TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 D Qualified for Automotive Applications D ESD Protection Exceeds 2000 V Per D D D MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) Output Swing Includes Both Supply Rails Extended Common-Mode Input Voltage Range . . . 0 V to 4.5 V (Min) with 5-V Single Supply No Phase Inversion D Low Noise . . . 18 nV/Hz Typ at f = 1 kHz D Low Input Offset Voltage 950 V Max at TA = 25C (TLV243xA) D Low Input Bias Current . . . 1 pA Typ D Very Low Supply Current . . . 125 A Per D D Channel Max 600- Output Drive Macromodel Included HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT description The TLV243x and TLV243xA are low-voltage operational amplifier from Texas Instruments. The common-mode input voltage range for each device is extended over the typical CMOS amplifiers making them suitable for a wide range of applications. In addition, these devices do not phase invert when the common-mode input is driven to the supply rails. This satisfies most design requirements without paying a premium for rail-to-rail input performance. They also exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. This family is fully characterized at 3-V and 5-V supplies and is optimized for low-voltage operation. The TLV243x only requires 100 A (typ) of supply current per channel, making it ideal for battery-powered applications. The TLV243x also has increased output drive over previous rail-to-rail operational amplifiers and can drive 600- loads for telecom applications. VOH - High-Level Output Voltage - V VOH 5 AA AA AA VDD = 5 V 4 3 TA = 125C TA = 85C 2 TA = 25C TA =-40C 1 0 0 4 8 12 16 IOH - High-Level Output Current - mA 20 Figure 1 The other members in the TLV243x family are the high-power, TLV244x, and micro-power, TLV2422, versions. The TLV243x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV243xA is available and has a maximum input offset voltage of 950 V. If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright (c) 2008 Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 1 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 ORDERING INFORMATION VIOmax AT 25C TA 950 V V -40C 40C to 125C 2 5 mV 2.5 950 V V -40C 40C to 125C 2 5 mV 2.5 ORDERABLE PART NUMBER PACKAGE} SOIC (D) TOP-SIDE MARKING Tape and reel TLV2432AQDRQ1 TSSOP (PW) Tape and reel TLV2432AQPWRQ1 2432AQ SOIC (D) Tape and reel TLV2432QDRQ1 TSSOP (PW) Tape and reel TLV2432QPWRQ1 SOIC (D) Tape and reel TLV2434AQDRQ1 TSSOP (PW) Tape and reel TLV2434AQPWRQ1 SOIC (D) Tape and reel TLV2434QDRQ1 TSSOP (PW) Tape and reel TLV2434QPWRQ1 2432Q1 2434AQ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com. Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging. Product Preview. TLV2432 D PACKAGE (TOP VIEW) 1OUT 1IN - 1IN + VDD - /GND 2 1 8 2 7 3 6 4 5 TLV2434 D OR PW PACKAGE TLV2432 PW PACKAGE (TOP VIEW) VDD + 2OUT 2IN - 2IN + 1OUT 1IN- 1IN + VDD - / GND 1 2 3 4 POST OFFICE BOX 655303 8 7 6 5 (TOP VIEW) VDD + 2OUT 2IN - 2IN + * DALLAS, TEXAS 75265 1OUT 1IN - 1IN+ VDD+ 2IN+ 2IN - 2OUT 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN - 4IN+ VDD-/GND 3IN+ 3IN - 3OUT equivalent schematic (each amplifier) Q22 Q29 Q31 Q34 Q36 VB3 Q26 Q24 Q32 VB2 VB1 VDD+ Q25 Q35 Q33 Q27 VB4 Q23 Q30 R3 Q3 IN- Q6 Q4 R4 Q13 Q8 R7 Q15 Q10 