TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DQualified for Automotive Applications
DESD Protection Exceeds 2000 V Per
MIL-STD-883, Method 3015; Exceeds 200 V
Using Machine Model (C = 200 pF, R = 0)
DOutput Swing Includes Both Supply Rails
DExtended Common-Mode Input Voltage
Range ...0 V to 4.5 V (Min) with 5-V Single
Supply
DNo Phase Inversion
DLow Noise...18 nV/Hz Typ at f = 1 kHz
DLow Input Offset Voltage
950 μV Max at TA = 25°C (TLV243xA)
DLow Input Bias Current ...1 pA Typ
DVery Low Supply Current . . . 125 μA Per
Channel Max
D600-Ω Output Drive
DMacromodel Included
description
The TLV243x and TLV243xA are low-voltage
operational amplifier from Texas Instruments. The
common-mode input voltage range for each
device is extended over the typical CMOS
amplifiers making them suitable for a wide range
of applications. In addition, these devices do not
phase invert when the common-mode input is
driven to the supply rails. This satisfies most
design requirements without paying a premium
for rail-to-rail input performance. They also exhibit
rail-to-rail output performance for increased
dynamic range in single- or split-supply applica-
tions. This family is fully characterized at 3-V and
5-V supplies and is optimized for low-voltage
operation. The TLV243x only requires 100 μA
(typ) of supply current per channel, making it ideal
for battery-powered applications. The TLV243x
also has increased output drive over previous
rail-to-rail operational amplifiers and can drive
600-Ω loads for telecom applications.
The other members in the TLV243x family are the high-power, TLV244x, and micro-power, TLV2422, versions.
The TLV243x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for
high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and
low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In
addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when
interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV243xA is available and
has a maximum input offset voltage of 950 μV.
If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output
operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal
for high density, battery-powered equipment.
Copyright © 2008 Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Figure 1
TA = 125°C
TA = 85°C
TA = 25°C
TA =40°C
VDD = 5 V
2
1
0
04812
3
4
5
16 20
VOH High-Level Output Voltage V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
IOH High-Level Output Current mA
ÁÁ
ÁÁ
ÁÁ
V
OH
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
ORDERING INFORMATION
TA
VIOmax
AT 25°CPACKAGE}ORDERABLE
PART NUMBER
TOP-SIDE
MARKING
950 V
SOIC (D) Tape and reel TLV2432AQDRQ1 2432AQ
40°C to 125°C
950 μVTSSOP (PW) Tape and reel TLV2432AQPWRQ1§
40°C to 125°C
2 5 mV
SOIC (D) Tape and reel TLV2432QDRQ1 2432Q1
2.5 mV TSSOP (PW) Tape and reel TLV2432QPWRQ1§
950 V
SOIC (D) Tape and reel TLV2434AQDRQ1 2434AQ
40°C to 125°C
950 μVTSSOP (PW) Tape and reel TLV2434AQPWRQ1§
40°C to 125°C
2 5 mV
SOIC (D) Tape and reel TLV2434QDRQ1§
2.5 mV TSSOP (PW) Tape and reel TLV2434QPWRQ1§
For the most current package and ordering information, see the Package Option Addendum at the end of this document,
or see the TI web site at http://www.ti.com.
Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.
§Product Preview.
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1OUT
1IN
1IN+
VDD+
2IN+
2IN
2OUT
4OUT
4IN
4IN+
VDD/GND
3IN+
3IN
3OUT
(TOP VIEW)
TLV2434
D OR PW PACKAGE
1
2
3
4
8
7
6
5
1OUT
1IN
1IN+
VDD /GND
VDD +
2OUT
2IN
2IN+
1
2
3
4
8
7
6
5
1OUT
1IN
1IN+
VDD /GND
VDD +
2OUT
2IN
2IN+
TLV2432
PW PACKAGE
(TOP VIEW)
TLV2432
D PACKAGE
(TOP VIEW)
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
Advanced LinCMOS
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
equivalent schematic (each amplifier)
Q27
R9
Q29Q22
Q23
Q26
Q25
Q24
Q31 Q34 Q36
Q32
Q33 Q35
Q37
D1
Q30
R10
VB3
VB2
VB4
VDD+
VDD/GND
OUT
R8
R1 R2
Q2 Q5
Q1 Q4
Q3
Q12
Q11
Q10Q6
Q7
Q8
Q9
VB3
VB4
C1
C2
C3
R5
R6
Q13 Q15
Q16
Q17
Q14
Q19
Q18
Q20
Q21
R7
R3 R4
V
B2
IN+
IN
VB1
COMPONENT
COUNT
Transistors
Diodes
Resistors
Capacitors
69
5
26
6
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) 12 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±VDD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (each input) ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into VDD + ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of VDD ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, TA: Q suffix 40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg 65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD .
2. Differential voltages are at IN+ with respect to IN. Excessive current flows if input is brought below VDD 0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
T
A
25°CDERATING FACTOR T
A
= 70°C T
A
= 85°C T
A
= 125°C
PACKAGE
TA 25 C
POWER RATING
ABOVE TA = 25°C
TA = 70 C
POWER RATING
TA = 85 C
POWER RATING
TA = 125 C
POWER RATING
D (8)
D (14)
PW (8)
PW (14)
725 mW
1022 mW
525 mW
720 mW
5.8 mW/°C
7.6 mW/°C
4.2 mW/°C
5.6 mW/°C
464 mW
900 mW
336 mW
634 mW
377 mW
777 mW
273 mW
547 mW
145 mW
450 mW
105 mW
317 mW
recommended operating conditions
MIN MAX UNIT
Supply voltage, VDD 2.7 10 V
Input voltage range, VIVDD VDD + 0.8 V
Common-mode input voltage, VIC VDD VDD + 0.8 V
Operating free-air temperature, TA40 125 °C
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLV243x-Q1
UNIT
PARAMETER TEST CONDITIONS TA
MIN TYP MAX UNIT
VIC = 0
TLV243x
25°C 300 2000
V
Input offset voltage
V
IC
=
0
,
V
O
= 0, TLV243x Full range 2500
V
VIO Input offset voltage
VO = 0
,
VDD ± = ±1.5 V,
R 50 Ω
TLV243xA
25°C 300 950 μV
DD
RS = 50 ΩTLV243xA Full range 2000
Temperature coefficient of input offset voltage
25°C
2
V/°C
αVIO Temperature coefficient of input offset voltage
25 C
to 70°C2μV/°C
Input offset voltage long-term drift
(see Note 4)
VIC = 0
VDD ± = ±15 V
25°C 0.003 μV/mo
I
Input offset current
V
IC
=
0
,
VO = 0,
V
DD
±
=
±1
.
5 V
,
RS = 50 Ω25°C0.5
pA
IIO Input offset current
VO = 0
,
RS = 50 Ω
Full range 150 pA
I
Input bias current
25°C 1
pA
IIB Input bias current Full range 300 pA
V
Common mode input voltage range
|V | 5 mV
R 50 Ω
25°C
0
to
2.5
0.25
to
2.75
V
VICR Common-mode input voltage range |VIO| 5 mV, RS = 50 Ω
Full range
0
to
2.2
V
IOH = 100 μA 25°C 2.98
VOH High-level output voltage
I 3 mA
25°C 2.5 V
VOH
High level output voltage
IOH = 3 mA Full range 2.25
V
VIC = 1.5 V, IOL = 100 μA 25°C 0.02
VOL Low-level output voltage
V 15 V
I 3 mA
25°C 0.83 V
VOL
Low level output voltage
VIC = 1.5 V, IOL = 3 mAFull range 1
V
R 2 kΩ
25°C 1.5 2.5
AVD Large-signal differential voltage amplification VIC = 2.5 V,
VO = 1 V to 2 V
RL = 2 kΩ
Full range 0.5 V/mV
AVD
Large signal differential voltage amplification
VO = 1 V to 2 V RL = 1 MΩ25°C 750
V/mV
ri(d) Differential input resistance 25°C1000 GΩ
ri(c) Common-mode input resistance 25°C1000 GΩ
ci(c) Common-mode input capacitance f = 10 kHz 25°C 8 pF
zoClosed-loop output impedance f = 100 kHz, AV = 10 25°C 130 Ω
CMRR
Common mode rejection ratio
VI
C
= VI
C
R MIN, V
O
= 1.5 V, 25°C 70 83
dB
CMRR Common-mode rejection ratio
VIC = VICR MIN
,
VO = 1
.
5 V
,
RS = 50 ΩFull range 70 dB
k
Supply voltage rejection ratio (ΔV /ΔV )
VDD = 2.7 V to 8 V, 25°C 80 95
dB
kSVR Supply-voltage rejection ratio (ΔVDD/ΔVIO)
VDD = 2
.
