OL DE gf3875061 00148319 4 t 3875081 GE soLip STATE O1E 18319 DT- F%-ef Standard Power MOSFETs IRF430, IRF431, IRF432, IRF433 File Number 1572 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors N-CHANNEL ENHANCEMENT MODE 4.0A and 4.5A, 450V-500V o fos(On) = 1.5 Q and 2.00 Features: @ SOA is power-dissipation limited " Nanosecond switching speeds Linear transfer characteristics G @ High input impedance @ Majority carrier device 5 92CS-33741 The {RF430, IRF431, IRF432 and IRF433 are TERMINAL DIAGRAM n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, relay TERMINAL DESIGNATION drivers, and drivers for high-power bipolar switching tran- DRAIN sistors requiring high speed and low gate-drive power. SOURCE (FLANGE) These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA steel package. GATE 92CS-3760t JEDEC TO-204AA Absolute Maximum Ratings Parameter IRF430 IAF431 IF 432 IRF433 Units Vps Drain - Source Voltage () 500 450 500 450 v Yoca Drain Gate Voltage Rag 20K) 500 450 500 450 v Ip @ Te = 25C Continuous Oran Current 456 45 40 40 A Ip @ Te = 100C Continuous Drain Current 30 30 25 2.5 A lpm Pulsed Oran Current G 18 18 16 16 A Ves Gate - Source Voltage +20 v Po @Tc = 25C Max. Power Dissipatian 75 {See Fig. 14) w Linear Cerating Factor 0.6 (See Fig 14) wre tM Inductive Current, Clamped (See Fig 15 and 16}L = 100nH A 18 f 18 1 16 | 16 T. a ting Juncti id a, tg Slovene ampere Ringe 5510 160 bead Temperature 300 (0 063 tn. 1.6mm} fram case for 10s} C 262OL DE 3875081 00183c0 5 T 3875081 GE SOLID STATE _ O1E 18320 D7=3B39-/] Standard Power MOSFETs IRF430, [RF431, 1RF432, IRF433 Electrical Characteristics @T = 25C (Uniess Otherwise Specified) Parameter a Type Min, | Typ | Max. Unats Test Conditions BVosg Drain - Source Breakdown Voltage iRFA30 _ - ~ tnr4g2 | 50 v Ves + Ov (RF431 ieeass | 450 | - | - v Ip = 250nA vi ih) Gate Threshold Voltage ALL 2.0 = 4.0 v Vos = Vos. lo = 250A GS(th) OS SS:'0 igss _ Gate-Source Leakage Forward ALL = = 100 nA Ves = 20V Iggg __ Gate-Source Leakage Reverse ALL = {-100 | nA Vos = -20V Ipss Zero Gate Voltage Drain Current ALL = 7 250 HA Vos = Max. Rating, Vag = OV = -__| 1000 BA Vos = Max Rating x 0 8, Vgg = OV. Tc = 125C Ipton) On-State Dean Current @ IRFA30 | 4 5 . _ A inFast | Vos?! R, Vgg = 10V DS > 'Dion) * Poston) max. Vos ~ wrsa2 [ayn | |] A IRF433 Rpsion) Static Drain Source Or-State IRF430 _ ) Resistance @ IRF431 Hay ts 2 Vee = 10V.Ip = 2.88 . mra32 | | ve | 20 a css umeoe IRF433 . is Forward Tansconductance @) ALL 25 [32] - | s@ | Vos? ton **pstont max. 'p = 2-24 Cigg Input Capacitance ALL = [sco | a00 [oF Vgg = OV. Vpg = 25V, f= 1.0 Mie Coss Output Capacitance ALL - 100 | 200 pF See Fig, 10 Cres ___Raverse Transfer Capaci ALL 30 | 60 pF |_"dion} Turn On Delay Time ALL = = 30 as Vpp * 226, Ip = 2.54, Zp = 152 t Rise Time - . ALL - - 30 ns See Fig. 17 tatotty Turn-Off Delay Time ALL - = 55 as (MOSFET switching tmes are essentially a Fall Time ALL _ _ 30 ns independent of operating temperature.) Qg Total Gate Charge ALL _ 22 30 nc Vog = 10V, Ip = 6.0A, Vg = 0 8 Max. Rating, {Gate Source Plus Gate-Drain) See Fig. 1B for test circuit. (Gate charge is essentially indepandant of operating temperature.) Qgs Gate-Source Charge ALL - WwW - ac Qoa Gate Drain (Miller) Charge ALL - Vv = nc Llp Internal Drain Inductance ALL - 5.0 - oH Measured between Modified MOSFET the contact screw on symbat showing the header that ts closer to internal device source and gate pins inductances and center of die ls Interna! Source Inductance ALL - 12.5 - oH Measured from the wo source pin, 6mm { 25 In.) from header G and source bonding us pad, s Thermai Resistance Pinsc Junction-to-Cese ALL = {1.67 | ecw Rincs Case to-Sink ALL - 0.1 = eC Mounting surface flat, smooth, and greased. Rinsa _ Junction-to-Ambient ALL = = 30 c/w Free Au Operation Source-Drain Diode Ratings and