Q18 Q20 IN+ Q7 Q9 VB3 R5 C2 R6 C3 VDD-/GND C1 Q11 Q16 OUT VB2 Q2 Q14 Q5 Q17 Q12 R1 Q21 R2 VB4 Q19 R8 69 5 26 6 3 SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 Q1 R10 D1 R9 Transistors Diodes Resistors Capacitors Q37 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 COMPONENT COUNT TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Total current out of VDD - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Duration of short-circuit current at (or below) 25C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40C to 125C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65C to 150C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD - . 2. Differential voltages are at IN+ with respect to IN -. Excessive current flows if input is brought below VDD - - 0.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA 25 25C C POWER RATING DERATING FACTOR ABOVE TA = 25C TA = 70 70C C POWER RATING TA = 85 85C C POWER RATING TA = 125 125C C POWER RATING D (8) D (14) PW (8) PW (14) 725 mW 1022 mW 525 mW 720 mW 5.8 mW/C 7.6 mW/C 4.2 mW/C 5.6 mW/C 464 mW 900 mW 336 mW 634 mW 377 mW 777 mW 273 mW 547 mW 145 mW 450 mW 105 mW 317 mW recommended operating conditions Supply voltage, VDD MIN MAX 2.7 10 V V Input voltage range, VI VDD - VDD + -0.8 Common-mode input voltage, VIC VDD - VDD + -0.8 Operating free-air temperature, TA -40 4 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 125 UNIT V C TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER VIO VIO TEST CONDITIONS VIC = 0, 0 VO = 0, VDD = 1.5 V, RS = 50 Input offset voltage TLV243xA IIO Input offset current IIB Input bias current 0 VIC = 0, VO = 0, 15V VDD = 1.5 V, RS = 50 AVD MAX 300 2000 Full range 2500 25C 300 Full range |VIO| 5 mV mV, High-level High level output voltage V/C V/C 25C 0.003 V/mo 25C 0.5 150 1 Low-level Low level output voltage Large-signal Large signal differential voltage amplification Full range IOL = 100 A VIC = 2.5 V, VO = 1 V to 2 V RL = 2 k ri(c) Common-mode input resistance ci(c) Common-mode input capacitance f = 10 kHz zo Closed-loop output impedance f = 100 kHz, Full range 0 to 2.2 RL = 1 M AV = 10 pA V 2.5 V 2.25 25C 0.02 25C 0.83 Full range V 1 25C 1.5 Full range 0.5 2.5 V/mV 25C 750 25C 1000 G 25C 1000 G 25C 8 pF 130 25C 25C 70 CMRR Common mode rejection ratio Common-mode VIC = VICR MIN, VO = 1.5 V, RS = 50 Full range 70 kSVR Supply voltage rejection ratio (VDD/VIO) Supply-voltage VDD = 2.7 V to 8 V, VIC = VDD /2, No load 25C 80 Full range 80 IDD Supply current 5V VO = 1 1.5 V, No load -0.25 to 2.75 pA 2.98 25C IOL = 3 mA Differential input resistance 0 to 2.5 25C VIC = 1 1.5 5V V, ri(d) 300 25C RS = 50 IOH = - 3 mA V V 2 25C Common mode input voltage range Common-mode 950 UNIT 2000 Full range VIC = 1.5 V, VOL 25C TYP Full range IOH = - 100 A VOH TLV243x-Q1 MIN 25 C 25C to 70C Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) VICR TLV243x TA 25C Full range 83 dB 95 195 dB 250 260 A Full range is - 40C to 125C for Q level part. Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150C extrapolated to TA = 25C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 5 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 operating characteristics at specified free-air temperature, VDD = 3 V PARAMETER TEST CONDITIONS RL = 2 k, VO = 1 V to 2 V, CL = 100 pF TA TLV243x-Q1, TLV243xA-Q1 MIN TYP 25C 0.15 0.25 Full range 0.1 UNIT MAX SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise Peak-to-peak voltage In Equivalent input noise current THD + N Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 1 kHz kHz, RL = 2 k AV = 1 Gain-bandwidth product f = 10 kHz, CL = 100 pF RL = 2 k, 25C 0.5 MHz Maximum output-swing bandwidth VO(PP) = 1 V, RL = 2 k, AV = 1, CL = 100 pF 25C 220 kHz ts Settling time AV = - 1, Step = 0.5 V to 2.5 V, RL = 2 k, CL = 100 pF m Phase margin at unity gain BOM Gain margin 6 f = 10 Hz 25C 120 f = 1 kHz 25C 22 f = 0.1 Hz to 1 Hz 25C 2.7 f = 0.1 Hz to 10 Hz 25C 4 25C 0.6 RL = 2 k, AV = 10 0 1% To 0.1% * DALLAS, TEXAS 75265 V V fAHz 0.5% 64 6.4 To 0.01% 0 01% CL = 100 pF nV/Hz 0.065% 25C Full range is - 40C to 125C for Q level part. Referenced to 2.5 V POST OFFICE BOX 655303 25C V/ s V/s ss 14 1 14.1 25C 62 25C 11 dB TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO VIO TEST CONDITIONS VIC = 0, 0 VO = 0, VDD = 2.5 V, RS = 50 Input offset voltage TLV243xA IIO Input offset current IIB Input bias current 0 VIC = 0, VO = 0, 25V VDD = 2.5 V, RS = 50 AVD MAX 300 2000 Full range 2500 25C 300 Full range |VIO| 5 mV mV, High-level High level output voltage V/C V/C 25C 0.003 V/mo 25C 0.5 150 1 Low-level Low level output voltage Large-signal Large signal differential voltage amplification IOL = 100 A IOL = 5 mA VIC = 2.5 V, VO = 1 V to 4 V RL = 2 k Differential input resistance ri(c) Common-mode input resistance ci(c) Common-mode input capacitance f = 10 kHz zo Closed-loop output impedance f = 100 kHz, 0 to 4.5 Full range 0 to 4.2 25C VIC = 2 2.5 5V V, ri(d) 300 25C RS = 50 IOH = - 5 mA RL = 1 M AV = 10 -0.25 to 4.75 pA pA V 4.97 25C 4 Full range 4 4.35 25C 0.01 25C 0.8 Full range V V 1.25 25C 2.5 Full range 0.5 3.8 V/mV 25C 950 25C 1000 G 25C 1000 G 25C 8 pF 130 25C 25C 70 CMRR Common mode rejection ratio Common-mode VIC = VICR MIN, VO = 2.5 V, RS = 50 Full range 70 kSVR Supply voltage rejection ratio (VDD/VIO) Supply-voltage VDD = 4.4 V to 8 V, VIC = VDD /2, No load 25C 80 Full range 80 IDD Supply current 5V VO = 2 2.5 V, No load V V 2 25C Common mode input voltage range Common-mode 950 UNIT 2000 Full range VIC = 2.5 V, VOL 25C TYP Full range IOH = - 100 A VOH TLV243x-Q1 MIN 25 C 25C to 70C Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) VICR TLV243x TA 25C Full range 90 dB 95 200 dB 250 270 A Full range is - 40C to 125C for Q level part. Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150C extrapolated to TA = 25C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 7 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS VO = 1.5 V to 3.5 V, CL = 100 pF RL = 2 k, TA TLV243x-Q1, TLV243xA-Q1 MIN TYP 25C 0.15 0.25 Full range 01 0.1 UNIT MAX SR Slew rate at unityy gain g Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise Peak-to-peak voltage In Equivalent input noise current THD + N Total harmonic distortion plus noise VO = 1.5 V to 3.5 V, f = 1 kHz kHz, RL = 2 k AV = 1 Gain-bandwidth product f = 10 kHz, CL = 100 pF RL =2 k, 25C 0.55 MHz Maximum output-swing bandwidth VO(PP) = 2 V, RL = 2 k, AV = 1, CL = 100 pF 25C 100 kHz ts Settling time AV = - 1, Step = 1.5 V to 3.5 V, RL = 2 k, CL = 100 pF m Phase margin at unity gain BOM Gain