7 V to 8 V
,
VIC = VDD /2, No load Full range 80 dB
I
Supply current
VO 15 V
No load
25°C 195 250
μA
IDD Supply current VO = 1.5 V, No load Full range 260 μA
Full range is 40°C to 125°C for Q level part.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER TEST CONDITIONS T
A
TLV243x-Q1,
TLV243xA-Q1 UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX
UNIT
SR
Slew rate at unity gain
V
O
= 1 V to 2 V
,
R
L
= 2 kΩ
,
25°C 0.15 0.25
V/ s
SR Slew rate at unity gain
VO = 1 V to 2 V
,
CL = 100 pF
RL = 2 kΩ
,
Full range 0.1 V/μs
V
Equivalent input noise voltage
f = 10 Hz 25°C 120
nV/Hz
VnEquivalent input noise voltage f = 1 kHz 25°C 22 nV/
Hz
V
Peak-to-peak equivalent input noise f = 0.1 Hz to 1 Hz 25°C 2.7
V
VN(PP)
Peak to peak equivalent input noise
voltage f = 0.1 Hz to 10 Hz 25°C 4 μV
InEquivalent input noise current 25°C 0.6 fAHz
THD N
Total harmonic distortion plus noise
VO = 0.5 V to 2.5 V,
f 1 kHz
AV = 1
25°C
0.065%
THD + N Total harmonic distortion plus noise f = 1 kHz,
RL = 2 kΩAV = 10 25°C0.5%
Gain-bandwidth product f = 10 kHz,
CL = 100 pFRL = 2 kΩ,25°C 0.5 MHz
BOM Maximum output-swing bandwidth VO(PP) = 1 V,
RL = 2 kΩ,
AV = 1,
CL = 100 pF25°C 220 kHz
A
V
= 1
,
To 0 1%
64
t
Settling time
AV =
1
,
Ste
p
= 0.5 V to 2.5 V, To 0.1%
25°C
6.4
s
tsSettling time
Step = 0
.
5 V to 2
.
5 V
,
RL = 2 kΩ,
To 0 01%
25°C
14 1
μs
RL = 2 kΩ
,
CL = 100 pFTo 0.01% 14.1
φmPhase margin at unity gain
R 2 kΩ
C 100 pF
25°C62°
Gain margin RL = 2 kه, CL = 100 pF
25°C11 dB
Full range is 40°C to 125°C for Q level part.
Referenced to 2.5 V
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLV243x-Q1
UNIT
PARAMETER TEST CONDITIONS TA
MIN TYP MAX UNIT
VIC = 0
TLV243x
25°C 300 2000
V
Input offset voltage
V
IC
=
0
,
V
O
= 0, TLV243x Full range 2500
V
VIO Input offset voltage
VO = 0
,
VDD ± = ±2.5 V,
R 50 Ω
TLV243xA
25°C 300 950 μV
DD
RS = 50 ΩTLV243xA Full range 2000
Temperature coefficient of input offset voltage
25°C
2
V/°C
αVIO Temperature coefficient of input offset voltage
25 C
to 70°C2μV/°C
Input offset voltage long-term drift
(see Note 4)
VIC = 0
VDD ± = ±25 V
25°C 0.003 μV/mo
I
Input offset current
V
IC
=
0
,
VO = 0,
V
DD
±
=
±2
.
5 V
,
RS = 50 Ω25°C0.5
pA
IIO Input offset current
VO = 0
,
RS = 50 Ω
Full range 150 pA
I
Input bias current
25°C 1
pA
IIB Input bias current Full range 300 pA
V
Common mode input voltage range
|V | 5 mV
R 50 Ω
25°C
0
to
4.5
0.25
to
4.75
V
VICR Common-mode input voltage range |VIO| 5 mV, RS = 50 Ω
Full range
0
to
4.2
V
IOH = 100 μA 25°C 4.97
VOH High-level output voltage
I 5 mA
25°C 4 4.35 V
VOH
High level output voltage
IOH = 5 mA Full range 4
V
VIC = 2.5 V, IOL = 100 μA 25°C 0.01
VOL Low-level output voltage
V 25 V
I 5 mA
25°C 0.8 V
VOL
Low level output voltage
VIC = 2.5 V, IOL = 5 mAFull range 1.25
V
R 2 kΩ
25°C 2.5 3.8
AVD Large-signal differential voltage amplification VIC = 2.5 V,
VO = 1 V to 4 V
RL = 2 kΩ
Full range 0.5 V/mV
AVD
Large signal differential voltage amplification
VO = 1 V to 4 V RL = 1 MΩ25°C 950
V/mV
ri(d) Differential input resistance 25°C1000 GΩ
ri(c) Common-mode input resistance 25°C1000 GΩ
ci(c) Common-mode input capacitance f = 10 kHz 25°C 8 pF
zoClosed-loop output impedance f = 100 kHz, AV = 10 25°C 130 Ω
CMRR
Common mode rejection ratio
VI
C
= VI
C
R MIN, V
O
= 2.5 V, 25°C 70 90
dB
CMRR Common-mode rejection ratio
VIC = VICR MIN
,
VO = 2
.
