INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
IRGB4060DPbF
1www.irf.com
9/22/06
VCES = 600V
IC = 8.0A, TC = 100°C
tsc > 5µs, Tjmax = 175°C
VCE(on) typ. = 1.55V
TO-220AB
C
E
C
G
GCE
Gate Collector Emitter
E
G
n-channel
C
Features
Low VCE (on) Trench IGBT Technology
Low Switching Losses
Maximum Junction temperature 175 °C
5µs SCSOA
Square RBSOA
100% of The Parts Tested for 4X Rated Current (ILM)
Positive VCE (on) Temperature Coefficient.
Ultra Fast Soft Recovery Co-pak Diode
Tighter Distribution of Parameters
Lead-Free Package
Benefits
High Efficiency in a Wide Range of Applications
Suitable for a Wide Range of Switching Frequencies due
to Low VCE (ON) and Low Switching Losses
Rugged Transient Performance for Increased Reliability
Excellent Current Sharing in Parallel Operation
Low EMI
Absolute Maximum Ratings
Parameter Max. Units
VCES Collector-to-Emitter Breakdown Voltage V
IC@ TC = 25°C Continuous Collector Current
IC@ TC = 100°C Continuous Collector Current
ICM Pulsed Collector Current
ILM Clamped Inductive Load Current cA
IF@TC=25°C Diode Continuous Forward Current
IF@TC=100°C Diode Continuous Forward Current
IFM Diode Maximum Forward Current d
Continuous Gate-to-Emitter Voltage V
Transient Gate-to-Emitter Voltage
PD @ TC =25° Maximum Power Dissipation W
PD @ TC =100° Maximum Power Dissipation
TJOperating Junction and °C
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds
Thermal Resistance
Parameter Min. Typ. Max. Units
RθJC Junction-to-Case - IGBT e1.51
RθJC Junction-to-Case - Diode e3.66
RθCS Case-to-Sink, flat, greased surface 0.5
RθJA Junction-to-Ambient, typical socket mount e80
Wt Weight 1.44 g
°C/W
VGE
600
16
8
32
32
16
8
32
-55 to + 175
300 (0.063 in. (1.6mm) from case)
± 20
± 30
99
50
PD - 97073B
IRGB4060DPbF
2www.irf.com
Notes:
VCC = 80% (VCES), VGE = 15V, L = 100 µH, RG = 47 Ω.
Pulse width limited by max. junction temperature.
Rθ is measured at TJ approximately 90°C
Refer to AN-1086 for guidelines for measuring V(BR)CES safely
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions Ref.Fig
V
(
BR
)
CES Collector-to-Emitter Breakdown Voltage 600 V VGE = 0V,Ic =100 µA
f
V(BR)CES/TJTemperature Coeff. of Breakdown Voltage 0.3 V/°C VGE = 0V, Ic = 250 µA ( 25 -175 oC )
f
1.55 1.85 IC = 8A, VGE = 15V, TJ = 25°C
VCE(on) Collector-to-Emitter Saturation Voltage 2.00 V IC = 8A, VGE = 15V, TJ = 150°C 5,6,7,9,
—1.95— IC = 8A, VGE = 15V, TJ = 175°C 10 ,11
VGE(th) Gate Threshold Voltage 4.0 6.5 V VCE = VGE, IC = 250 µA
VGE(th)/TJ Threshold Voltage temp. coefficient -18 —mV/°C
VCE = VGE, IC = 250 µA ( 25 -175 oC )
gfe Forward Transconductance 5.6 S VCE = 50V, IC = 8A, PW =80µs
ICES 1 25 µA VGE = 0V,VCE = 600V
400 —µA
VGE = 0v, VCE = 600V, TJ =175°C 8
VFM 1.80 2.80 V IF = 8A
—1.30— IF = 8A, TJ = 175°C
IGES Gate-to-Emitter Leakage Current ±100 nA VGE = ± 20 V
Switchin
g
Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Ref.Fig
Q
g
Total Gate Charge (turn-on) 19 29 IC = 8A 24
Q
g
eGate-to-Emitter Charge (turn-on) 5 7 nC VCC = 400V CT1
Q
g
cGate-to-Collector Charge (turn-on) 8 12 VGE = 15V
Eon Turn-On Switching Loss 70 115 IC = 8A, VCC = 400V, VGE = 15V
Eoff Turn-Off Switching Loss 145 195 µJ RG = 47, L=1mH, LS= 150nH, TJ = 25°C CT4
Etotal Total Switching Loss 215 310 Energy losses include tail and diode reverse recovery
td
(
on
)
Turn-On delay time 30 39 IC = 8A, VCC = 400V
trRise time 15 21 ns RG = 47, L=1mH, LS= 150nH CT4
td
(
off
)
Turn-Off delay time 95 106 TJ = 25°C
tfFall time 20 26
Eon Turn-On Switching Loss 165 IC = 8A, VCC = 400V, VGE = 15V 13,15
Eoff Turn-Off Switching Loss 240 µJ RG = 47, L=1mH, LS= 150nH, TJ = 175°C CT4
Etotal Total Switching Loss 405 Energy losses include tail and diode reverse recovery WF1,WF2
td
(
on
)
Turn-On delay time 28 IC = 8A, VCC = 400V 14,16
trRise time 17 —nsR
G = 47, L=1mH, LS= 150nH CT4
td
(
off
)
Turn-Off delay time 117 —T
J = 175°C WF1,WF2
tfFall time 35
Cies Input Capacitance 535 VGE = 0V 22
Coes Output Capacitance 45 VCC = 30V
Cres Reverse Transfer Capacitance 15 f = 1Mhz
TJ = 175°C, IC = 32A 4
RBSOA Reverse Bias Safe Operating Area FULL SQUARE VCC = 480V, Vp =600V CT2
RG = 47, VGE = +15V to 0V
VCC = 400V, Vp =600V 22, CT3
RG = 47, VGE = +15V to 0V WF4
Erec Reverse recovery energy of the diode 165 µJ TJ = 175oC17,18,19
trr Diode Reverse recovery time 60 ns VCC = 400V, IF = 8A 20,21
Irr Peak Reverse Recovery Current 14 A VGE = 15V, Rg = 47, L=1mH, LS=150nH WF3
Diode Forward Voltage Drop
Collector-to-Emitter Leakage Current
SCSOA Short Circuit Safe Operating Area 5 µs
pF
CT6
9,10,11,12
Conditions
IRGB4060DPbF
www.irf.com 3
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VCE = 15V
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
Fig. 3 - Forward SOA,
TC = 25°C; TJ 175°C
0 20 40 60 80 100 120 140 160 180
TC (°C)
0
2
4
6
8
10
12
14
16
18
IC (A)
0 20 40 60 80 100 120 140 160 180
TC (°C)
0
20
40
60
80
100
120
Ptot (W)
1 10 100 1000
VCE (V)
0.1
1
10
100
IC (A)
10 µs
100 µs
1ms
DC
10 100 1000
VCE (V)
1
10
100
IC A)
02468
VCE (V)
0
5
10
15
20
25
30
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
02468
VCE (V)
0
5
10
15
20
25
30
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
IRGB4060DPbF
4www.irf.com
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80µs
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
02468
VCE (V)
0
5
10
15
20
25
30
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
5101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 4.0A
ICE = 8.0A
ICE = 16A
5101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 4.0A
ICE = 8.0A
ICE = 16A
5101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 4.0A
ICE = 8.0A
ICE = 16A
0 5 10 15
VGE (V)
0
5
10
15
20
25
30
35
ICE (A)
TJ = 25°C
TJ = 175°C
0.0 1.0 2.0 3.0 4.0
VF (V)
0
10
20
30
40
50
60
70
80
IF (A)
-40°C
25°C
175°C
IRGB4060DPbF
www.irf.com 5
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 1mH; VCE = 400V, RG = 47; VGE = 15V.
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 1mH; VCE = 400V, ICE = 8A; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L=1mH; VCE= 400V
RG= 47; VGE= 15V
Fig. 16- Typ. Switching Time vs. RG
TJ = 175°C; L=1mH; VCE= 400V
ICE= 8A; VGE= 15V
Fig. 17 - Typical Diode IRR vs. IF
TJ = 175°C
Fig. 18 - Typical Diode IRR vs. RG
TJ = 175°C; IF = 8.0A
0 5 10 15 20
IC (A)
0
50
100
150
200
250
300
350
400
450
500
Energy (µJ)
EOFF
EON
0 5 10 15 20
IC (A)
1
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
025 50 75 100 125
RG ()
0
50
100
150
200
250
300
350
Energy (µJ)
EON
EOFF
025 50 75 100 125
RG ()
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
0 5 10 15 20
IF (A)
0
5
10
15
20
25
30
IRR (A)
RG = 100
RG =10
RG =22
RG =47
025 50 75 100 125
RG (Ω)
0
5
10
15
20
25
IRR (A)
IRGB4060DPbF
6www.irf.com
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V; TJ = 175°C
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
ICE= 8A; TJ = 175°C
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 8A, L=600µH
Fig. 23- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 22- Typ. VGE vs Short Circuit Time
VCC=400V, TC =25°C
Fig. 21 - Typical Diode ERR vs. IF
TJ = 175°C
Current (A)
0500 1000
diF /dt (A/µs)
0
5
10
15
20
25
IRR (A)
0 500 1000 1500
diF /dt (A/µs)
0
200
400
600
800
1000
1200
1400
QRR (nC)
10
22
47
100
16A
8.0A
4.0A
0 5 10 15 20
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE (V)
300V 400V
810 12 14 16 18
VGE (V)
10
20
30
40
50
60
70
80
4
6
8
10
12
14
16
18
Time (µs)
0 5 10 15 20
IF (A)
0
50
100
150
200
250
300
350
400
450
500
Energy (µJ)
10
22
47
100
020 40 60 80 100
VCE (V)
1
10
100
1000
Capacitance (pF)
Cies
Coes
Cres
IRGB4060DPbF
www.irf.com 7
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z
thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z
thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Ri (°C/W)
τι (sec)
0.555579 0.000216
0.590565 0.00117
0.365255 0.009076
τ
J
τ
J
τ
1
τ
1
τ
2
τ
2
τ
3
τ
3
R
1
R
1
R
2
R
2
R
3
R
3
τ
τ
C
Ci= τi/Ri
Ci= τi/Ri
Ri (°C/W) τι (sec)
0.821094 0.000233
1.913817 0.001894
0.926641 0.014711
τ
J
τ
J
τ
1
τ
1
τ
2
τ
2
τ
3
τ
3
R
1
R
1
R
2
R
2
R
3
R
3
τ
τ
C
Ci= τi/Ri
Ci= τi/Ri
IRGB4060DPbF
8www.irf.com
Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit
1K
VCC
DUT
0
L
Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit
L
Rg
80 V DUT
480V
+
-
Fig.C.T.5 - Resistive Load Circuit Fig.C.T.6 - Typical Filter Circuit for
V(BR)CES Measurement
IRGB4060DPbF
www.irf.com 9
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
WF.3- Typ. Reverse Recovery Waveform
@ TJ = 175°C using CT.4
WF.4- Typ. Short Circuit Waveform
@ TJ = 25°C using CT.3
-100
0
100
200
300
400
500
-0.40 0.10 0.60 1.10
Time(µ s)
V
CE
(V)
-5
0
5
10
15
20
25
E
OFF
Loss
5% V
CE
5% I
CE
90% I
CE
tf
-100
0
100
200
300
400
500
11.70 11.90 12.10
Time (µs)
V
CE
(V)
-5
0
5
10
15
20
25
EON Loss
TEST
90% test
10% test current
5% V
CE
tr
-20
-15
-10
-5
0
5
10
15
-0.05 0.05 0.15
timeS)
IRR (A)
Peak
IRR
Q
RR
tRR
10%
Peak
I
RR
-100
0
100
200
300
400
500
-5.00 0.00 5.00 10.00
timeS)
V
CE
(V)
-20
0
20
40
60
80
100
I
CE
(A)
V
C
E
I
C
E
IRGB4060DPbF
10 www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 09/06
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
TO-220AB packages are not recommended for Surface Mount Application.
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
INT ERNATIONAL PART NUMBER
RECT IFIER
LOT CODE
ASSEMBLY
LOGO
YEAR 0 = 2000
DAT E CODE
WEEK 19
LINE C
LOT CODE 1789
EXAMPLE: THIS IS AN IRF1010
Note: "P" in as s embly line pos ition
indi cates "L ead - F ree"
IN THE ASSEMBLY LINE "C"
AS S EMBL ED ON WW 19, 2000
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/