Figure 10. Operational Amplifier Supply The MC7815 and MC7915 positive and negative regulators may be connected as shown to obtain a dual power supply for operational amplifiers. A clamp diode should be used at the output of the MC7815 to prevent potential latch-up problems whenever the output of the positive regulator (MC7815) is drawn below ground with an output current greater than 200 mA. 5.0 V ) IB R The quiescent current for this regulator is typically 4.3 mA. The 5.0 V regulator was chosen to minimize dissipation and to allow the output voltage to operate to within 6.0 V below the input voltage. http://onsemi.com 9 MC7900 Series Protection Diodes Diode D2 prevents output capacitor from discharging thru the MC7915 during an input short circuit or fast switch off of power supply. When external capacitors are used with MC7900 series regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator or from output polarity reversals. Generally, no protection diode is required for values of output capacitance less then 10mF. Figure 11 shows the MC7915 with the recommended protection diodes. * Opposite Polarity Protection Diode D1 protects the regulator from output polarity reversals during startup, power off and short-circuit operation. * Reverse-bias Protection Gnd + 1.0 mF 1.0 mF Gnd + D1 1N4001G or Equiv MC7915 -20 V Input -15 V Output D2 1N4001G or Equiv Figure 11. Protection Diodes DEFINITIONS JUNCTIONTOAIR (C/W) R JA, THERMAL RESISTANCE 80 3.5 PD(max) for TA = +50C 70 3.0 Free Air Mounted Vertically 60 Minimum Size Pad 50 L 40 RqJA 30 0 5.0 III III III III 2.0 oz. Copper L 10 15 20 25 2.5 2.0 1.5 1.0 30 L, LENGTH OF COPPER (mm) Figure 12. D2PAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length http://onsemi.com 10 PD, MAXIMUM POWER DISSIPATION (W) Input Bias Current - That part of the input current that is not delivered to the load. Output Noise Voltage - The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range. Long Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation. Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected. Load Regulation - The change in output voltage for a change in load current at constant chip temperature. Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications. MC7900 Series ORDERING INFORMATION Device MC7905ACD2T Nominal Output Voltage -5.0 V Output Voltage Tolerance Package Operating Temperature Range Shipping 2% D2PAK TJ = 0C to +125C 50 Units/Rail MC7905ACD2TG D2PAK (Pb-Free) 50 Units/Rail MC7905ACD2TR4 D2PAK 800 Tape & Reel D2PAK (Pb-Free) 800 Tape & Reel TO-220 50 Units/Rail TO-220 (Pb-Free) 50 Units/Rail MC7905ACD2TR4G MC7905ACT MC7905ACTG D2PAK 4% MC7905BD2T TJ = -40C to +125C D2PAK MC7905BD2TG 50 Units/Rail 50 Units/Rail (Pb-Free) MC7905BD2TR4 D2PAK 800 Tape & Reel MC7905BD2TR4G D2PAK 800 Tape & Reel (Pb-Free) MC7905BT