5 V
,
RS = 50 ΩFull range 70 dB
k
Supply voltage rejection ratio (ΔV /ΔV )
VDD = 4.4 V to 8 V, 25°C 80 95
dB
kSVR Supply-voltage rejection ratio (ΔVDD/ΔVIO)
VDD = 4
.
4 V to 8 V
,
VIC = VDD /2, No load Full range 80 dB
I
Supply current
VO 25 V
No load
25°C 200 250
μA
IDD Supply current VO = 2.5 V, No load Full range 270 μA
Full range is 40°C to 125°C for Q level part.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS T
A
TLV243x-Q1,
TLV243xA-Q1 UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX
UNIT
SR
Slew rate at unity gain
V
O
= 1.5 V to 3.5 V, R
L
= 2 kΩ,25°C 0.15 0.25
V/μs
SR Slew rate at unity gain
VO = 1
.
5 V to 3
.
5 V
,
CL = 100 pF
RL = 2 kΩ
,
Full range
01
V/μs
yg
C
L
=
100
p
F
Full range 0.1
/μ
V
Equivalent input noise voltage
f = 10 Hz 25°C 100
nV/Hz
VnEquivalent input noise voltage f = 1 kHz 25°C 18 nV/
Hz
V
Peak-to-peak equivalent input noise f = 0.1 Hz to 1 Hz 25°C 1.9
V
VN(PP)
Peak to peak equivalent input noise
voltage f = 0.1 Hz to 10 Hz 25°C 2.8 μV
InEquivalent input noise current 25°C 0.6 fAHz
THD N
Total harmonic distortion plus noise
VO = 1.5 V to 3.5 V,
f 1 kHz
AV = 1
25°C
0.045%
THD + N Total harmonic distortion plus noise f = 1 kHz,
RL = 2 kΩAV = 10 25°C0.4%
Gain-bandwidth product f = 10 kHz,
CL = 100 pFRL =2 kΩ,25°C 0.55 MHz
BOM Maximum output-swing bandwidth VO(PP) = 2 V,
RL = 2 kΩ,
AV = 1,
CL = 100 pF25°C 100 kHz
A
V
= 1
,
To 0 1%
64
t
Settling time
AV =
1
,
Ste
p
= 1.5 V to 3.5 V, To 0.1%
25°C
6.4
s
tsSettling time
Step = 1
.
5 V to 3
.
5 V
,
RL = 2 kΩ,
To 0 01%
25°C
13 1
μs
RL = 2 kΩ
,
CL = 100 pFTo 0.01% 13.1
φmPhase margin at unity gain
R 2 kΩ
C 100 pF
25°C66°
Gain margin RL = 2 kه, CL = 100 pF
25°C11 dB
Full range is 40°C to 125°C for Q level part.
Referenced to 2.5 V
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
V
Input offset voltage
Distribution 2,3
VIO Input offset voltage
Distribution
vs Common-mode input voltage
2
,
3
4,5
αVIO Temperature coefficient Distribution 6,7
IIB/IIO Input bias and input offset currents vs Free-air temperature 8
VOH High-level output voltage vs High-level output current 9,11
VOL Low-level output voltage vs Low-level output current 10,12
VO(PP) Maximum peak-to-peak output voltage vs Frequency 13
I
Short circuit output current
vs Suppl
y
volta
g
e 14
IOS Short-circuit output current
vs Supply voltage
vs Free-air temperature
14
15
VID Differential input voltage vs Output voltage 16,17
Differential gain vs Load resistance 18
AVD Large-signal differential voltage amplification vs Frequency 19,20
AVD Differential voltage amplification vs Free-air temperature 21,22
zoOutput impedance vs Frequency 23,24
CMRR
Common mode rejection ratio
vs Frequenc
y
25
CMRR Common-mode rejection ratio
vs Frequency
vs Free-air temperature
25
26
k
Supply voltage rejection ratio
vs Frequency 27,28
kSVR Supply-voltage rejection ratio
vs Frequency
vs Free-air temperature
27
,
28
29
IDD Supply current vs Supply voltage 30
SR
Slew rate
vs Load capacitance 31
SR Slew rate
vs Load capacitance
vs Free-air temperature
31
32
VOInverting large-signal pulse response 33,34
VOVoltage-follower large-signal pulse response 35,36
VOInverting small-signal pulse response 37,38
VOVoltage-follower small-signal pulse response 39,40
VnEquivalent input noise voltage vs Frequency 41, 42
Noise voltage (referred to input) Over a 10-second period 43
THD + N Total harmonic distortion plus noise vs Frequency 44,45
Gain bandwidth product
vs Free-air temperature 46