margin 8 f = 10 Hz 25C 100 f = 1 kHz 25C 18 f = 0.1 Hz to 1 Hz 25C 1.9 f = 0.1 Hz to 10 Hz 25C 2.8 25C 0.6 RL = 2 k, AV = 10 0 1% To 0.1% * DALLAS, TEXAS 75265 V V fAHz 0.4% 64 6.4 To 0.01% 0 01% CL = 100 pF nV/Hz 0.045% 25C Full range is - 40C to 125C for Q level part. Referenced to 2.5 V POST OFFICE BOX 655303 25C V/s / ss 13 1 13.1 25C 66 25C 11 dB TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution vs Common-mode input voltage 2,3 4,5 VIO Temperature coefficient Distribution 6,7 IIB/IIO Input bias and input offset currents vs Free-air temperature VOH High-level output voltage vs High-level output current 9,11 VOL Low-level output voltage vs Low-level output current 10,12 VO(PP) Maximum peak-to-peak output voltage vs Frequency 13 IOS Short circuit output current Short-circuit vs Supply voltage vs Free-air temperature 14 15 VID Differential input voltage vs Output voltage 16,17 Differential gain vs Load resistance 18 AVD Large-signal differential voltage amplification vs Frequency 19,20 AVD Differential voltage amplification vs Free-air temperature 21,22 zo Output impedance vs Frequency 23,24 CMRR Common mode rejection ratio Common-mode vs Frequency vs Free-air temperature 25 26 kSVR Supply voltage rejection ratio Supply-voltage vs Frequency vs Free-air temperature 27,28 29 IDD Supply current vs Supply voltage 30 SR Slew rate vs Load capacitance vs Free-air temperature 31 32 VO Inverting large-signal pulse response 33,34 VO Voltage-follower large-signal pulse response 35,36 VO Inverting small-signal pulse response 37,38 VO Voltage-follower small-signal pulse response 39,40 Vn Equivalent input noise voltage vs Frequency Noise voltage (referred to input) Over a 10-second period Total harmonic distortion plus noise vs Frequency Gain bandwidth product Gain-bandwidth Free-air vs Free air temperature vs Supply voltage Phase margin vs Frequency vs Load capacitance 19,20 48 Gain margin vs Load capacitance 49 Unity-gain bandwidth vs Load capacitance 50 THD + N m B1 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 8 41, 42 43 44,45 46 47 9 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2432 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLV2432 INPUT OFFSET VOLTAGE 35 30 Percentage of Amplifiers - % 30 Precentage of Amplifiers - % 35 408 Amplifiers From 1 Wafer Lot VDD = 1.5 V TA = 25C 25 20 15 10 5 408 Amplifiers From 1 Wafer Lot VDD = 2.5 V TA = 25C 25 20 15 10 5 0 -1600 -800 0 800 0 -1600 1600 VIO - Input Offset Voltage - V -800 0 800 VIO - Input Offset Voltage - V Figure 2 Figure 3 INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE VVIO IO - Input Offset Voltage - mV 1.5 INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 2 VDD =3 V TA = 25C 1.5 VVIO IO - Input Offset Voltage - mV 2 1 0.5 0 -0.5 AAA AAA AAA VDD = 5 V TA = 25C 1 0.5 0 -0.5 AA AA AA -1 -1.5 -2 -0.5 -1 -1.5 2 2.5 0 0.5 1 1.5 VIC - Common-Mode Input Voltage - V 3 -2 -0.5 0 0.5 1 1.5 2 Figure 5 POST OFFICE BOX 655303 2.5 3 3.5 4 4.5 VIC - Common-Mode Input Voltage - V Figure 4 10 1600 * DALLAS, TEXAS 75265 5 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2432 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 25 32 Amplifiers From 1 Wafer Lot VDD = 1.5 V TA = 25C to 125C 20 15 10 5 0 -4 0 1 2 3 -2 Temperature Coefficient - V / C 15 10 5 0 4 -3 VIO - -1 32 Amplifiers From 1 Wafer Lot VDD = 2.5 V TA = 25C to 125C 20 Percentage of Amplifiers - % Percentage of Amplifiers - % 25 DISTRIBUTION OF TLV2432 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT -4 -3 INPUT BIAS AND INPUT OFFSET CURRENTS vs FREE-AIR TEMPERATURE 35 2 1 3 4 VDD = 3 V IIB 20 15 IIO 10 AA AA 5 25 0 3 VDD = 2.5 V VIC = 0 V VO = 0 RS = 50 25 0 -1 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT VOH - High-Level Output Voltage - V VOH IIO - Input Bias and Input Offset Currents - pA IIIB IB and IIO AA AA -2 - Temperature Coefficient - V / C Figure 7 Figure 6 30 VIO 45 65 85 105 TA - Free-Air Temperature - C 125 2.5 TA = -40C 2 TA = 125C TA = 25C 1.5 1 TA = 0C 0.5 0 0 Figure 8 3 6 9 12 IOH - High-Level Output Current - mA 15 Figure 9 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 11 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 1.4 5 AA AA AA 1.2 TA = 125C TA = 85C 1 0.8 0.6 TA = 25C 0.4 0 1 2 4 3 TA = 125C 4 3 TA = 85C 2 AA AA TA = -40C 0.2 0 VDD = 5 V VOH - High-Level Output Voltage - V VOH V VOL OL - Low-Level Output Voltage - V VDD = 3 V 5 IOL - Low-Level Output Current - mA TA = 25C TA =-40C 1 0 0 4 8 12 16 IOH - High-Level Output Current - mA Figure 10 Figure 11 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT VOL VOL - Low-Level Output Voltage - V VDD = 5 V 1 TA = 125C 0.8 TA = 85C 0.6 AAA AAA AAA TA = 25C TA = -40C 0.2 0 0 1 2 3 4 IOL - Low-Level Output Current - mA 5 VO(PP) VO(PP) - Maximum Peak-to-Peak Output Voltage - V MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 1.2 0.4 AA AA AA 5 RL = 2 k TA = 25C VDD = 5 V 4 3 VDD = 3 V 2 1 0 102 Figure 12 12 20 103 104 105 f - Frequency - Hz Figure 13 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 106 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE 20 VO = VDD/2 VIC = VDD/2 TA = 25C 15 IIOS OS - Short-Circuit Output Current - mA I OS - Short-Circuit Output Current - mA IOS 20 SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE 10 5 0 -5 -10 -15 -20 2 3 4 5 6 7 8 9 VID = -100 mV 10 5 0 -5 -10 VID = 100 mV -15 -20 -75 10 VDD - Supply Voltage - V -50 -25 V ID - Differential Input Voltage - V V ID - Differential Input Voltage - V 0 -250 -500 -750 0 0.5 75 100 125 1000 250 -1000 50 DIFFERENTIAL INPUT VOLTAGE vs OUTPUT VOLTAGE VDD = 3 V RL = 2 k VIC = 1.5 V TA = 25C 500 25 Figure 15 DIFFERENTIAL INPUT VOLTAGE vs OUTPUT VOLTAGE 750 0 TA - Free-Air Temperature - C Figure 14 1000 VDD = 5 V VIC = 2.5 V VO = 2.5 V 15 1 1.5 2 VO - Output Voltage - V 2.5 3 VDD = 5 V VIC = 2.5 V RL = 2 k TA = 25C 750 500 250 0 -250 -500 -750 -1000 0 Figure 16 1 2 3 VO - Output Voltage - V 4 5 Figure 17 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 13 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS DIFFERENTIAL GAIN vs LOAD RESISTANCE Differential Gain - V/ mV 103 VO(PP) = 2 V TA = 25C VDD = 5 V VDD = 3 V 102 101 1 101 102 RL - Load Resistance - k 1 103 Figure 18 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY 60 AA AA 180 VDD = 5 V RL = 2 k CL = 100 pF TA = 25C 135 40 90 20 45 0 0 -20 -40 104 -45 105 106 f - Frequency - Hz Figure 19 14 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 107 -90 om m - Phase Margin AVD AVD - Large-Signal Differential Voltage Amplification - dB 80 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY 80 135 40 90 20 45 0 0 -20 om m - Phase Margin 60 AVD AVD - Large-Signal Differential Voltage Amplification - dB AA AA AA 180 VDD = 3 V RL = 2 k CL = 100 pF TA = 25C -45 -40 104 105 106 107 -90 f - Frequency - Hz Figure 20 DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE 1000 A VD - Differential Voltage Amplification - V/mV A VD - Differential Voltage Amplification - V/mV 10000 RL = 1 M 1000 100 RL = 2 k 10 1 0.1 -75 VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V -50 -25 0 25 50 75 100 125 VDD = 3 V VIC = 2.5 V VO = 0.5 V to 2.5 V 100 RL = 1 M 10 1 RL = 2 k 0.1 -75 -50 TA - Free-Air Temperature - C Figure 21 -25 0 25 50 75 100 TA - Free-Air Temperature - C 125 Figure 22 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 15 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS OUTPUT IMPEDANCE vs FREQUENCY 1000 VDD = 3 V TA = 25C VDD = 5 V TA = 25C z o - Output Impedance - 0 zo z o - Output Impedance - 0 zo 1000 OUTPUT IMPEDANCE vs FREQUENCY AV = 100 100 AV = 10 10 AV = 100 100 AV = 10 10 AV = 1 1 102 AV = 1 103 104 f - Frequency - Hz 1 102 105 103 104 f - Frequency - Hz Figure 23 Figure 24 COMMON-MODE REJECTION RATIO vs FREQUENCY COMMON-MODE REJECTION RATIO vs FREE-AIR TEMPERATURE 60 100 TA = 25C VDD = 5 V VIC = 2.5 V CMRR - Common-Mode Rejection Ratio - dB CMRR - Common-Mode Rejection Ratio - dB 100 80 VDD = 3 V VIC = 1.5 V 40 20 0 102 103 104 105 f - Frequency - Hz 106 VDD = 5 V 98 96 VDD = 3 V 94 92 90 -75 -50 -25 0 25 Figure 26 POST OFFICE BOX 655303 50 75 100 TA - Free-Air Temperature - C Figure 25 16 105 * DALLAS, TEXAS 75265 125 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY 120 VDD = 3 V TA = 25C KSVR k SVR - Supply-Voltage Rejection Ratio - dB KSVR k SVR - Supply-Voltage Rejection Ratio - dB 120 100 80 60 40 AA AA AA 20 0 101 102 103 104 105 106 VDD = 5 V TA = 25C 100 80 60 40 AA AA AA 20 0 101 102 103 f - Frequency - Hz Figure 27 105 106 Figure 28 SUPPLY VOLTAGE REJECTION RATIO vs FREE-AIR TEMPERATURE SUPPLY CURRENT vs SUPPLY VOLTAGE 100 300 VO = VDD/2 No Load 96 92 VDD = 2.7 V to 8 V VO = VDD/2 -50 -25 0 25 50 75 100 125 TA = - 40C 200 TA = 85C 150 AA AA AA 94 90 -75 TA = 25C 250 98 IIDD DD - Supply Current - A kSVR k SVR - Supply-Voltage Rejection Ratio - dB 104 f - Frequency - Hz 100 50 0 0 TA - Free-Air Temperature - C 2 4 6 8 10 VDD - Supply Voltage - V Figure 29 Figure 30 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 17 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS SLEW RATE vs LOAD CAPACITANCE SLEW RATE vs FREE-AIR TEMPERATURE 0.6 SR - 0.5 VDD = 5 V RL = 2 k CL = 100 pF AV = 1 0.3 SR + 0.4 SR - Slew Rate - V/ s SR - Slew Rate - V/ v/us s 0.35 VDD = 3 V AV = - 1 TA = 25C 0.3 0.2 0.25 0.2 0.15 0.1 0 101 102 103 104 CL - Load Capacitance - pF 105 0.1 -75 -50 -25 Figure 31 VO VO - Output Voltage - V VO VO - Output Voltage - V 75 100 125 5 VDD = 3 V RL = 2 k CL = 100 pF AV = - 1 TA = 25C 2 1.5 1 VDD = 5 V RL = 2 k CL = 100 pF 4 A = -1 V TA = 25C 3 2 1 0.5 0 10 20 30 t - Time - s 40 50 0 0 10 20 30 t - Time - s Figure 34 Figure 33 18 50 INVERTING LARGE-SIGNAL PULSE RESPONSE 3 0 25 Figure 32 INVERTING LARGE-SIGNAL PULSE RESPONSE 2.5 0 TA - Free-Air Temperature - C POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 40 50 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 5 VDD = 3 V RL = 2 k CL = 100 pF 2.5 AV = 1 TA = 25C 2 1.5 1 3 2 1 0.5 0 VDD = 5 V RL = 2 k CL = 100 pF AV = 1 TA = 25C 4 VO VO - Output Voltage - V VO VO - Output Voltage - V 3 0 10 20 30 t - Time - s 40 0 50 0 5 10 INVERTING SMALL-SIGNAL PULSE RESPONSE 50 4.5 5 VDD = 5 V RL = 2 k CL = 100 pF AV = - 1 TA = 25C 2.56 1.52 1.5 1.48 1.46 1.44 45 2.58 VO VO - Output Voltage - V V VO O - Output Voltage - V 1.54 40 INVERTING SMALL-SIGNAL PULSE RESPONSE VDD = 3 V RL = 2 k CL = 100 pF AV = -1 TA = 25C 1.56 20 25 30 35 t - Time - s Figure 36 Figure 35 1.58 15 2.54 2.52 2.5 2.48 2.46 0 0.5 1 1.5 2 2.5 3 t - Time - s 3.5 4 4.5 5 2.44 0 0.5 1 1.5 2 2.5 3 3.5 t - Time - s 4 Figure 38 Figure 37 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 19 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 1.58 2.58 VDD = 3 V RL = 2 k CL = 100 pF AV = 1 TA = 25C 1.54 1.52 1.5 1.48 1.46 1.44 VDD = 5 V RL = 2 k CL = 100 pF AV = 1 TA = 25C 2.56 VO VO - Output Voltage - V 1.56 VO VO - Output Voltage - V VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 2.54 2.52 2.5 2.48 2.46 0 0.5 1 1.5 2 2.5 3 t - Time - s 3.5 4 4.5 2.44 5 0 0.5 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 2 2.5 3 3.5 t - Time - s 4 4.5 5 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 120 VDD = 3 V RS = 20 TA = 25C 100 V n - Equivalent Input Noise Voltage - nV/ VN nv//HzHz V n - Equivalent Input Noise Voltage - nV/ VN nv//HzHz 120 80 60 40 20 102 103 f - Frequency - Hz 104 VDD = 5 V RS = 20 TA = 25C 100 80 60 40 20 0 101 Figure 41 20 1.5 Figure 40 Figure 39 0 101 1 103 102 f - Frequency - Hz Figure 42 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 104 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS NOISE VOLTAGE OVER A 10-SECOND PERIOD 2000 1500 Noise Voltage - nV 1000 500 0 -500 -1000 VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25C -1500 -2000 0 1 2 3 4 5 6 t - Time - s 7 8 9 10 Figure 43 10 RL = 2 k Tied to 2.5 V RL = 2 k Tied to 0 V AV = 10 1 VDD = 5 V TA = 25C AV = 1 0.1 AV = 10 0.01 101 AV = 1 102 103 104 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY THD + N - Total Harmonic Distortion Plus Noise - % THD + N - Total Harmonic Distortion Plus Noise - % TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY 105 f - Frequency - Hz 10 RL = 2 k Tied to 1.5 V RL = 2 k Tied to 0 V AV = 10 1 VDD = 3 V TA = 25C AV = 1 0.1 AV = 10 0.01 101 Figure 44 AV = 1 102 103 f - Frequency - Hz 104 105 Figure 45 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 21 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS GAIN-BANDWIDTH PRODUCT vs FREE-AIR TEMPERATURE 800 750 RL = 2 k CL = 100 pF 700 f = 10 kHz Gain-Bandwidth Product - kHz Gain-Bandwidth Product - kHz GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 600 500 400 300 200 f = 10 kHz RL = 2 k CL = 100 pF TA = 25C 700 650 600 550 100 0 -50 -25 75 100 0 25 50 TA - Free-Air Temperature - C 500 125 0 1 2 Figure 46 Rnull = 500 Rnull = 1000 45 Rnull = 1 k Rnull = 200 30 Rnull = 0 8 Rnull = 200 Rnull = 100 102 103 104 CL - Load Capacitance - pF 105 Rnull = 0 TA = 25C RL = 2 k Rnull = 100 0 101 Figure 48 22 7 10 5 15 0 101 6 Rnull = 500 15 Gain Margin - dB om m - Phase Margin 60 5 GAIN MARGIN vs LOAD CAPACITANCE 20 TA = 25C RL = 2 k 4 Figure 47 PHASE MARGIN vs LOAD CAPACITANCE 75 3 VDD - Supply Voltage - V 102 103 104 CL - Load Capacitance - pF Figure 49 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 105 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 TYPICAL CHARACTERISTICS UNITY-GAIN BANDWIDTH vs LOAD CAPACITANCE B1 - Unity-Gain Bandwidth - kHz 600 TA = 25C RL = 2 k 500 400 300 200 AA AA 100 0 101 102 103 104 CL - Load Capacitance - pF 105 Figure 50 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 23 TLV2432-Q1, TLV2432A-Q1, TLV2434-Q1, TLV2434A-Q1 Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SGLS182B - SEPTEMBER 2003 - REVISED NOVEMBER 2010 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim PartsTM, the model generation software used with Microsim PSpiceTM. The Boyle macromodel (see Note 5) and subcircuit in Figure 51 are generated using the TLV243x typical electrical and operating characteristics at TA = 25C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3 VCC + 9 RSS IN - DP IN + 1 11 C1 VCC - 6 - VE - - - + + GCM GA VLIM - RO1 DE 5 + .SUBCKT TLV2432 1 2 3 4 5 C1 11 12 3.560E-12 C2 6 7 15.00E-12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP + VLN 0 21.04E6 -30E6 30E6 30E6 -30E6 GA 6 0 11 12 47.12E-6 GCM 0 6 10 99 4.9E-9 ISS 3 10 DC 8.250E-6 HLIM 90 0 VLIM 1K J1 11 2 10 JX J2 12 1 10 JX R2 6 9 100.0E3 OUT RD1 60 11 21.22E3 RD2 60 12 21.22E3 R01 8 5 120 R02 7 99 120 RP 3 4 26.04E3 RSS 10 99 24.24E6 VAD 60 4 -.6 VB 9 0 DC 0 VC 3 53 DC .65 VE 54 4 DC .65 VLIM 7 8 DC 0 VLP 91 0 DC 1.4 VLN 0 92 DC 9.4 .MODEL DX D (IS=800.0E-18) .MODEL JX PJF (IS=500.0E-15 BETA=281E-6 + VTO= -.065) .ENDS Figure 51. Boyle Macromodel and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. 24 + DLP 91 + VLP 7 RD2 54 4 C2 8 60 + - R2 - 53 DC 12 RD1 VAD VC J2 HLIM - + 90 RO2 VB 10 J1 92 FB - + ISS RP 2 DLN EGND + POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 VLN PACKAGE OPTION ADDENDUM www.ti.com 17-Aug-2012 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2432AQDRQ1 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2432QDRG4Q1 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Call TI Samples (Requires Login) TLV2432AQDRG4Q1 TBD (3) TLV2432QDRQ1 ACTIVE SOIC D 8 TLV2434AQDRQ1 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Call TI TLV2434AQPWRQ1 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 17-Aug-2012 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TLV2432-Q1, TLV2432A-Q1, TLV2434A-Q1 : * Catalog: TLV2432, TLV2432A, TLV2434A * Military: TLV2432M, TLV2432AM NOTE: Qualified Version Definitions: * Catalog - TI's standard catalog product * Military - QML certified for Military and Defense Applications Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 TAPE AND REEL INFORMATION *All dimensions are nominal Device TLV2434AQPWRQ1 Package Package Pins Type Drawing TSSOP PW 14 SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) 2000 330.0 12.4 Pack Materials-Page 1 6.9 B0 (mm) K0 (mm) P1 (mm) 5.6 1.6 8.0 W Pin1 (mm) Quadrant 12.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TLV2434AQPWRQ1 TSSOP PW 14 2000 367.0 367.0 35.0 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP(R) Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright (c) 2012, Texas Instruments Incorporated