TO-220 50 Units/Rail MC7905BTG TO-220 (Pb-Free) 50 Units/Rail MC7905CD2T D2PAK MC7905CD2TG D2PAK TJ = 0C to +125C 50 Units/Rail 50 Units/Rail (Pb-Free) MC7905CD2TR4 MC7905CD2TR4G MC7905CT MC7905CTG MC7905.2CT -5.2 V 4% 800 Tape & Reel D2PAK (Pb-Free) 800 Tape & Reel TO-220 50 Units/Rail TO-220 (Pb-Free) 50 Units/Rail TO-220 MC7905.2CTG MC7906CD2T D2PAK TJ = 0C to +125C TO-220 (Pb-Free) -6.0 V D2PAK 4% 50 Units/Rail TJ = 0C to +125C D2PAK MC7906CD2TG 50 Units/Rail 50 Units/Rail 50 Units/Rail (Pb-Free) MC7906CT MC7906CTG MC7908ACT -8.0 V 2% TO-220 50 Units/Rail TO-220 (Pb-Free) 50 Units/Rail TO-220 MC7908ACTG TJ = 0C to +125C 50 Units/Rail TO-220 (Pb-Free) 50 Units/Rail D2PAK 50 Units/Rail MC7908CD2TG D2PAK (Pb-Free) 50 Units/Rail MC7908CD2TR4 D2PAK 800 Tape & Reel D2PAK (Pb-Free) 800 Tape & Reel TO-220 50 Units/Rail TO-220 (Pb-Free) 50 Units/Rail MC7908CD2T 4% MC7908CD2TR4G MC7908CT MC7908CTG http://onsemi.com 11 MC7900 Series Device MC7912ACD2T Nominal Output Voltage -12 V Output Voltage Tolerance Package Operating Temperature Range Shipping 2% D2PAK TJ = 0C to +125C 50 Units/Rail MC7912ACD2TG D2PAK (Pb-Free) 50 Units/Rail MC7912ACD2TR4 D2PAK 800 Tape & Reel D2PAK (Pb-Free) 800 Tape & Reel TO-220 50 Units/Rail TO-220 (Pb-Free) 50 Units/Rail MC7912ACD2TR4G MC7912ACT MC7912ACTG MC7912BD2T D2PAK 4% TJ = -40C to +125C D2PAK MC7912BD2TG 50 Units/Rail 50 Units/Rail (Pb-Free) MC7912BD2TR4 D2PAK 800 Tape & Reel MC7912BD2TR4G D2PAK 800 Tape & Reel (Pb-Free) MC7912BT TO-220 50 Units/Rail MC7912BTG TO-220 (Pb-Free) 50 Units/Rail MC7912CD2T D2PAK TJ = 0C to +125C 50 Units/Rail MC7912CD2TG D2PAK (Pb-Free) 50 Units/Rail MC7912CD2TR4 D2PAK 800 Tape & Reel D2PAK (Pb-Free) 800 Tape & Reel TO-220 50 Units/Rail TO-220 (Pb-Free) 50 Units/Rail MC7912CD2TR4G MC7912CT MC7912CTG http://onsemi.com 12 MC7900 Series Device MC7915ACD2T Nominal Output Voltage - 15 V Output Voltage Tolerance Package Operating Temperature Range Shipping 2% D2PAK TJ = 0C to +125C 50 Units/Rail MC7915ACD2TG MC7915ACT MC7915ACTG 50 Units/Rail TO-220 50 Units/Rail TO-220 (Pb-Free) 50 Units/Rail D2PAK 4% MC7915BD2T D2PAK (Pb-Free) TJ = -40C to +125C D2PAK MC7915BD2TG 50 Units/Rail 50 Units/Rail (Pb-Free) MC7915BT TO-220 50 Units/Rail MC7915BTG TO-220 (Pb-Free) 50 Units/Rail MC7915BD2TR4G D2PAK (Pb-Free) 800 Tape & Reel MC7915CD2T D2PAK MC7915CD2TG D2PAK TJ = 0C to +125C 50 Units/Rail 50 Units/Rail (Pb-Free) MC7915CD2TR4 D2PAK 800 Tape & Reel MC7915CD2TR4G D2PAK 800 Tape & Reel (Pb-Free) MC7915CT MC7915CTG MC7918CT - 18 V 4% 50 Units/Rail TO-220 (Pb-Free) 50 Units/Rail TO-220 MC7918CTG MC7924BT TO-220 TJ = 0C to +125C TO-220 (Pb-Free) - 24 V 4% TO-220 MC7924BTG TO-220 (Pb-Free) MC7924CD2T D2PAK MC7924CD2TG MC7924CT MC7924CTG 50 Units/Rail 50 Units/Rail TJ = -40C to +125C 50 Units/Rail 50 Units/Rail TJ = 0C to +125C 50 