Gain-bandwidth product
vs Free air temperature
vs Supply voltage
46
47
φ
Phase margin
vs Frequenc
y
19,20
φmPhase margin
vs Frequency
vs Load capacitance
19
,
20
48
Gain margin vs Load capacitance 49
B1Unity-gain bandwidth vs Load capacitance 50
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 2
15
5
0
1600 800 0
25
30
35
800 1600
20
10
408 Amplifiers From 1 Wafer Lot
VDD± = ±1.5 V
TA = 25°C
Precentage of Amplifiers %
DISTRIBUTION OF TLV2432
INPUT OFFSET VOLTAGE
VIO Input Offset Voltage μV
Figure 3
20
15
5
0
1600 800 0
25
30
35
800 1600
10
408 Amplifiers From 1 Wafer Lot
Percentage of Amplifiers %
DISTRIBUTION OF TLV2432
INPUT OFFSET VOLTAGE
VIO Input Offset Voltage μV
VDD± = ±2.5 V
TA = 25°C
Figure 4
0
0.5
1.5
2
0.5 0 0.5 1 1.5
1
1.5
2
2 2.5 3
0.5
1
VDD =3 V
TA = 25°C
VIO Input Offset Voltage mV
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
ÁÁÁ
ÁÁÁ
ÁÁÁ
VIO
VIC Common-Mode Input Voltage V
Figure 5
0
0.5
1.5
2
0.5 0 0.5 1 1.5 2 2.5
1
1.5
2
3 3.5 4 5
0.5
1
4.5
VDD = 5 V
TA = 25°C
VIO Input Offset Voltage mV
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
ÁÁ
ÁÁ
ÁÁ
VIO
VIC Common-Mode Input Voltage V
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 6
10
5
0
432101
15
20
25
234
32 Amplifiers From 1 Wafer Lot
VDD = ± 1.5 V
TA = 25°C to 125°C
Percentage of Amplifiers %
DISTRIBUTION OF TLV2432 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
αVIO Temperature Coefficient μV/°C
Figure 7
10
5
0
43210 1
15
20
25
23 4
32 Amplifiers From 1 Wafer Lot
VDD = ± 2.5 V
TA = 25°C to 125°C
Percentage of Amplifiers %
DISTRIBUTION OF TLV2432 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
αVIO Temperature Coefficient μV/°C
Figure 8
10
5
30
0
25 45 65 85
IIB and IIO Input Bias and Input Offset Currents pA
20
15
25
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
35
105 125
IIB
IIO
VDD± = ±2.5 V
VIC = 0 V
VO = 0
RS = 50 Ω
TA Free-Air Temperature °C
ÁÁ
ÁÁ
IIB IIO
Figure 9
TA = 40°C
TA = 25°C
TA = 0°C
TA = 125°C
VDD = 3 V
1.5
1
0.5
0
03 6 9
2
2.5
3
12 15
VOH High-Level Output Voltage V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
IOH High-Level Output Current mA
ÁÁ
ÁÁ
V
OH
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 10
TA = 125°C
1.4
45
TA = 85°C
TA = 25°C
TA = 40°C
VDD = 3 V
0.8
0.6
0.2
0
0123
1
1.2
0.4
VOL Low-Level Output Voltage V
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
IOL Low-Level Output Current mA
ÁÁ
ÁÁ
ÁÁ
V
OL
Figure 11
TA = 125°C
TA = 85°C
TA = 25°C
TA =40°C
VDD = 5 V
2
1
0
04812
3
4
5
16 20
VOH High-Level Output Voltage V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
IOH High-Level Output Current mA
ÁÁ
ÁÁ
V
OH
Figure 12
TA = 125°C
TA = 85°C
TA = 25°C
TA = 40°C
VDD = 5 V
0.6
0.4
0.2
0
0123
0.8
1
1.2
45
VOL Low-Level Output Voltage V
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
ÁÁÁ
ÁÁÁ
ÁÁÁ
V
OL
IOL Low-Level Output Current mA
Figure 13
4
2
1
0
5
3
102103104105106
VDD = 5 V
VDD = 3 V
RL = 2 kΩ
TA = 25°C
VO(PP) Maximum Peak-to-Peak Output Voltage V
f Frequency Hz
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
ÁÁ
ÁÁ
ÁÁ
VO(PP)
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 14
VO = VDD/2
VIC = VDD/2
TA = 25°C
0
5
15
20
23 4 5 6 7
10
15
20
8910
5
10
IOS Short-Circuit Output Current mA
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
IOS
VDD Supply Voltage V
Figure 15
0
5
15
20
75 50 25 0 25 50
10
15
20
75 100 125
5
10
VID = 100 mV
VID = 100 mV
VDD = 5 V
VIC = 2.5 V
VO = 2.5 V
