Standard Power MOSFETs IRFD210, IRFD211, IRFD212, IRFD213 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 0.45 A and 0.6 A, 150 V - 200 V losion = 1.5 Q and 2.4Q Features: a SOA is power-dissipation limited a Nanosecond switching speeds a Linear transfer characteristics a High input impedance a Majority carrier device The IRFD210, IRFD211, IRFD212, and IRFD213 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. File Number 2316 N-CHANNEL ENHANCEMENT MODE D $s 92CS-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION if TOP VIEW These types can be operated directly from integrated circuits. 4-PIN DIP The IRFD-types are supplied in the 4-pin DIP package. Absolute Maximum Ratings Parameter IRFD210 {RFD211 IRFD212 {RFD213 Units Vos Drain - Source Voltage 200 150 200 150 Vv Vor Drain - Gate Voltage (Res = 20 kn) 200 150 200 150 v In @ Ta = 25C Continuous Drain Current 06 06 0.45 0.45 A fom Pulsed Drain Current 25 25 18 1.8 A Ves Gate - Source Voltage +20 Vv Po @ Ta = 25C Max. Power Dissipation 1.0 (See Fig. 13) Ww. Linear Derating Factor 0.008 (See Fig. 13) wc tim inductive Current, Clamped (See Fig. 14 and 15) L = 100 wH A 25 I 25 L 1.8 l 18 Ts Operating Junction and Tag Storage Temperature Range 55 to 150 c Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s) C 3-224Standard Power MOSFETs IRFD210, IRFD211, IRFD212, IRFD213 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BVpss_ Drain -- Source Breakdown Voltage IRFD210,2] 200 = = Vv Ves = OV . (REO211,3} 150 - | - Vv Ip = 250nA Vesith) Gate Threshold Voltage ALL 2.0 = 4.0 Vv Vos = V6s. Ip = 250nA loss Gate Source Leakage Forward ALL _ = 500 nA Vas = 20V less Gate Source Leakage Reverse ALL - - ~500 nA Vas = -20V pss Zero Gate Voltage Drain Current ALL ~ = 250 BA Vos = Max. Rating, Vag = OV = [1000 [ 4A Vps = Max. Rating x 0.8, Vgg = OV, Te = 125C 'Dion) ~~ On-State Drain Current @ (RFD210, 1] 0.6 ~ - A V a v tov iRFD212,3) 048 | - A DS ) lDjon} * Ros(on) max. VGS = Rpsion) Static Drain Source On-State 1RFD210,1) 1.0 1.5 Q Resistance IRFD212,3 15 2.4 Q V6s = 10V, ip = 0.3A Sts Forward Transconductance @) ALL 0.5 0.8 ${a) Vos ? !pion) * Rps(on} max.-!p = _0.6A Ciss Input Capacitance ALL - 135 pF Vag = OV. Vpg = 28V, f = 1.0 MHz Coss Output Capacitance ALL - 60 pF See Fig. 9 Criss Reverse Transfer Capacitance ALL - 16 = oF td(on) _ Turn-On Delay Time ALL = 8.0 15 ns Vpp = 0.5 BVpgs. Ip = 0.3A, Zp = 502 tr Rise Time ALL = 15 25 ns See Fig. 16 tajoft) Turn-Off Delay Time ALL = 10 15 ns (MOSFET switching times are essentially tf Fall Time ALL _ 2.0 15 ns independent of operating temperature.) Qg Total Gate Charge ; ALL _ 5.0 | 7.5 ac Ves = 10V, Ip = 2.54, Vog = 0.8 Max. Rating. (Gate-Source Plus Gate-Drain) See Fig. 17 for test circuit. (Gate charge is essentially independent of operating ternperature.) Qgs Gate-Source Charge ALL - 2.0 3.0 ac Qgq Gate-Drain ('Miller) Charge ALL - 3.0 45 nc Lp Internal Orain Inductance ALL =- 4.0 - oH Measured from the drain lead, 2.0mm Modified MOSFET {0.08 in.} from symbol showing the package to center of internal device die. inductances. (] Ls Interna! Source inductance ALL - 6.0 _ AH Measured from the source lead, 2.0mm (0.08 in.) from package to source 4 bonding pad. Thermal Resistance { Rihja _Junction-to-Ambient I ALL | - [ - | 420 I Cw Free Air Operation | Source-Drain Diode Ratings and Characteristics Ig Continuous Source Current IRED210, 1 - - 0.6 A Modified MOSFET symbol 0 (Body Diode) IRFD212, 3} _ 0.45 A showing the integral reverse P-N junction rectifier. 6 ism Putse Source Current (Body Diode) IRFD210, 1 - = 2.5 A tRFD212, 3 - > 1.8 A J Vsp Diode forward Voltage @ IRFO210, 1 - = 2.0 Vv Ta = 28C, Ig = 0.6A, Vgg = OV IRFO212,3) = 1.8 Vv Ta = 25C, Ig = 0.454, Veg = OV tr Reverse Recovery Time ALL - 290 = ns Ty = 150C, Ip = 0.6A, dip/dt = 100A/ys Orn Reverse Recovered Charge ALL - 2.0 = uC Ty = 150C, Ip = 0.6A, dip/dt = 100A/ps ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. @Ty = 25C to 150C. @Pulse Test: Pulse width < 300us, Duty Cycle < 2%. 3-225Standard Power MOSFETs IRFD210, IRFD211, IRFD212, IRFD213 Ip, DRAIN CURRENT (AMPERES) ENT (AMPERES) ip, DRAIN CURR Gs, TRANSCONDUCTANCE (SIEMENS) 5.0 40 3.0 2.0 0 10 20 30 40 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics 50 a 1.0 20 30 40 Vps, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 -- Typical Saturation Characteristics 4.0 3.6 0 us PUL Vos > 'Dton) * Rpston) max. 32 28 24 Ty= 2.0 Ty = 259C Ty = 125C 0 1.0 20 3.0 4.0 Ip, DRAIN CURRENT (AMPERES) 5.0 5.0 Fig. 5 Typical Transconductance Vs. Drain Current 3-226 Ip, DRAIN CURRENT (AMPERES) \p- QRAIN CURRENT (AMPERES) 0.005 0.002 lpn, REVERSE DRAIN CURRENT (AMPERES) 5.0 = o N o a oa fF S wo o 2 > o 2 a e 2 8 0.01 0.001 1 a nN o wn y Ot Ty = 1259C | Ty = 250C | Ty = -550C 80 us I t Vos > !n{on) x Aps{on) max. 2 4 6 8 0 Vag, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 2 Typical Transfer Characteristics IRFD211,3 100 200 = 500 0 2 5 10 20 50 Vos: GRAIN-TO-SOURCE VOLTAGE {VOLTS) Fia. 4 -- Maximum Safe Operating Area Ty = 1609 J = 250C 10 2.0 30 40 5.0 Vsp, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 6 Typical Source-Drain Diode Forward VoltageStandard Power MOSFETs 1.25 S = = io 2 a a am a S co a BV oss, ORAIN-TO-SQURCE BREAKDOWN VOLTAGE (NORMALIZED) 0.75 -40 0 40 80 120 Ty, JUNCTION TEMPERATURE (C) Fig. 7 Breakdown Voltage Vs. Temperature 500 Vas=9 tr 1 MHz 400 Cigg = Cys + Cog, Cus SHORTED Cress = Cog Cgs Cog Coss = Cus + Bg 300 = Cys + Cgg 200 C, CAPACITANCE {pF} 100 0 10 20 30 40 Vos, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 9 Typical Capacitance Vs. Drain-to-Source Voltage Ros(an) MEASURED WITH CURRENT PULSE OF 2.0 us DURATION. INITIAL Ty = 25C. (HEATING EFFECT OF 2.0 us PULSE 1S MINIMAL.) Ros(on): ORAIN-TO-SOURCE ON RESISTANCE (OHMS) 9 2 4 6 8 Ig, ORAIN CURRENT (AMPERES) 160 50 10 Fig. 11 Typical On-Resistance Vs. Drain Current IRFD210, IRFD211, IRFD212, IRFD213 2.2 ad o =z = 2 1.8 2 z eS dl ad ey 3= B= @ es Re z= z 1.0 xc a s & 06 ec 0.2 -40 0 40 80 120 160 Ty, JUNCTION TEMPERATURE (C} Fig. 8 Normalized On-Resistance Vs. Temperature 20 Vos = 40V on Vos-) Vos = , IRFD210, 12 wo Vos, GATE-TO-SQURCE VOLTAGE (VOLTS) 3S Ip = 2.58 FOR TEST CIRCUIT SEE FIGURE #7 0 2 4 6 8 10 Qg, TOTAL GATE CHARGE int) Fig. 10 Typical Gate Charge Vs. Gate-to-Source Voltage 06 05 IRFO210, 14 nn i # 04 PI PA = mM NX i = 03 Po NS = IRFD212, aN \ z 0.2 IY 3 N\ 0.1 N 0 25 50 75 100 125 160 Ta, AMBIENT TEMPERATURE (8C) Fig. 12 Maximum Drain Current Vs. Case Temperature 3-227Standard Power MOSFETs IRFD210, IRFD211, IRFD212, IRFD213 14 12 Ranga S 120 C/W a EW z z 2 08 N z N 2 os N\ 2 N we 5 = 04 o a 02 NS a 2 8640s 80 = 100120140 Ta, AMBIENT TEMPERATURE (C) Fig. 13 - Power Vs. Temperature Derating Curve Fig. 15 Clamped Inductive Waveforms 12v T satteny | 02H _ CURRENT REGULATOR VARY ty TO OBTAIN REQUIRED PEAK 1, Veg = OV ty I E,=0.5BVpss Ec = 0.75 BVpss Fig. 14 Clamped Inductive Test Circuit ADJUST Ry. TO OBTAIN SPECIFIEO Ip Vv. PULSE 9 GENERATOR CTT q I T son TO SCOPE o.012 | 1 5003 HIGH FREQUENCY L_-L___ SHUNT ___4 Fig. 16 Switching Time Test Circuit Vos (ISOLATED SUPPLY) SAME TYPE AS DUT O-Vos CURRENT CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 17 Gate Charge Test Circuit 3-228