Units/Rail D2PAK (Pb-Free) 50 Units/Rail TO-220 50 Units/Rail TO-220 (Pb-Free) 50 Units/Rail For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 13 MC7900 Series MARKING DIAGRAMS TO-220 T SUFFIX CASE 221AB MC 79xxACT AWLYWWG MC 7905.2CT AWLYWWG MC 79xxBT AWLYWWG MC 79xxCT AWLYWWG 1 2 3 1 2 3 1 2 3 1 2 3 D2PAK D2T SUFFIX CASE 936 MC 79xxACD2T AWLYWWG MC 79xxBD2T AWLYWWG 2 1 MC 79xxCD2T AWLYWWG 2 3 1 xx A WL Y WW G 2 3 = Nominal Voltage = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Device http://onsemi.com 14 1 3 MC7900 Series PACKAGE DIMENSIONS D2PAK D2T SUFFIX CASE 936-03 ISSUE D T C A K S B J 2 ES DETAIL C DETAIL C 3 F G SIDE VIEW 2X TOP VIEW D 0.010 (0.254) N M P R C OPTIONAL CHAMFER V H 1 U ED OPTIONAL CHAMFER T TERMINAL 4 L SIDE VIEW BOTTOM VIEW DUAL GAUGE CONSTRUCTION NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCHES. 3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS A AND K. 4. DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING SURFACE FOR TERMINAL 4. 5. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.025 (0.635) MAXIMUM. 6. SINGLE GAUGE DESIGN WILL BE SHIPPED AFTER FPCN EXPIRATION IN OCTOBER 2011. SINGLE GAUGE CONSTRUCTION T M T SEATING PLANE BOTTOM VIEW DETAIL C OPTIONAL CONSTRUCTIONS SOLDERING FOOTPRINT* 10.490 8.380 16.155 2X 3.504 2X 1.016 5.080 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 15 DIM A B C D ED ES F G H J K L M N P R S U V INCHES MIN MAX 0.386 0.403 0.356 0.368 0.170 0.180 0.026 0.036 0.045 0.055 0.018 0.026 0.051 REF 0.100 BSC 0.539 0.579 0.125 MAX 0.050 REF 0.000 0.010 0.088 0.102 0.018 0.026 0.058 0.078 5 _ REF 0.116 REF 0.200 MIN 0.250 MIN MILLIMETERS MIN MAX 9.804 10.236 9.042 9.347 4.318 4.572 0.660 0.914 1.143 1.397 0.457 0.660 1.295 REF 2.540 BSC 13.691 14.707 3.175 MAX 1.270 REF 0.000 0.254 2.235 2.591 0.457 0.660 1.473 1.981 5 _ REF 2.946 REF 5.080 MIN 6.350 MIN MC7900 Series PACKAGE DIMENSIONS TO-220, SINGLE GAUGE T SUFFIX CASE 221AB-01 ISSUE A -T- B F T SEATING PLANE C S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCHES. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. 4. PRODUCT SHIPPED PRIOR TO 2008 HAD DIMENSIONS S = 0.045 - 0.055 INCHES (1.143 - 1.397 MM) 4 DIM A B C D F G H J K L N Q R S T U V Z A Q U 1 2 3 H K Z L R V J G D N INCHES MIN MAX 0.570 0.620 0.380 0.405 0.160 0.190 0.025 0.035 0.142 0.147 0.095 0.105 0.110 0.155 0.018 0.025 0.500 0.562 0.045 0.060 0.190 0.210 0.100 0.120 0.080 0.110 0.020 0.024 0.235 0.255 0.000 0.050 0.045 ----0.080 MILLIMETERS MIN MAX 14.48 15.75 9.66 10.28 4.07 4.82 0.64 0.88 3.61 3.73 2.42 2.66 2.80 3.93 0.46 0.64 12.70 14.27 1.15 1.52 4.83 5.33 2.54 3.04 2.04 2.79 0.508 0.61 5.97 6.47 0.00 1.27 1.15 ----2.04 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 http://onsemi.com 16 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC7900/D