IOS Short-Circuit Output Current mA
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
TA Free-Air Temperature °C
IOS
Figure 16
VO Output Voltage V
VDD = 3 V
RL = 2 kΩ
VIC = 1.5 V
TA = 25°C
0
250
500
1000
0 0.5 1 1.5
Differential Input Voltage
500
750
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
1000
2 2.5 3
250
750
VID Vμ
Figure 17
VDD = 5 V
VIC = 2.5 V
RL = 2 kΩ
TA = 25°C
0
250
750
1000
012 3
500
750
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
1000
45
VO Output Voltage V
Differential Input Voltage VID Vμ
250
500
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
VDD = 5 V
VDD = 3 V
VO(PP) = 2 V
TA = 25°C
1
Differential Gain V/ mV
DIFFERENTIAL GAIN
vs
LOAD RESISTANCE
RL Load Resistance kΩ
103
102
101
110
1102103
Figure 18
104
VDD = 5 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
40
20
0
40
80
20
60
105106107
om Phase Margin
φm
f Frequency Hz
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
AVD Large-Signal Differential
ÁÁ
ÁÁ
AVD
Voltage Amplification dB
180°
135°
90°
45°
0°
45°
90°
Figure 19
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
40
20
0
40
80
20
60
VDD = 3 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
om Phase Margin
φm
f Frequency Hz
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
Voltage Amplification dB
104105106107
180°
135°
90°
45°
0°
45°
90°
Figure 20
Figure 21
10
1
0.1
1000
100
Differential Voltage Amplification V/mV
AVD
TA Free-Air Temperature °C
75 50 25 0 25 50 75 100 125
10000
VDD = 5 V
VIC = 2.5 V
VO = 1 V to 4 V
RL = 1 MΩ
RL = 2 kΩ
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
Figure 22
10
1
0.1
1000
100
Differential Voltage Amplification V/mV
AVD
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
TA Free-Air Temperature °C
75 50 25 0 25 50 75 100 125
VDD = 3 V
VIC = 2.5 V
VO = 0.5 V to 2.5 V
RL = 1 MΩ
RL = 2 kΩ
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 23
102
AV = 100
AV = 10
AV = 1
VDD = 3 V
TA = 25°C
100
10
1
1000
103104105
zo Output Impedance 0
OUTPUT IMPEDANCE
vs
FREQUENCY
f Frequency Hz
Ω
zo
Figure 24
102
AV = 100
AV = 10
AV = 1
VDD = 5 V
TA = 25°C
100
10
1
1000
103104105
OUTPUT IMPEDANCE
vs
FREQUENCY
f Frequency Hz
zo Output Impedance 0Ω
zo
Figure 25
102
80
40
20
0
100
60
103104105106
VDD = 5 V
VIC = 2.5 V
VDD = 3 V
VIC = 1.5 V
TA = 25°C
f Frequency Hz
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
CMRR Common-Mode Rejection Ratio dB
Figure 26
TA Free-Air Temperature °C
CMRR Common-Mode Rejection Ratio dB
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
75 50 25 0 25 50 75 100 125
VDD = 5 V
VDD = 3 V
96
94
92
90
100
98
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 27
101
80
60
40
0
120
20
100
102103104105106
VDD = 3 V
TA = 25°C
f Frequency Hz
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
KSVR Supply-Voltage Rejection Ratio dB
ÁÁ
ÁÁ
ÁÁ
kSVR
Figure 28
101
80
60
40
0
120
20
100
102103104105106
VDD = 5 V
TA = 25°C
KSVR Supply-Voltage Rejection Ratio dB
f Frequency Hz
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
ÁÁ
ÁÁ
ÁÁ
kSVR
Figure 29
TA Free-Air Temperature °C
SUPPLY VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
96
94
92
90
100
75 50 25 0 25 50 75 100 125
VDD = 2.7 V to 8 V
VO = VDD/2
98
kSVR Supply-Voltage Rejection Ratio dB
kSVR
Figure 30
150
100
50
0
024 6
200
250
300
810
VO = VDD/2
No Load
TA = 25°C
TA = 40°C
TA = 85°C
IDD Supply Current
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
VDD Supply Voltage V
ÁÁ
ÁÁ
ÁÁ
IDD Aμ