Characteristics Is Cantinuaus Source Current {RF430 _ _ 4.6 A Modified FAOSFET symbot (Body Diode) IAF 431 showing the integral IRF432 traverse PN junction cectifier IRF433 - ~ 40 A ism Pulse Source Current IRF430 _ _ (Body Diode) @ IRF431 1e | A s IRF432 s inpaga | ~ | ~ | | & v Diode Forward Voltege @ IRFa30 _ _ sD inFa31 - - | 14 v Tc = 25C, Is = 4.54, Vag = OV 1RF432 ireaaa | ~ [13 Vv Te = 28C. Ig = 4.0A, Vgg = OV ter Reverse Recovery Time ALL _ 800 = ns Ty # 150C, Ip # 4.58, dip/dt = 100AinS Car Reverse Recovered Charge ALL - 46 ~ ry Ty = 180C, Ip = 4.5A, digidt = 100A/us Ton Forward Turn on Time ALL {otrinsic turn-on time 1s negligib'e Turn-on speedis substantially conteolied byLg + Lo. @Ty = 25C 10 150C. @Pulse Test: Pulse width < 300xs, Duty Cycle < 2%. @ Repeutive Rating: Pulse width lmned ' by max. junction temperature. See Transient Thermat Impedance Curve (Fig. 5}. 263O1 pe Waa7soa1 OO4uasel 7 Tt 3875081 GE SOLID STATE O1E 18321 DT 39~// Standard Power MOSFETs IRF430, IRF431, IRF432, IRF433 Vos > lo(on) ~ ~ |p, DRAIN CURRENT (AMPERES) o Jp, DRAIN CURRENT (AMPERES) a "100 200 O 9 1 2 1 4 5 6 ! Vps. DRAIN TO SOURCE VOLTAGE (WOLTS) Vos GATETO souace VOLTAGE {VOLTS} Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics 1S UMITEO tp, ORAIN CURRENT (AMPERES) Te + 25C Ty# 180C MAX Jp. DAAIN CURRENT (AMPERES) a 2 4 & 8 0 1 2 wm 2 50 100 200 800 Vos, DRAIN TO SOURCE VOLTAGE (VOLTS) Vag DRAIN TO SQUACE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area _ 5 o an MAL IMPEDANCE (PER UNIT) n Zengcltl/ Rey, yg, NORMALIZED EFFECTIVE TRANSIENT ety on i pat 82 005 1 oury Factor, o= 7h iD THERMA aoe HeRMAL 2. PER UNIT BASE = Runs = 167 DEG CIW 3 Ty - Te = Pom Zinscltd oo 5 02 5 wt 2 8 3 2 5 2 2 5 ml 2 5 9 2 5 0 1], SQUARE WAVE PULSE DURATION ISECONDS) Fig. S Maximum Effective Transient Thermat impedance, Junction-to-Case Vs. Pulse DurationOL DE ff 3875081 0018322 4 I _ OTE 18322 D) T-3 Standard Power MOSFETs gi, TAANSCONDUCTANCE (SIEMENS) Vos > 'o{an) * Roston) max. Q V 2 a 4 3 fg, DRAIM CURRENT (AMPERES) Fig. 6 -- Typical Transconductance Vs. Drain Current 125 B a 2 z OVogs, DRAIN TO SOURCE BREAKDOWN VOLTAGE (NORMALIZED) a 40 qa a 0 120 160 Ty. JUNCTION TEMPERATURE (C} Fig. 8 Breakdown Voltage Vs. Temperature =O tian 1600 Cas = Cg t Cos, Cos SHORTED Crs * Ogg Cy Con Cory * Cig + Tareas + 1200 g C, CAPACITANCE {nF} 0 19 20 x 40 50 Vos. ORAIN TO SOURCE VOLTAGE (VOLTS) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage - IRF430, IRF431, IRF432, IRF433 lpr, REVERSE DRAIN CURRENT (AMPERES) 2 3 4 Vsp, SOURCE-TO DRAIN VOLTAGE (VOLTS) Fig. 7 Typicat Source-Drain Diode Forward Voltage 2 = a Roston}. ORAIN-TG-SOUACE ON RESISTANCE {AORMALIZED) a oz -40 0 40 80 120 Ty. JUNCTION TEMPERATURE (C) Fig. 9 Normalized On-Resistance Vs. Temperature a Ves. GATE-TO-SOURCE VOLTAGE (VOLTS) s ip =6A FOR TEST CHRCUIT a 8 16 a w ag Qy TOTAL GATE CHARGE (nC} Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 26501 ve ff3a7s0a2 ooraaaa op 3875081 GE SOLID STATE O1 18323 pl-3S7-// Standard Power MOSFETs IRF430, IRF431, IRF432, IRF433 266 PRE = ThH? 3 5 Rostan) 20 SURATION INITIAL Ty= 25C (HEATING 0 w g4 = g 2 3 = z3 z e S z= gs : 2 pp e = = a = 2 52 s = t 5 & 1 0 0 5 10 5 2 6 8 50 15 100 5 180 Ip, ORAIN CURRENT (AMPERES) Te. .CASE TEMPERATURE {C) Fig. 12 Typica! On-Resistanca Vs. Drain Current Fig. 13 Maximum Drain Current Vs. Case Temperature rt) 10 Pp, POWER DISSIPATION {WATTS} & 6 2 4 80 80 100 000 40 Tg, CASE TEMPERATURE (C} Fig. 14 Power Vs. Temperature Derating Curve VARY ty TO OBTAIN AEQUIREO PEAK 1, T our 4h Fig. 15 Clamped (nductive Test Circuit Fig. 16 Clamped Inductive Waveforms Ey OSBV ps6 Ve 0 158V ps5 t o *os {ISOLATED SUPPLY) Yoo = 225v CURRENT REGULATOR WR Vo sls TO SCOPE nv T BATTERY Fig. 17 Switching Time Test Circuit II 1 i 1 a Je Ig 0 CURRENT = CURRENT SHUNT SHUNT Fig. 18 Gate Charge Test Circuit