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 31
101
SR +
VDD = 3 V
AV = 1
TA = 25°C
SR
0.4
0.3
0.2
0
0.6
0.1
0.5
SR Slew Rate v/us
SLEW RATE
vs
LOAD CAPACITANCE
sμ
V/
CL Load Capacitance pF
102103104105
Figure 32
TA Free-Air Temperature °C
SLEW RATE
vs
FREE-AIR TEMPERATURE
0.25
0.2
0.15
0.1
0.35
75 50 25 0 25 50 75 100 125
0.3
VDD = 5 V
RL = 2 kΩ
CL = 100 pF
AV = 1
μs
SR Slew Rate V/
Figure 33
1.5
1
0.5
0
0102030
2
2.5
3
40 50
INVERTING LARGE-SIGNAL PULSE
RESPONSE
VDD = 3 V
RL = 2 kΩ
CL = 100 pF
AV = 1
TA = 25°C
t Time μs
VO Output Voltage V
VO
Figure 34
INVERTING LARGE-SIGNAL PULSE
RESPONSE
VDD = 5 V
RL = 2 kΩ
CL = 100 pF
AV = 1
TA = 25°C
t Time μs
2
1
0
0102030
3
4
5
40 50
VO Output Voltage V
VO
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 35
1.5
1
0.5
0
0102030
2
2.5
3
40 50
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
VDD = 3 V
RL = 2 kΩ
CL = 100 pF
AV = 1
TA = 25°C
t Time μs
VO Output Voltage V
VO
Figure 36
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
VDD = 5 V
RL = 2 kΩ
CL = 100 pF
AV = 1
TA = 25°C
t Time μs
VO Output Voltage V
VO
2
1
0
0 5 10 15 20 25 30
3
4
5
35 40 45 50
Figure 37
1.5
1.48
1.46
1.44
0 0.5 1 1.5 2 2.5 3
1.52
1.56
1.58
3.5 4 4.5 5
VDD = 3 V
RL = 2 kΩ
CL = 100 pF
AV = 1
TA = 25°C
t Time μs
VO Output Voltage V
INVERTING SMALL-SIGNAL PULSE
RESPONSE
1.54
VO
Figure 38
2.48
2.46
2.44
0 0.5 1 1.5 2 2.5 3
2.54
2.56
2.58
3.5 4 4.5 5
INVERTING SMALL-SIGNAL
PULSE RESPONSE
VDD = 5 V
RL = 2 kΩ
CL = 100 pF
AV = 1
TA = 25°C
VO Output Voltage V
VO
t Time μs
2.52
2.5
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
20 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 39
1.5
1.48
1.46
1.44
0 0.5 1 1.5 2 2.5 3
1.54
1.56
1.58
3.5 4 4.5 5
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
VDD = 3 V
RL = 2 kΩ
CL = 100 pF
AV = 1
TA = 25°C
VO Output Voltage V
VO
t Time μs
1.52
Figure 40
2.5
2.46
2.44
0 0.5 1 1.5 2 2.5 3
2.52
2.56
2.58
3.5 4 4.5 5
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
t Time μs
VO Output Voltage V
VO
VDD = 5 V
RL = 2 kΩ
CL = 100 pF
AV = 1
TA = 25°C
2.54
2.48
Figure 41
101
80
60
20
0
120
40
100
VN Equivalent Input Noise Voltage nv//Hz
f Frequency Hz
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
nV/ Hz
Vn
VDD = 3 V
RS = 20 Ω
TA = 25°C
102103104
Figure 42
101
80
60
20
0
120
40
100
VN Equivalent Input Noise Voltage nv//Hz
f Frequency Hz
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
nV/ Hz
Vn
VDD = 5 V
RS = 20 Ω
TA = 25°C
102103104
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
0
500
1500
2000
012345 6
500
1500
2000
78 910
Noise Voltage nV
t Time s
NOISE VOLTAGE OVER A 10-SECOND PERIOD
VDD = 5 V
f = 0.1 Hz to 10 Hz
TA = 25°C
1000
1000
Figure 43
Figure 44
101
1
0.1
0.01
10
THD + N Total Harmonic Distortion Plus Noise %
f Frequency Hz
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
AV = 10
AV = 1
VDD = 5 V
TA = 25°C
AV = 10
AV = 1
RL = 2 kΩ Tied to 2.5 V
RL = 2 kΩ Tied to 0 V
102103104105
Figure 45
101
THD + N Total Harmonic Distortion Plus Noise %
f Frequency Hz
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
AV = 10
AV = 1
VDD = 3 V
TA = 25°C
AV = 10
AV = 1
RL = 2 kΩ Tied to 1.5 V
RL = 2 kΩ Tied to 0 V
1
0.1
0.01
10
102103104105
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 46
400
300
100
0
50 25 0 25 50
500
700
800
75 100 125
Gain-Bandwidth Product kHz
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
TA Free-Air Temperature °C
RL = 2 kΩ
CL = 100 pF
f = 10 kHz
600
200
Figure 47
600
550
500
01 2 3 4
650
700
750
5678
Gain-Bandwidth Product kHz
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
VDD Supply Voltage V
f = 10 kHz
RL = 2 kΩ
CL = 100 pF
TA = 25°C
Figure 48
101
75°
om Phase Margin
PHASE MARGIN
vs
LOAD CAPACITANCE
CL Load Capacitance pF
m
φ
Rnull = 500 ΩRnull = 1000 Ω
Rnull = 0
Rnull = 100 Ω
TA = 25°C
RL = 2 kΩ
Rnull = 200 Ω
60°
45°
30°
15°
0°
102103104105
Figure 49
101
15
10
5
0
20
Gain Margin dB
GAIN MARGIN
vs
LOAD CAPACITANCE
CL Load Capacitance pF
TA = 25°C
RL = 2 kΩ
Rnull = 200 Ω
Rnull = 0
Rnull = 100 Ω
Rnull = 500 Ω
Rnull = 1 kΩ
102103104105
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
101
400
300
200
0
600
100
500
Unity-Gain Bandwidth kHz
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
CL Load Capacitance pF
ÁÁ
ÁÁ
B1
TA = 25°C
RL = 2 kΩ
102103104105
Figure 50
TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SGLS182B SEPTEMBER 2003 REVISED NOVEMBER 2010
24 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts, the model generation software used
with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 51 are generated using
the TLV243x typical electrical and operating characteristics at TA = 25°C. Using this information, output
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
DMaximum positive output voltage swing
DMaximum negative output voltage swing
DSlew rate
DQuiescent power dissipation
DInput bias current
DOpen-loop voltage amplification
DUnity-gain frequency
DCommon-mode rejection ratio
DPhase margin
DDC output resistance
DAC output resistance
DShort-circuit output current limit
NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
OUT
+
+
+
+
+
+
+
+
+
.SUBCKT TLV2432 1 2 3 4 5
C1 11 12 3.560E12
C2 6 7 15.00E12
DC 5 53 DX
DE 54 5 DX
DLP 90 91 DX
DLN 92 90 DX
DP 43DX
EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5
FB 7 99 POLY (5) VB VC VE VLP
+ VLN 0 21.04E6 30E6 30E6 30E6 30E6
GA 6 0 11 12 47.12E6
GCM 0 6 10 99 4.9E9
ISS 3 10 DC 8.250E6
HLIM 90 0 VLIM 1K
J1 11 2 10 JX
J2 12 1 10 JX
R2 6 9 100.0E3
RD1 60 11 21.22E3
RD2 60 12 21.22E3
R01 8 5 120
R02 7 99 120
RP 3 4 26.04E3
RSS 10 99 24.24E6
VAD 60 4 .6
VB 9 0 DC 0
VC 3 53 DC .65
VE 54 4 DC .65
VLIM 7 8 DC 0
VLP 91 0 DC 1.4
VLN 0 92 DC 9.4
.MODEL DX D (IS=800.0E18)
.MODEL JX PJF (IS=500.0E15 BETA=281E6
+ VTO=.065)
.ENDS
VCC +
RP
IN
2
IN +
1
VCC
VAD
RD1
11
J1 J2
10
RSS ISS
3
12
RD2
60
VE
54 DE
DP
VC
DC
4
C1
53
R2
6
9
EGND
VB
FB
C2
GCM GA VLIM
8
5
RO1
RO2
HLIM
90
DLP
91
DLN
92
VLNVLP
99
7
Figure 51. Boyle Macromodel and Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLV2432AQDRG4Q1 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2432AQDRQ1 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2432QDRG4Q1 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2432QDRQ1 ACTIVE SOIC D 8 TBD Call TI Call TI
TLV2434AQDRQ1 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2434AQPWRQ1 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 2
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLV2432-Q1, TLV2432A-Q1, TLV2434A-Q1 :
Catalog: TLV2432, TLV2432A, TLV2434A
Military: TLV2432M, TLV2432AM
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
Military - QML certified for Military and Defense Applications
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
TLV2434AQPWRQ1 TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TLV2434AQPWRQ1 TSSOP PW 14 2000 367.0 367.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated