ATmega640/V-1280/V-1281/V-2560/V-2561/V 8-bit Microcontroller with 16/32/64KB In-System Programmable Flash DATASHEET Features * * * High Performance, Low Power AVR(R) 8-Bit Microcontroller Advanced RISC Architecture - 135 Powerful Instructions - Most Single Clock Cycle Execution - 32 x 8 General Purpose Working Registers - Fully Static Operation - Up to 16 MIPS Throughput at 16MHz - On-Chip 2-cycle Multiplier High Endurance Non-volatile Memory Segments - 64K/128K/256KBytes of In-System Self-Programmable Flash - 4Kbytes EEPROM - 8Kbytes Internal SRAM - Write/Erase Cycles:10,000 Flash/100,000 EEPROM - Data retention: 20 years at 85C/ 100 years at 25C - Optional Boot Code Section with Independent Lock Bits * In-System Programming by On-chip Boot Program * True Read-While-Write Operation - Programming Lock for Software Security * * * * Endurance: Up to 64Kbytes Optional External Memory Space QTouch(R) library support - Capacitive touch buttons, sliders and wheels - QTouch and QMatrix acquisition - Up to 64 sense channels JTAG (IEEE(R) std. 1149.1 compliant) Interface - Boundary-scan Capabilities According to the JTAG Standard - Extensive On-chip Debug Support - Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface Peripheral Features - - - - - * - - - - - - - - Special Microcontroller Features - - - - * Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode Four 16-bit Timer/Counter with Separate Prescaler, Compare- and Capture Mode Real Time Counter with Separate Oscillator Four 8-bit PWM Channels Six/Twelve PWM Channels with Programmable Resolution from 2 to 16 Bits (ATmega1281/2561, ATmega640/1280/2560) Output Compare Modulator 8/16-channel, 10-bit ADC (ATmega1281/2561, ATmega640/1280/2560) Two/Four Programmable Serial USART (ATmega1281/2561, ATmega640/1280/2560) Master/Slave SPI Serial Interface Byte Oriented 2-wire Serial Interface Programmable Watchdog Timer with Separate On-chip Oscillator On-chip Analog Comparator Interrupt and Wake-up on Pin Change Power-on Reset and Programmable Brown-out Detection Internal Calibrated Oscillator External and Internal Interrupt Sources Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby I/O and Packages - - - - 54/86 Programmable I/O Lines (ATmega1281/2561, ATmega640/1280/2560) 64-pad QFN/MLF, 64-lead TQFP (ATmega1281/2561) 100-lead TQFP, 100-ball CBGA (ATmega640/1280/2560) RoHS/Fully Green * Temperature Range: * Ultra-Low Power Consumption * - -40C to 85C Industrial - Active Mode: 1MHz, 1.8V: 500A - Power-down Mode: 0.1A at 1.8V Speed Grade: - ATmega640V/ATmega1280V/ATmega1281V: * 0 - 4MHz @ 1.8V - 5.5V, 0 - 8MHz @ 2.7V - 5.5V - ATmega2560V/ATmega2561V: * 0 - 2MHz @ 1.8V - 5.5V, 0 - 8MHz @ 2.7V - 5.5V - ATmega640/ATmega1280/ATmega1281: * 0 - 8MHz @ 2.7V - 5.5V, 0 - 16MHz @ 4.5V - 5.5V - ATmega2560/ATmega2561: * 0 - 16MHz @ 4.5V - 5.5V 2549Q-AVR-02/2014 1. Pin Configurations 81 80 PA1 (AD1) 82 PA2 (AD2) 83 PJ7 84 PA0 (AD0) 85 GND 86 VCC 87 PK7 (ADC15/PCINT23) 88 PK5 (ADC13/PCINT21) 89 PK6 (ADC14/PCINT22) 90 PK3 (ADC11/PCINT19) 91 PK4 (ADC12/PCINT20) 92 PK1 (ADC9/PCINT17) 93 PK2 (ADC10/PCINT18) PK0 (ADC8/PCINT16) 94 PF7 (ADC7/TDI) 95 PF6 (ADC6/TDO) 96 PF4 (ADC4/TCK) 97 PF5 (ADC5/TMS) PF1 (ADC1) 98 PF2 (ADC2) PF0 (ADC0) 100 99 PF3 (ADC3) GND AREF TQFP-pinout ATmega640/1280/2560 AVCC Figure 1-1. 79 78 77 76 (OC0B) PG5 1 75 PA3 (AD3) (RXD0/PCINT8) PE0 2 74 PA4 (AD4) INDEX CORNER (TXD0) PE1 3 73 PA5 (AD5) (XCK0/AIN0) PE2 4 72 PA6 (AD6) (OC3A/AIN1) PE3 5 71 PA7 (AD7) (OC3B/INT4) PE4 6 70 PG2 (ALE) (OC3C/INT5) PE5 7 69 PJ6 (PCINT15) (T3/INT6) PE6 8 68 PJ5 (PCINT14) (CLKO/ICP3/INT7) PE7 9 67 PJ4 (PCINT13) VCC 10 66 PJ3 (PCINT12) GND 11 65 PJ2 (XCK3/PCINT11) (RXD2) PH0 12 64 PJ1 (TXD3/PCINT10) (TXD2) PH1 13 63 PJ0 (RXD3/PCINT9) (XCK2) PH2 14 62 GND (OC4A) PH3 15 61 VCC (OC4B) PH4 16 60 PC7 (A15) (OC4C) PH5 17 59 PC6 (A14) (OC2B) PH6 18 58 PC5 (A13) 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 (T1) PD6 31 (T0) PD7 30 (ICP1) PD4 29 (XCK1) PD5 28 (TXD1/INT3) PD3 27 (RXD1/INT2) PD2 26 (SDA/INT1) PD1 PG0 (WR) PL7 51 (SCL/INT0) PD0 25 PL6 (OC1B/PCINT6) PB6 (OC5C) PL5 PG1 (RD) (OC5A) PL3 PC0 (A8) 52 (OC5B) PL4 53 24 (T5) PL2 23 (OC1A/PCINT5) PB5 (ICP5) PL1 (OC2A/PCINT4) PB4 (ICP4) PL0 PC1 (A9) XTAL2 PC2 (A10) 54 XTAL1 55 22 VCC 21 (MISO/PCINT3) PB3 GND (MOSI/PCINT2) PB2 RESET PC3 (A11) (TOSC1) PG4 PC4 (A12) 56 (T4) PH7 57 20 (TOSC2) PG3 19 (OC0A/OC1C/PCINT7) PB7 (SS/PCINT0) PB0 (SCK/PCINT1) PB1 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 2 Figure 1-2. CBGA-pinout ATmega640/1280/2560 Top view 1 2 3 4 5 6 7 Bottom view 8 9 10 10 9 8 7 6 5 4 3 2 1 A A B B C C D D E E F F G G H H J J K K Table 1-1. CBGA-pinout ATmega640/1280/2560 1 2 3 4 5 6 7 8 9 10 A GND AREF PF0 PF2 PF5 PK0 PK3 PK6 GND VCC B AVCC PG5 PF1 PF3 PF6 PK1 PK4 PK7 PA0 PA2 C PE2 PE0 PE1 PF4 PF7 PK2 PK5 PJ7 PA1 PA3 D PE3 PE4 PE5 PE6 PH2 PA4 PA5 PA6 PA7 PG2 E PE7 PH0 PH1 PH3 PH5 PJ6 PJ5 PJ4 PJ3 PJ2 F VCC PH4 PH6 PB0 PL4 PD1 PJ1 PJ0 PC7 GND G GND PB1 PB2 PB5 PL2 PD0 PD5 PC5 PC6 VCC H PB3 PB4 RESET PL1 PL3 PL7 PD4 PC4 PC3 PC2 J PH7 PG3 PB6 PL0 XTAL2 PL6 PD3 PC1 PC0 PG1 K PB7 PG4 VCC GND XTAL1 PL5 PD2 PD6 PD7 PG0 Note: The functions for each pin is the same as for the 100 pin packages shown in Figure 1-1 on page 2. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 3 (OC0B) PG5 1 (RXD0/PCINT8/PDI) PE0 2 AVCC GND AREF PF0 (ADC0) PF1 (ADC1) PF2 (ADC2) PF3 (ADC3) PF4 (ADC4/TCK) PF5 (ADC5/TMS) PF6 (ADC6/TDO) PF7 (ADC7/TDI) GND VCC PA0 (AD0) PA1 (AD1) PA2 (AD2) 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Pinout ATmega1281/2561 64 Figure 1-3. INDEX CORNER 48 PA3 (AD3) 47 PA4 (AD4) 46 PA5 (AD5) 38 PC3 (A11) (MOSI/ PCINT2) PB2 12 37 PC2 (A10) (MISO/ PCINT3) PB3 13 36 PC1 (A9) (OC2A/ PCINT4) PB4 14 35 PC0 (A8) (OC1A/PCINT5) PB5 15 34 PG1 (RD) (OC1B/PCINT6) PB6 16 33 PG0 (WR) Note: 32 11 (T0) PD7 (SCK/ PCINT1) PB1 31 PC4 (A12) (T1) PD6 39 30 10 (XCK1) PD5 (SS/PCINT0) PB0 29 PC5 (A13) (ICP1) PD4 40 28 9 (TXD1/INT3) PD3 (ICP3/CLKO/INT7) PE7 27 PC6 (A14) (RXD1/INT2) PD2 41 26 8 (SDA/INT1) PD1 (T3/INT6) PE6 25 PC7 (A15) (SCL/INT0) PD0 42 24 7 XTAL1 (OC3C/INT5) PE5 23 PG2 (ALE) XTAL2 43 22 6 GND (OC3B/INT4) PE4 21 PA7 (AD7) VCC 44 20 5 RESET (OC3A/AIN1) PE3 19 PA6 (AD6) (TOSC1) PG4 45 18 4 (TOSC2) PG3 (XCK0/AIN0) PE2 17 3 (OC0A/OC1C/PCINT7) PB7 (TXD0/PDO) PE1 The large center pad underneath the QFN/MLF package is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 4 2. Overview The ATmega640/1280/1281/2560/2561 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega640/1280/1281/2560/2561 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. 2.1 Block Diagram Figure 2-1. Block Diagram PF7..0 PK7..0 PORT F (8) PORT K (8) PJ7..0 PE7..0 VCC Power Supervision POR/ BOD & RESET RESET PORT J (8) PORT E (8) Watchdog Timer GND Watchdog Oscillator Analog Comparator JTAG A/D Converter EEPROM Internal Bandgap reference USART 0 XTAL1 Oscillator Circuits / Clock Generation 16 bit T/C 3 USART 3 16 bit T/C 5 XTAL2 CPU PORT A (8) PA7..0 16 bit T/C 4 USART 1 PG5..0 PORT G (6) XRAM PC7..0 PORT C (8) TWI FLASH SPI SRAM 16 bit T/C 1 8 bit T/C 0 USART 2 8 bit T/C 2 NOTE: Shaded parts only available in the 100-pin version. Complete functionality for the ADC, T/C4, and T/C5 only available in the 100-pin version. PORT D (8) PORT B (8) PORT H (8) PORT L (8) PD7..0 PB7..0 PH7..0 PL7..0 (R) The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 5 The ATmega640/1280/1281/2560/2561 provides the following features: 64K/128K/256K bytes of In-System Programmable Flash with Read-While-Write capabilities, 4Kbytes EEPROM, 8Kbytes SRAM, 54/86 general purpose I/O lines, 32 general purpose working registers, Real Time Counter (RTC), six flexible Timer/Counters with compare modes and PWM, four USARTs, a byte oriented 2-wire Serial Interface, a 16-channel, 10-bit ADC with optional differential input stage with programmable gain, programmable Watchdog Timer with Internal Oscillator, an SPI serial port, IEEE(R) std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug system and programming and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run. Microchip offers the QTouch(R) library for embedding capacitive touch buttons, sliders and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offersrobust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression(R) (AKS(R)) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your own touch applications. The device is manufactured using the Microchip high-density nonvolatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true ReadWhile-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the ATmega640/1280/1281/2560/2561 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The ATmega640/1280/1281/2560/2561 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 6 2.2 Comparison Between ATmega1281/2561 and ATmega640/1280/2560 Each device in the ATmega640/1280/1281/2560/2561 family differs only in memory size and number of pins. Table 2-1 summarizes the different configurations for the six devices. Table 2-1. 2.3 2.3.1 Configuration Summary Device Flash EEPROM RAM General Purpose I/O pins 16 bits resolution PWM channels Serial USARTs ADC Channels ATmega640 64KB 4KB 8KB 86 12 4 16 ATmega1280 128KB 4KB 8KB 86 12 4 16 ATmega1281 128KB 4KB 8KB 54 6 2 8 ATmega2560 256KB 4KB 8KB 86 12 4 16 ATmega2561 256KB 4KB 8KB 54 6 2 8 Pin Descriptions VCC Digital supply voltage. 2.3.2 GND Ground. 2.3.3 Port A (PA7..PA0) Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port A also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 75. 2.3.4 Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B has better driving capabilities than the other ports. Port B also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 76. 2.3.5 Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port C also serves the functions of special features of the ATmega640/1280/1281/2560/2561 as listed on page 79. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 7 2.3.6 Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port D also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 80. 2.3.7 Port E (PE7..PE0) Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port E also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 82. 2.3.8 Port F (PF7..PF0) Port F serves as analog inputs to the A/D Converter. Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs. Port F also serves the functions of the JTAG interface. 2.3.9 Port G (PG5..PG0) Port G is a 6-bit I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port G also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 86. 2.3.10 Port H (PH7..PH0) Port H is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port H output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port H pins that are externally pulled low will source current if the pull-up resistors are activated. The Port H pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port H also serves the functions of various special features of the ATmega640/1280/2560 as listed on page 88. 2.3.11 Port J (PJ7..PJ0) Port J is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port J output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port J pins that are externally pulled low will source current if the pull-up resistors are activated. The Port J pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port J also serves the functions of various special features of the ATmega640/1280/2560 as listed on page 90. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 8 2.3.12 Port K (PK7..PK0) Port K serves as analog inputs to the A/D Converter. Port K is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port K output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port K pins that are externally pulled low will source current if the pull-up resistors are activated. The Port K pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port K also serves the functions of various special features of the ATmega640/1280/2560 as listed on page 92. 2.3.13 Port L (PL7..PL0) Port L is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port L output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port L pins that are externally pulled low will source current if the pull-up resistors are activated. The Port L pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port L also serves the functions of various special features of the ATmega640/1280/2560 as listed on page 94. 2.3.14 RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in "System and Reset Characteristics" on page 360. Shorter pulses are not guaranteed to generate a reset. 2.3.15 XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit. 2.3.16 XTAL2 Output from the inverting Oscillator amplifier. 2.3.17 AVCC AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. 2.3.18 AREF This is the analog reference pin for the A/D Converter. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 9 3. Resources A comprehensive set of development tools and application notes, and datasheets are available for download on http://www.atmel.com/avr. 4. About Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Confirm with the C compiler documentation for more details. These code examples assume that the part specific header file is included before compilation. For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR". 5. Data Retention Reliability Qualification results show that the projected data retention failure rate is much less than 1 ppm over 20 years at 85C or 100 years at 25C. 6. Capacitive touch sensing The QTouch(R) Library provides a simple to use solution to realize touch sensitive interfaces on most AVR(R) microcontrollers. The QTouch Library includes support for the QTouch and QMatrix acquisition methods. Touch sensing can be added to any application by linking the appropriate QTouch Library for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing API's to retrieve the channel information and determine the touch sensor states. The QTouch Library is FREE and downloadable from the Microchip website at the following location: www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the QTouch Library User Guide - also available for download from the Microchip website. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 10 7. AVR CPU Core 7.1 Introduction This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and handle interrupts. Architectural Overview Figure 7-1. Block Diagram of the AVR Architecture Data Bus 8-bit Flash Program Memory Program Counter Status and Control 32 x 8 General Purpose Registers Instruction Register Control Lines Indirect Addressing Instruction Decoder Direct Addressing 7.2 Interrupt Unit SPI Unit Watchdog Timer ALU Analog Comparator I/O Module1 Data SRAM I/O Module 2 I/O Module n EEPROM I/O Lines In order to maximize performance and parallelism, the AVR uses a Harvard architecture - with separate memories and buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable Flash memory. The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two oper- ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 11 ands are output from the Register File, the operation is executed, and the result is stored back in the Register File - in one clock cycle. Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing - enabling efficient address calculations. One of the these address pointers can also be used as an address pointer for look up tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section. The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect information about the result of the operation. Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16-bit or 32-bit instruction. Program Flash memory space is divided in two sections, the Boot Program section and the Application Program section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes into the Application Flash memory section must reside in the Boot Program section. During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture. The memory spaces in the AVR architecture are all linear and regular memory maps. A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority. The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the Register File, 0x20 - 0x5F. In addition, the ATmega640/1280/1281/2560/2561 has Extended I/O space from 0x60 0x1FF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used. 7.3 ALU - Arithmetic Logic Unit The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. The ALU operations are divided into three main categories - arithmetic, logical, and bitfunctions. Some implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See the "Instruction Set Summary" on page 404 for a detailed description. 7.4 Status Register The Status Register contains information about the result of the most recently executed arithmetic instruction. This information can be used for altering program flow in order to perform conditional operations. Note that the Status Register is updated after all ALU operations, as specified in the "Instruction Set Summary" on page 404. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code. The Status Register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt. This must be handled by software. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 12 7.4.1 SREG - AVR Status Register The AVR Status Register - SREG - is defined as: Bit 7 6 5 4 3 2 1 0 0x3F (0x5F) I T H S V N Z C Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 SREG * Bit 7 - I: Global Interrupt Enable The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the "Instruction Set Summary" on page 404. * Bit 6 - T: Bit Copy Storage The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the BLD instruction. * Bit 5 - H: Half Carry Flag The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful in BCD arithmetic. See the "Instruction Set Summary" on page 404 for detailed information. * Bit 4 - S: Sign Bit, S = N V The S-bit is always an exclusive or between the Negative Flag N and the Two's Complement Overflow Flag V. See the "Instruction Set Summary" on page 404 for detailed information. * Bit 3 - V: Two's Complement Overflow Flag The Two's Complement Overflow Flag V supports two's complement arithmetics. See the "Instruction Set Summary" on page 404 for detailed information. * Bit 2 - N: Negative Flag The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the "Instruction Set Summary" on page 404 for detailed information. * Bit 1 - Z: Zero Flag The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the "Instruction Set Summary" on page 404 for detailed information. * Bit 0 - C: Carry Flag The Carry Flag C indicates a carry in an arithmetic or logic operation. See the "Instruction Set Summary" on page 404 for detailed information. 7.5 General Purpose Register File The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required performance and flexibility, the following input/output schemes are supported by the Register File: * One 8-bit output operand and one 8-bit result input * Two 8-bit output operands and one 8-bit result input ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 13 * Two 8-bit output operands and one 16-bit result input * One 16-bit output operand and one 16-bit result input Figure 7-2 shows the structure of the 32 general purpose working registers in the CPU. Figure 7-2. AVR CPU General Purpose Working Registers 7 0 Addr. R0 0x00 R1 0x01 R2 0x02 ... R13 0x0D General R14 0x0E Purpose R15 0x0F Working R16 0x10 Registers R17 0x11 ... R26 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte R31 0x1F Z-register High Byte Most of the instructions operating on the Register File have direct access to all registers, and most of them are single cycle instructions. As shown in Figure 7-2, each register is also assigned a data memory address, mapping them directly into the first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory organization provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file. 7.5.1 The X-register, Y-register, and Z-register The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described in Figure 7-3. Figure 7-3. The X-, Y-, and Z-registers 15 X-register XH 7 XL 0 R27 (0x1B) 15 Y-register YH 7 YL 0 0 7 0 R28 (0x1C) 15 ZH 7 0 R31 (0x1F) 0 R26 (0x1A) R29 (0x1D) Z-register 0 7 ZL 7 0 0 R30 (0x1E) In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and automatic decrement (see the "Instruction Set Summary" on page 404 for details). ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 14 7.6 Stack Pointer The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after interrupts and subroutine calls. The Stack Pointer Register always points to the top of the Stack. Note that the Stack is implemented as growing from higher memory locations to lower memory locations. This implies that a Stack PUSH command decreases the Stack Pointer. The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. This Stack space in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to point above 0x0200. The initial value of the stack pointer is the last address of the internal SRAM. The Stack Pointer is decremented by one when data is pushed onto the Stack with the PUSH instruction, and it is decremented by two for ATmega640/1280/1281 and three for ATmega2560/2561 when the return address is pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is popped from the Stack with the POP instruction, and it is incremented by two for ATmega640/1280/1281 and three for ATmega2560/2561 when data is popped from the Stack with return from subroutine RET or return from interrupt RETI. The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register will not be present. Bit 15 14 13 12 11 10 9 8 0x3E (0x5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH 0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 Read/Write Initial Value ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 15 7.6.1 RAMPZ - Extended Z-pointer Register for ELPM/SPM Bit 7 6 5 4 3 2 1 0 0x3B (0x5B) RAMPZ7 RAMPZ6 RAMPZ5 RAMPZ4 RAMPZ3 RAMPZ2 RAMPZ1 RAMPZ0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 RAMPZ For ELPM/SPM instructions, the Z-pointer is a concatenation of RAMPZ, ZH, and ZL, as shown in Figure 7-4. Note that LPM is not affected by the RAMPZ setting. Figure 7-4. The Z-pointer used by ELPM and SPM Bit (Individually) 7 Bit (Z-pointer) 23 0 7 16 15 RAMPZ 0 7 8 7 0 ZH ZL 0 The actual number of bits is implementation dependent. Unused bits in an implementation will always read as zero. For compatibility with future devices, be sure to write these bits to zero. 7.6.2 EIND - Extended Indirect Register Bit 7 6 5 4 3 2 1 0 EIND7 EIND6 EIND5 EIND4 EIND3 EIND2 EIND1 EIND0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 0x3C (0x5C) EIND For EICALL/EIJMP instructions, the Indirect-pointer to the subroutine/routine is a concatenation of EIND, ZH, and ZL, as shown in Figure 7-5. Note that ICALL and IJMP are not affected by the EIND setting. Figure 7-5. The Indirect-pointer used by EICALL and EIJMP Bit (Individually) 7 Bit (Indirectpointer) 23 0 7 16 15 EIND 0 7 8 7 ZH 0 ZL 0 The actual number of bits is implementation dependent. Unused bits in an implementation will always read as zero. For compatibility with future devices, be sure to write these bits to zero. 7.7 Instruction Execution Timing This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used. Figure 7-6 on page 17 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 16 Figure 7-6. The Parallel Instruction Fetches and Instruction Executions T1 T2 T3 T4 clkCPU 1st Instruction Fetch 1st Instruction Execute 2nd Instruction Fetch 2nd Instruction Execute 3rd Instruction Fetch 3rd Instruction Execute 4th Instruction Fetch Figure 7-7 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register operands is executed, and the result is stored back to the destination register. Figure 7-7. Single Cycle ALU Operation T1 T2 T3 T4 clkCPU Total Execution Time Register Operands Fetch ALU Operation Execute Result Write Back 7.8 Reset and Interrupt Handling The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each have a separate program vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software security. See the section "Memory Programming" on page 325 for details. The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors. The complete list of vectors is shown in "Interrupts" on page 101. The list also determines the priority levels of the different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is INT0 - the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR). Refer to "Interrupts" on page 101 for more information. The Reset Vector can also be moved to the start of the Boot Flash section by programming the BOOTRST Fuse, see "Memory Programming" on page 325. When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction - RETI - is executed. There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 17 flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the Global Interrupt Enable bit is set, and will then be executed by order of priority. The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served. Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when returning from an interrupt routine. This must be handled by software. When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can be used to avoid interrupts during the timed EEPROM write sequence. Assembly Code Example in r16, SREG cli ; store SREG value ; disable interrupts during timed sequence sbi EECR, EEMPE ; start EEPROM write sbi EECR, EEPE out SREG, r16 ; restore SREG value (I-bit) C Code Example char cSREG; cSREG = SREG; /* store SREG value */ /* disable interrupts during timed sequence */ __disable_interrupt(); EECR |= (1< ; 0x007 2 ... RESET : ... ; Enable interrupts xxx .. . ... When the BOOTRST Fuse is unprogrammed, the Boot section size set to 8Kbytes and the IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general program setup for the Reset and Interrupt Vector Addresses is: Address Labels Code Comments 0x00000 RESET: ldi r16,high(RAMEND); Main program start 0x00001 out SPH,r16 0x00002 ldi r16,low(RAMEND) 0x00003 0x00004 out sei SPL,r16 0x00005 ; Set Stack Pointer to top of RAM ; Enable interrupts xxx ; .org 0x1F002 0x1F002 jmp EXT_INT0 ; IRQ0 Handler 0x1F004 jmp EXT_INT1 ; IRQ1 Handler ... ... ... ; 0x1FO70 jmp USART3_TXC ; USART3 TX Complete Handler ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 105 When the BOOTRST Fuse is programmed and the Boot section size set to 8Kbytes, the most typical and general program setup for the Reset and Interrupt Vector Addresses is: Address Labels Code Comments .org 0x0002 0x00002 jmp EXT_INT0 ; IRQ0 Handler 0x00004 jmp EXT_INT1 ; IRQ1 Handler ... ... ... ; 0x00070 jmp USART3_TXC ; USART3 TX Complete Handler ; .org 0x1F000 0x1F000 RESET: ldi r16,high(RAMEND); Main program start 0x1F001 out SPH,r16 0x1F002 ldi r16,low(RAMEND) 0x1F003 0x1F004 out sei SPL,r16 0x1F005 ; Set Stack Pointer to top of RAM ; Enable interrupts xxx When the BOOTRST Fuse is programmed, the Boot section size set to 8Kbytes and the IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general program setup for the Reset and Interrupt Vector Addresses is: Address Labels Code Comments ; .org 0x1F000 0x1F000 0x1F002 jmp jmp RESET EXT_INT0 ; Reset handler ; IRQ0 Handler 0x1F004 jmp EXT_INT1 ; IRQ1 Handler ... ... ... ; 0x1F070 jmp USART3_TXC ; USART3 TX Complete Handler ; 0x1F072 RESET: ldi 0x1F073 out r16,high(RAMEND) ; Main program start SPH,r16 0x1F074 ldi r16,low(RAMEND) 0x1F075 0x1F076 out sei SPL,r16 0x1FO77 ; Set Stack Pointer to top of RAM ; Enable interrupts xxx ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 106 14.3 Moving Interrupts Between Application and Boot Section The MCU Control Register controls the placement of the Interrupt Vector table, see Code Example below. For more details, see "Reset and Interrupt Handling" on page 17. Assembly Code Example Move_interrupts: ; Get MCUCR in r16, MCUCR mov r17, r16 ; Enable change of Interrupt Vectors ori r16, (1< CSn2:0 > 1). The number of system clock cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024). It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execution. However, care must be taken if the other Timer/Counter that shares the same prescaler also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is connected to. 18.3 External Clock Source An external clock source applied to the Tn pin can be used as Timer/Counter clock (clkTn). The Tn pin is sampled once every system clock cycle by the pin synchronization logic. The synchronized (sampled) signal is then passed through the edge detector. Figure 18-1 shows a functional equivalent block diagram of the Tn synchronization and edge detector logic. The registers are clocked at the positive edge of the internal system clock (clkI/O). The latch is transparent in the high period of the internal system clock. The edge detector generates one clkTn pulse for each positive (CSn2:0 = 7) or negative (CSn2:0 = 6) edge it detects. Figure 18-1. Tn/T0 Pin Sampling Tn D Q D Q D Tn_sync (To Clock Select Logic) Q LE clk I/O Synchronization Edge Detector The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles from an edge has been applied to the Tn pin to the counter is updated. Enabling and disabling of the clock input must be done when Tn has been stable for at least one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 164 Each half period of the external clock applied must be longer than one system clock cycle to ensure correct sampling. The external clock must be guaranteed to have less than half the system clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since the edge detector uses sampling, the maximum frequency of an external clock it can detect is half the sampling frequency (Nyquist sampling theorem). However, due to variation of the system clock frequency and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5. An external clock source can not be prescaled. Figure 18-2. Prescaler for synchronous Timer/Counters clk I/O Clear PSR10 Tn Synchronization Tn Synchronization CSn0 CSn0 CSn1 CSn1 CSn2 CSn2 TIMER/COUNTERn CLOCK SOURCE clkTn TIMER/COUNTERn CLOCK SOURCE clkTn ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 165 18.4 Register Description 18.4.1 GTCCR - General Timer/Counter Control Register Bit 7 6 5 4 3 2 1 0 0x23 (0x43) TSM - - - - - PSRASY PSRSYNC Read/Write R/W R R R R R R/W R/W Initial Value 0 0 0 0 0 0 0 0 GTCCR * Bit 7 - TSM: Timer/Counter Synchronization Mode Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the value that is written to the PSRASY and PSRSYNC bits is kept, hence keeping the corresponding prescaler reset signals asserted. This ensures that the corresponding Timer/Counters are halted and can be configured to the same value without the risk of one of them advancing during configuration. When the TSM bit is written to zero, the PSRASY and PSRSYNC bits are cleared by hardware, and the Timer/Counters start counting simultaneously. * Bit 0 - PSRSYNC: Prescaler Reset for Synchronous Timer/Counters When this bit is one, Timer/Counter0, Timer/Counter1, Timer/Counter3, Timer/Counter4 and Timer/Counter5 prescaler will be Reset. This bit is normally cleared immediately by hardware, except if the TSM bit is set. Note that Timer/Counter0, Timer/Counter1, Timer/Counter3, Timer/Counter4 and Timer/Counter5 share the same prescaler and a reset of this prescaler will affect all timers. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 166 19. Output Compare Modulator (OCM1C0A) 19.1 Overview The Output Compare Modulator (OCM) allows generation of waveforms modulated with a carrier frequency. The modulator uses the outputs from the Output Compare Unit C of the 16-bit Timer/Counter1 and the Output Compare Unit of the 8-bit Timer/Counter0. For more details about these Timer/Counters see "Timer/Counter 0, 1, 3, 4, and 5 Prescaler" on page 164 and "8-bit Timer/Counter2 with PWM and Asynchronous Operation" on page 169. Figure 19-1. Output Compare Modulator, Block Diagram Timer/Counter 1 OC1C Pin Timer/Counter 0 OC1C / OC0A / PB7 OC0A When the modulator is enabled, the two output compare channels are modulated together as shown in the block diagram (see Figure 19-1). 19.2 Description The Output Compare unit 1C and Output Compare unit 2 shares the PB7 port pin for output. The outputs of the Output Compare units (OC1C and OC0A) overrides the normal PORTB7 Register when one of them is enabled (that is, when COMnx1:0 is not equal to zero). When both OC1C and OC0A are enabled at the same time, the modulator is automatically enabled. The functional equivalent schematic of the modulator is shown on Figure 19-2. The schematic includes part of the Timer/Counter units and the port B pin 7 output driver circuit. Figure 19-2. Output Compare Modulator, Schematic COMA01 COMA00 Vcc COM1C1 COM1C0 ( From Waveform Generator ) Modulator 0 D 1 Q 1 OC1C ( From Waveform Generator ) D Pin 0 Q OC1C / OC0A/ PB7 OC0A D Q PORTB7 D DATABUS Q DDRB7 When the modulator is enabled the type of modulation (logical AND or OR) can be selected by the PORTB7 Register. Note that the DDRB7 controls the direction of the port independent of the COMnx1:0 bit setting. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 167 19.2.1 Timing example Figure 19-3 illustrates the modulator in action. In this example the Timer/Counter1 is set to operate in fast PWM mode (non-inverted) and Timer/Counter0 uses CTC waveform mode with toggle Compare Output mode (COMnx1:0 = 1). Figure 19-3. Output Compare Modulator, Timing Diagram clk I/O OC1C (FPWM Mode) OC0A (CTC Mode) PB7 (PORTB7 = 0) PB7 (PORTB7 = 1) (Period) 1 2 3 In this example, Timer/Counter2 provides the carrier, while the modulating signal is generated by the Output Compare unit C of the Timer/Counter1. The resolution of the PWM signal (OC1C) is reduced by the modulation. The reduction factor is equal to the number of system clock cycles of one period of the carrier (OC0A). In this example the resolution is reduced by a factor of two. The reason for the reduction is illustrated in Figure 19-3 at the second and third period of the PB7 output when PORTB7 equals zero. The period 2 high time is one cycle longer than the period 3 high time, but the result on the PB7 output is equal in both periods. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 168 20. 8-bit Timer/Counter2 with PWM and Asynchronous Operation Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. The main features are: * * * * * * * Overview A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 17-12 on page 153 For the actual placement of I/O pins, see "Pin Configurations" on page 2. CPU accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are listed in the "Register Description" on page 182. The Power Reduction Timer/Counter2 bit, PRTIM2, in "PRR0 - Power Reduction Register 0" on page 55 must be written to zero to enable Timer/Counter2 module. Figure 20-1. 8-bit Timer/Counter Block Diagram Count TOVn (Int.Req.) Clear Direction Control Logic clkTn TOSC1 T/C Oscillator TOP BOTTOM TOSC2 Prescaler clkI/O Timer/Counter TCNTn = =0 OCnA (Int.Req.) Waveform Generation = OCnA OCRnA Fixed TOP Value DATA BUS 20.1 Single Channel Counter Clear Timer on Compare Match (Auto Reload) Glitch-free, Phase Correct Pulse Width Modulator (PWM) Frequency Generator 10-bit Clock Prescaler Overflow and Compare Match Interrupt Sources (TOV2, OCF2A and OCF2B) Allows Clocking from External 32kHz Watch Crystal Independent of the I/O Clock Waveform Generation = OCRnB OCnB (Int.Req.) Synchronized Status flags Synchronization Unit OCnB clkI/O clkASY Status flags ASSRn TCCRnA asynchronous mode select (ASn) TCCRnB ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 169 20.1.1 Registers The Timer/Counter (TCNT2) and Output Compare Register (OCR2A and OCR2B) are 8-bit registers. Interrupt request (abbreviated to Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK2). TIFR2 and TIMSK2 are not shown in the figure. The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source is selected. The output from the Clock Select logic is referred to as the timer clock (clkT2). The double buffered Output Compare Register (OCR2A and OCR2B) are compared with the Timer/Counter value at all times. The result of the compare can be used by the Waveform Generator to generate a PWM or variable frequency output on the Output Compare pins (OC2A and OC2B). See "Output Compare Unit" on page 175 for details. The compare match event will also set the Compare Flag (OCF2A or OCF2B) which can be used to generate an Output Compare interrupt request. 20.1.2 Definitions Many register and bit references in this document are written in general form. A lower case "n" replaces the Timer/Counter number, in this case 2. However, when using the register or bit defines in a program, the precise form must be used, that is, TCNT2 for accessing Timer/Counter2 counter value and so on. The definitions in Table 20-1 are also used extensively throughout the section. Table 20-1. 20.2 Definitions BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00) MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255) TOP The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX) or the value stored in the OCR2A Register. The assignment is dependent on the mode of operation Timer/Counter Clock Sources The Timer/Counter can be clocked by an internal synchronous or an external asynchronous clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O. When the AS2 bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see "Asynchronous Operation of Timer/Counter2" on page 179. For details on clock sources and prescaler, see "Timer/Counter Prescaler" on page 180. 20.3 Counter Unit The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 20-2 on page 171 shows a block diagram of the counter and its surrounding environment. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 170 Figure 20-2. Counter Unit Block Diagram TOVn (Int.Req.) DATA BUS TOSC1 count clear TCNTn clk Tn Control Logic Prescaler T/C Oscillator direction TOSC2 bottom top clkI/O Signal description (internal signals): count Increment or decrement TCNT2 by 1. direction Selects between increment and decrement. clear Clear TCNT2 (set all bits to zero). clkTn Timer/Counter clock, referred to as clkT2 in the following. top Signalizes that TCNT2 has reached maximum value. bottom Signalizes that TCNT2 has reached minimum value (zero). Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock (clkT2). clkT2 can be generated from an external or internal clock source, selected by the Clock Select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of whether clkT2 is present or not. A CPU write overrides (has priority over) all counter clear or count operations. The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in the Timer/Counter Control Register (TCCR2A) and the WGM22 located in the Timer/Counter Control Register B (TCCR2B). There are close connections between how the counter behaves (counts) and how waveforms are generated on the Output Compare outputs OC2A and OC2B. For more details about advanced counting sequences and waveform generation, see "Modes of Operation" . The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by the WGM22:0 bits. TOV2 can be used for generating a CPU interrupt. 20.4 Modes of Operation The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins, is defined by the combination of the Waveform Generation mode (WGM22:0) and Compare Output mode (COM2x1:0) bits. The Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do. The COM2x1:0 bits control whether the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COM2x1:0 bits control whether the output should be set, cleared, or toggled at a compare match. See "Compare Match Output Unit" on page 176. For detailed timing information refer to "Timer/Counter Timing Diagrams" on page 177. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 171 20.4.1 Normal Mode The simplest mode of operation is the Normal mode (WGM22:0 = 0). In this mode the counting direction is always up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8bit value (TOP = 0xFF) and then restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case behaves like a ninth bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOV2 Flag, the timer resolution can be increased by software. There are no special cases to consider in the Normal mode, a new counter value can be written anytime. The Output Compare unit can be used to generate interrupts at some given time. Using the Output Compare to generate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time. 20.4.2 Clear Timer on Compare Match (CTC) Mode In Clear Timer on Compare or CTC mode (WGM22:0 = 2), the OCR2A Register is used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter, hence also its resolution. This mode allows greater control of the compare match output frequency. It also simplifies the operation of counting external events. The timing diagram for the CTC mode is shown in Figure 20-3. The counter value (TCNT2) increases until a compare match occurs between TCNT2 and OCR2A, and then counter (TCNT2) is cleared. Figure 20-3. CTC Mode, Timing Diagram OCnx Interrupt Flag Set TCNTn OCnx (Toggle) Period (COMnx1:0 = 1) 1 2 3 4 An interrupt can be generated each time the counter value reaches the TOP value by using the OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing TOP to a value close to BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC mode does not have the double buffering feature. If the new value written to OCR2A is lower than the current value of TCNT2, the counter will miss the compare match. The counter will then have to count to its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can occur. For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical level on each compare match by setting the Compare Output mode bits to toggle mode (COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the data direction for the pin is set to output. The waveform generated will have a maximum frequency of fOC2A = fclk_I/O/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following equation: f clk_I/O f OCnx = ------------------------------------------------2 N 1 + OCRnx The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024). As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the counter counts from MAX to 0x00. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 172 20.4.3 Fast PWM Mode Figure 20-4. Fast PWM Mode, Timing Diagram OCRnx Interrupt Flag Set OCRnx Update and TOVn Interrupt Flag Set TCNTn OCnx (COMnx1:0 = 2) OCnx (COMnx1:0 = 3) Period 1 2 3 4 5 6 7 The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches TOP. If the interrupt is enabled, the interrupt handler routine can be used for updating the compare value. In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when WGM2:0 = 7 (see Table 20-3 on page 182). The actual OC2x value will only be visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OC2x Register at the compare match between OCR2x and TCNT2, and clearing (or setting) the OC2x Register at the timer clock cycle the counter is cleared (changes from TOP to BOTTOM). The PWM frequency for the output can be calculated by the following equation: f clk_I/O f OCnxPWM = ----------------N 256 The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024). The extreme values for the OCR2A Register represent special cases when generating a PWM waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will result in a constantly high or low output (depending on the polarity of the output set by the COM2A1:0 bits). A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC2x to toggle its logical level on each compare match (COM2x1:0 = 1). The waveform generated will have a maximum frequency of foc2 = fclk_I/O/2 when OCR2A is set to zero. This feature is similar to the OC2A toggle in CTC mode, except the double buffer feature of the Output Compare unit is enabled in the fast PWM mode. 20.4.4 Phase Correct PWM Mode The phase correct PWM mode (WGM22:0 = 1 or 5) provides a high resolution phase correct PWM waveform generation option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOTTOM. TOP is defined as 0xFF when WGM22:0 = 1, and OCR2A when MGM22:0 = 5. In non-inverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare match between TCNT2 and OCR2x while upcounting, and set on the compare match while downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has lower maximum operation ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 173 frequency than single slope operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control applications. In phase correct PWM mode the counter is incremented until the counter value matches TOP. When the counter reaches TOP, it changes the count direction. The TCNT2 value will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 20-5. The TCNT2 value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2x and TCNT2. Figure 20-5. Phase Correct PWM Mode, Timing Diagram OCnx Interrupt Flag Set OCRnx Update TOVn Interrupt Flag Set TCNTn OCnx (COMnx1:0 = 2) OCnx (COMnx1:0 = 3) Period 1 2 3 The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM value. In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM. An inverted PWM output can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7 (see Table 20-4 on page 183). The actual OC2x value will only be visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is generated by clearing (or setting) the OC2x Register at the compare match between OCR2x and TCNT2 when the counter increments, and setting (or clearing) the OC2x Register at compare match between OCR2x and TCNT2 when the counter decrements. The PWM frequency for the output when using phase correct PWM can be calculated by the following equation: f clk_I/O f OCnxPCPWM = ----------------N 510 The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024). The extreme values for the OCR2A Register represent special cases when generating a PWM waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the output will be continuously low and if set equal to MAX the output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 174 At the very start of period 2 in Figure 20-5 on page 174 OCnx has a transition from high to low even though there is no Compare Match. The point of this transition is to guarantee symmetry around BOTTOM. There are two cases that give a transition without Compare Match. 20.5 * OCR2A changes its value from MAX, like in Figure 20-5 on page 174. When the OCR2A value is MAX the OCn pin value is the same as the result of a down-counting compare match. To ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-counting Compare Match. * The timer starts counting from a value higher than the one in OCR2A, and for that reason misses the Compare Match and hence the OCn change that would have happened on the way up. Output Compare Unit The 8-bit comparator continuously compares TCNT2 with the Output Compare Register (OCR2A and OCR2B). Whenever TCNT2 equals OCR2A or OCR2B, the comparator signals a match. A match will set the Output Compare Flag (OCF2A or OCF2B) at the next timer clock cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is executed. Alternatively, the Output Compare Flag can be cleared by software by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to generate an output according to operating mode set by the WGM22:0 bits and Compare Output mode (COM2x1:0) bits. The max and bottom signals are used by the Waveform Generator for handling the special cases of the extreme values in some modes of operation (see "Modes of Operation" on page 171). Figure 20-6 shows a block diagram of the Output Compare unit. Figure 20-6. Output Compare Unit, Block Diagram DATA BUS OCRnx TCNTn = (8-bit Comparator ) OCFnx (Int.Req.) top bottom Waveform Generator OCnx FOCn WGMn1:0 COMnX1:0 The OCR2x Register is double buffered when using any of the Pulse Width Modulation (PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the update of the OCR2x Compare Register to either top or bottom of the counting sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free. The OCR2x Register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has access to the OCR2x Buffer Register, and if double buffering is disabled the CPU will access the OCR2x directly. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 175 20.5.1 Force Output Compare In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the Force Output Compare (FOC2x) bit. Forcing compare match will not set the OCF2x Flag or reload/clear the timer, but the OC2x pin will be updated as if a real compare match had occurred (the COM2x1:0 bits settings define whether the OC2x pin is set, cleared or toggled). 20.5.2 Compare Match Blocking by TCNT2 Write All CPU write operations to the TCNT2 Register will block any compare match that occurs in the next timer clock cycle, even when the timer is stopped. This feature allows OCR2x to be initialized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is enabled. 20.5.3 Using the Output Compare Unit Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock cycle, there are risks involved when changing TCNT2 when using the Output Compare channel, independently of whether the Timer/Counter is running or not. If the value written to TCNT2 equals the OCR2x value, the compare match will be missed, resulting in incorrect waveform generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is downcounting. The setup of the OC2x should be performed before setting the Data Direction Register for the port pin to output. The easiest way of setting the OC2x value is to use the Force Output Compare (FOC2x) strobe bit in Normal mode. The OC2x Register keeps its value even when changing between Waveform Generation modes. Be aware that the COM2x1:0 bits are not double buffered together with the compare value. Changing the COM2x1:0 bits will take effect immediately. 20.6 Compare Match Output Unit The Compare Output mode (COM2x1:0) bits have two functions. The Waveform Generator uses the COM2x1:0 bits for defining the Output Compare (OC2x) state at the next compare match. Also, the COM2x1:0 bits control the OC2x pin output source. Figure 20-7 on page 177 shows a simplified schematic of the logic affected by the COM2x1:0 bit setting. The I/O Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers (DDR and PORT) that are affected by the COM2x1:0 bits are shown. When referring to the OC2x state, the reference is for the internal OC2x Register, not the OC2x pin. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 176 Figure 20-7. Compare Match Output Unit, Schematic COMnx1 COMnx0 FOCnx Waveform Generator D Q 1 OCnx DATA BUS D 0 OCnx Pin Q PORT D Q DDR clk I/O The general I/O port function is overridden by the Output Compare (OC2x) from the Waveform Generator if either of the COM2x1:0 bits are set. However, the OC2x pin direction (input or output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OC2x pin (DDR_OC2x) must be set as output before the OC2x value is visible on the pin. The port override function is independent of the Waveform Generation mode. The design of the Output Compare pin logic allows initialization of the OC2x state before the output is enabled. Note that some COM2x1:0 bit settings are reserved for certain modes of operation. See "Register Description" on page 182. 20.6.1 Compare Output Mode and Waveform Generation The Waveform Generator uses the COM2x1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the COM2x1:0 = 0 tells the Waveform Generator that no action on the OC2x Register is to be performed on the next compare match. For compare output actions in the non-PWM modes refer to Table 20-5 on page 183. For fast PWM mode, refer to Table 20-6 on page 183, and for phase correct PWM refer to Table 20-7 on page 184. A change of the COM2x1:0 bits state will have effect at the first compare match after the bits are written. For nonPWM modes, the action can be forced to have immediate effect by using the FOC2x strobe bits. 20.7 Timer/Counter Timing Diagrams The following figures show the Timer/Counter in synchronous mode, and the timer clock (clkT2) is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should be replaced by the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are set. Figure 20-8 on page 178 contains timing data for basic Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes other than phase correct PWM mode. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 177 Figure 20-8. Timer/Counter Timing Diagram, no Prescaling clkI/O clkTn (clkI/O /1) TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1 TOVn Figure 20-9 shows the same timing data, but with the prescaler enabled. Figure 20-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8) clkI/O clkTn (clkI/O /8) TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1 TOVn Figure 20-10 shows the setting of OCF2A in all modes except CTC mode. Figure 20-10. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler (fclk_I/O/8) clkI/O clkTn (clkI/O /8) TCNTn OCRnx OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2 OCRnx Value OCFnx ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 178 Figure 20-11 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode. Figure 20-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Prescaler (fclk_I/O/8) clkI/O clkTn (clkI/O /8) TCNTn (CTC) TOP - 1 TOP OCRnx BOTTOM BOTTOM + 1 TOP OCFnx 20.8 Asynchronous Operation of Timer/Counter2 When Timer/Counter2 operates asynchronously, some considerations must be taken. * Warning: When switching between asynchronous and synchronous clocking of Timer/Counter2, the Timer Registers TCNT2, OCR2x, and TCCR2x might be corrupted. A safe procedure for switching clock source is: 1. Disable the Timer/Counter2 interrupts by clearing OCIE2x and TOIE2. 2. Select clock source by setting AS2 as appropriate. 3. Write new values to TCNT2, OCR2x, and TCCR2x. 4. To switch to asynchronous operation: Wait for TCN2UB, OCR2xUB, and TCR2xUB. 5. Clear the Timer/Counter2 Interrupt Flags. 6. Enable interrupts, if needed. * The CPU main clock frequency must be more than four times the Oscillator frequency. * When writing to one of the registers TCNT2, OCR2x, or TCCR2x, the value is transferred to a temporary register, and latched after two positive edges on TOSC1. The user should not write a new value before the contents of the temporary register have been transferred to its destination. Each of the five mentioned registers have their individual temporary register, which means that, for example, writing to TCNT2 does not disturb an OCR2x write in progress. To detect that a transfer to the destination register has taken place, the Asynchronous Status Register - ASSR has been implemented. * When entering Power-save or ADC Noise Reduction mode after having written to TCNT2, OCR2x, or TCCR2x, the user must wait until the written register has been updated if Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode before the changes are effective. This is particularly important if any of the Output Compare2 interrupt is used to wake up the device, since the Output Compare function is disabled during writing to OCR2x or TCNT2. If the write cycle is not finished, and the MCU enters sleep mode before the corresponding OCR2xUB bit returns to zero, the device will never receive a compare match interrupt, and the MCU will not wake up. * If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise Reduction mode, precautions must be taken if the user wants to re-enter one of these modes: The interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and re-entering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the device will fail to wake up. If the user is in doubt whether the time before re-entering Power-save or ADC Noise Reduction mode is sufficient, the following algorithm can be used to ensure that one TOSC1 cycle has elapsed: ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 179 1. Write a value to TCCR2x, TCNT2, or OCR2x. 2. Wait until the corresponding Update Busy Flag in ASSR returns to zero. 3. Enter Power-save or ADC Noise Reduction mode. * When the asynchronous operation is selected, the 32.768kHz Oscillator for Timer/Counter2 is always running, except in Power-down and Standby modes. After a Power-up Reset or wake-up from Power-down or Standby mode, the user should be aware of the fact that this Oscillator might take as long as one second to stabilize. The user is advised to wait for at least one second before using Timer/Counter2 after power-up or wake-up from Power-down or Standby mode. The contents of all Timer/Counter2 Registers must be considered lost after a wake-up from Power-down or Standby mode due to unstable clock signal upon start-up, no matter whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin. * Description of wake up from Power-save or ADC Noise Reduction mode when the timer is clocked asynchronously: When the interrupt condition is met, the wake up process is started on the following cycle of the timer clock, that is, the timer is always advanced by at least one before the processor can read the counter value. After wake-up, the MCU is halted for four cycles, it executes the interrupt routine, and resumes execution from the instruction following SLEEP. * Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be done through a register synchronized to the internal I/O clock domain. Synchronization takes place for every rising TOSC1 edge. When waking up from Power-save mode, and the I/O clock (clkI/O) again becomes active, TCNT2 will read as the previous value (before entering sleep) until the next rising TOSC1 edge. The phase of the TOSC clock after waking up from Power-save mode is essentially unpredictable, as it depends on the wake-up time. The recommended procedure for reading TCNT2 is thus as follows: 1. Write any value to either of the registers OCR2x or TCCR2x. 2. Wait for the corresponding Update Busy Flag to be cleared. 3. Read TCNT2. * Timer/Counter Prescaler Figure 20-12. Prescaler for Timer/Counter2 PSRASY clkT2S/1024 clkT2S/256 AS2 clkT2S/128 10-BIT T/C PRESCALER Clear clkT2S/64 TOSC1 clkT2S clkT2S/32 clkI/O clkT2S/8 20.9 During asynchronous operation, the synchronization of the Interrupt Flags for the asynchronous timer takes three processor cycles plus one timer cycle. The timer is therefore advanced by at least one before the processor can read the timer value causing the setting of the Interrupt Flag. The Output Compare pin is changed on the timer clock and is not synchronized to the processor clock. 0 CS20 CS21 CS22 TIMER/COUNTER2 CLOCK SOURCE clkT2 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 180 The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the main system I/O clock clk IO. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real Time Counter (RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from Port C. A crystal can then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock source for Timer/Counter2. The Oscillator is optimized for use with a 32.768kHz crystal. By setting the EXCLK bit in the ASSR, a 32kHz external clock can be applied. See "ASSR - Asynchronous Status Register" on page 187 for details. For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64, clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be selected. Setting the PSRASY bit in GTCCR resets the prescaler. This allows the user to operate with a predictable prescaler. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 181 20.10 Register Description 20.10.1 TCCR2A -Timer/Counter Control Register A Bit 7 6 5 4 3 2 1 0 COM2A1 COM2A0 COM2B1 COM2B0 - - WGM21 WGM20 Read/Write R/W R/W R/W R/W R R R/W R/W Initial Value 0 0 0 0 0 0 0 0 (0xB0) TCCR2A * Bits 7:6 - COM2A1:0: Compare Match Output A Mode These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A1:0 bits are set, the OC2A output overrides the normal port functionality of the I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2A pin must be set in order to enable the output driver. When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the WGM22:0 bit setting. Table 20-2 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to a normal or CTC mode (nonPWM). Table 20-2. Compare Output Mode, non-PWM Mode COM2A1 COM2A0 Description 0 0 Normal port operation, OC2A disconnected 0 1 Toggle OC2A on Compare Match 1 0 Clear OC2A on Compare Match 1 1 Set OC2A on Compare Match Table 20-3 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM mode. Table 20-3. Compare Output Mode, Fast PWM Mode(1) COM2A1 COM2A0 Description 0 0 Normal port operation, OC2A disconnected 0 1 WGM22 = 0: Normal Port Operation, OC2A Disconnected WGM22 = 1: Toggle OC2A on Compare Match 1 0 Clear OC2A on Compare Match, set OC2A at BOTTOM (non-inverting mode) 1 1 Set OC2A on Compare Match, clear OC2A at BOTTOM (inverting mode) Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Compare Match is ignored, but the set or clear is done at BOTTOM. See "Fast PWM Mode" on page 173 for more details. Table 20-4 on page 183 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to phase correct PWM mode. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 182 Table 20-4. Compare Output Mode, Phase Correct PWM Mode(1) COM2A1 COM2A0 Description 0 0 Normal port operation, OC2A disconnected 0 1 WGM22 = 0: Normal Port Operation, OC2A Disconnected WGM22 = 1: Toggle OC2A on Compare Match 1 0 Clear OC2A on Compare Match when up-counting Set OC2A on Compare Match when down-counting 1 1 Set OC2A on Compare Match when up-counting Clear OC2A on Compare Match when down-counting Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Compare Match is ignored, but the set or clear is done at TOP. See "Phase Correct PWM Mode" on page 173 for more details. * Bits 5:4 - COM2B1:0: Compare Match Output B Mode These bits control the Output Compare pin (OC2B) behavior. If one or both of the COM2B1:0 bits are set, the OC2B output overrides the normal port functionality of the I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2B pin must be set in order to enable the output driver. When OC2B is connected to the pin, the function of the COM2B1:0 bits depends on the WGM22:0 bit setting. Table 20-5 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to a normal or CTC mode (nonPWM). Table 20-5. Compare Output Mode, non-PWM Mode COM2B1 COM2B0 Description 0 0 Normal port operation, OC2B disconnected 0 1 Toggle OC2B on Compare Match 1 0 Clear OC2B on Compare Match 1 1 Set OC2B on Compare Match Table 20-6 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to fast PWM mode. Table 20-6. Compare Output Mode, Fast PWM Mode(1) COM2B1 COM2B0 Description 0 0 Normal port operation, OC2B disconnected 0 1 Reserved 1 0 Clear OC2B on Compare Match, set OC2B at BOTTOM (non-inverting mode) 1 1 Set OC2B on Compare Match, clear OC2B at BOTTOM (inverting mode) Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Compare Match is ignored, but the set or clear is done at BOTTOM. See "Fast PWM Mode" on page 173 for more details. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 183 Table 20-7 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to phase correct PWM mode. Table 20-7. Compare Output Mode, Phase Correct PWM Mode(1) COM2B1 COM2B0 Description 0 0 Normal port operation, OC2B disconnected 0 1 Reserved 1 0 Clear OC2B on Compare Match when up-counting Set OC2B on Compare Match when down-counting 1 1 Set OC2B on Compare Match when up-counting Clear OC2B on Compare Match when down-counting Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Compare Match is ignored, but the set or clear is done at TOP. See "Phase Correct PWM Mode" on page 173 for more details. * Bits 3, 2 - Res: Reserved Bits These bits are reserved bits and will always read as zero. * Bits 1:0 - WGM21:0: Waveform Generation Mode Combined with the WGM22 bit found in the TCCR2B Register, these bits control the counting sequence of the counter, the source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 20-8. Modes of operation supported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes (see "Modes of Operation" on page 171). Table 20-8. Waveform Generation Mode Bit Description Mode WGM2 WGM1 WGM0 Timer/Counter Mode of Operation TOP Update of OCRx at TOV Flag Set on(1)(2) 0 0 0 0 Normal 0xFF Immediate MAX 1 0 0 1 PWM, Phase Correct 0xFF TOP BOTTOM 2 0 1 0 CTC OCRA Immediate MAX 3 0 1 1 Fast PWM 0xFF BOTTOM MAX 4 1 0 0 Reserved - - - 5 1 0 1 PWM, Phase Correct OCRA TOP BOTTOM 6 1 1 0 Reserved - - - 7 1 1 1 Fast PWM OCRA BOTTOM TOP Notes: 1. MAX = 0xFF. 2. BOTTOM= 0x00. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 184 20.10.2 TCCR2B - Timer/Counter Control Register B Bit 7 6 5 4 3 2 1 0 FOC2A FOC2B - - WGM22 CS22 CS21 CS20 Read/Write W W R R R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 (0xB1) TCCR2B * Bit 7 - FOC2A: Force Output Compare A The FOC2A bit is only active when the WGM bits specify a non-PWM mode. However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2A bit, an immediate Compare Match is forced on the Waveform Generation unit. The OC2A output is changed according to its COM2A1:0 bits setting. Note that the FOC2A bit is implemented as a strobe. Therefore it is the value present in the COM2A1:0 bits that determines the effect of the forced compare. A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2A as TOP. The FOC2A bit is always read as zero. * Bit 6 - FOC2B: Force Output Compare B The FOC2B bit is only active when the WGM bits specify a non-PWM mode. However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2B bit, an immediate Compare Match is forced on the Waveform Generation unit. The OC2B output is changed according to its COM2B1:0 bits setting. Note that the FOC2B bit is implemented as a strobe. Therefore it is the value present in the COM2B1:0 bits that determines the effect of the forced compare. A FOC2B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2B as TOP. The FOC2B bit is always read as zero. * Bits 5:4 - Res: Reserved Bits These bits are reserved bits and will always read as zero. * Bit 3 - WGM22: Waveform Generation Mode See the description in the "TCCR2A -Timer/Counter Control Register A" on page 182. * Bit 2:0 - CS22:0: Clock Select The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table 20-9. Table 20-9. Clock Select Bit Description CS22 CS21 CS20 Description 0 0 0 No clock source (Timer/Counter stopped) 0 0 1 clkT2S/(No prescaling) 0 1 0 clkT2S/8 (From prescaler) 0 1 1 clkT2S/32 (From prescaler) 1 0 0 clkT2S/64 (From prescaler) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 185 Table 20-9. Clock Select Bit Description (Continued) CS22 CS21 CS20 Description 1 0 1 clkT2S/128 (From prescaler) 1 1 0 clkT2S/256 (From prescaler) 1 1 1 clkT2S/1024 (From prescaler) If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the counter even if the pin is configured as an output. This feature allows software control of the counting. 20.10.3 TCNT2 - Timer/Counter Register Bit 7 6 5 4 (0xB2) 3 2 1 0 TCNT2[7:0] TCNT2 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the Compare Match on the following timer clock. Modifying the counter (TCNT2) while the counter is running, introduces a risk of missing a Compare Match between TCNT2 and the OCR2x Registers. 20.10.4 OCR2A - Output Compare Register A Bit 7 6 5 4 (0xB3) 3 2 1 0 OCR2A[7:0] OCR2A Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 The Output Compare Register A contains an 8-bit value that is continuously compared with the counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on the OC2A pin. 20.10.5 OCR2B - Output Compare Register B Bit 7 6 5 4 (0xB4) 3 2 1 0 OCR2B[7:0] OCR2B Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 The Output Compare Register B contains an 8-bit value that is continuously compared with the counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on the OC2B pin. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 186 20.10.6 ASSR - Asynchronous Status Register Bit 7 6 5 4 3 2 1 0 (0xB6) - EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB Read/Write R R/W R/W R R R R R Initial Value 0 0 0 0 0 0 0 0 ASSR * Bit 6 - EXCLK: Enable External Clock Input When EXCLK is written to one, and asynchronous clock is selected, the external clock input buffer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead of a 32kHz crystal. Writing to EXCLK should be done before asynchronous operation is selected. Note that the crystal Oscillator will only run when this bit is zero. * Bit 5 - AS2: Asynchronous Timer/Counter2 When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O. When AS2 is written to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer Oscillator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B might be corrupted. * Bit 4 - TCN2UB: Timer/Counter2 Update Busy When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set. When TCNT2 has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value. * Bit 3 - OCR2AUB: Output Compare Register2 Update Busy When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set. When OCR2A has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new value. * Bit 2 - OCR2BUB: Output Compare Register2 Update Busy When Timer/Counter2 operates asynchronously and OCR2B is written, this bit becomes set. When OCR2B has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that OCR2B is ready to be updated with a new value. * Bit 1 - TCR2AUB: Timer/Counter Control Register2 Update Busy When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set. When TCCR2A has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new value. * Bit 0 - TCR2BUB: Timer/Counter Control Register2 Update Busy When Timer/Counter2 operates asynchronously and TCCR2B is written, this bit becomes set. When TCCR2B has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2B is ready to be updated with a new value. If a write is performed to any of the five Timer/Counter2 Registers while its update busy flag is set, the updated value might get corrupted and cause an unintentional interrupt to occur. The mechanisms for reading TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B are different. When reading TCNT2, the actual timer value is read. When reading OCR2A, OCR2B, TCCR2A and TCCR2B the value in the temporary storage register is read. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 187 20.10.7 TIMSK2 - Timer/Counter2 Interrupt Mask Register Bit 7 6 5 4 3 2 1 0 (0x70) - - - - - OCIE2B OCIE2A TOIE2 Read/Write R R R R R R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 TIMSK2 * Bit 2 - OCIE2B: Timer/Counter2 Output Compare Match B Interrupt Enable When the OCIE2B bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2 Compare Match B interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter2 occurs, that is, when the OCF2B bit is set in the Timer/Counter 2 Interrupt Flag Register - TIFR2. * Bit 1 - OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter2 occurs, that is, when the OCF2A bit is set in the Timer/Counter 2 Interrupt Flag Register - TIFR2. * Bit 0 - TOIE2: Timer/Counter2 Overflow Interrupt Enable When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter2 occurs, that is, when the TOV2 bit is set in the Timer/Counter2 Interrupt Flag Register - TIFR2. 20.10.8 TIFR2 - Timer/Counter2 Interrupt Flag Register Bit 7 6 5 4 3 2 1 0 0x17 (0x37) - - - - - OCF2B OCF2A TOV2 Read/Write R R R R R R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 TIFR2 * Bit 2 - OCF2B: Output Compare Flag 2 B The OCF2B bit is set (one) when a compare match occurs between the Timer/Counter2 and the data in OCR2B - Output Compare Register2. OCF2B is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF2B is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2B (Timer/Counter2 Compare match Interrupt Enable), and OCF2B are set (one), the Timer/Counter2 Compare match Interrupt is executed. * Bit 1 - OCF2A: Output Compare Flag 2 A The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 and the data in OCR2A - Output Compare Register2. OCF2A is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF2A is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2A (Timer/Counter2 Compare match Interrupt Enable), and OCF2A are set (one), the Timer/Counter2 Compare match Interrupt is executed. * Bit 0 - TOV2: Timer/Counter2 Overflow Flag The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared by writing a logic one to the flag. When the SREG I-bit, TOIE2A (Timer/Counter2 Overflow Interrupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when Timer/Counter2 changes counting direction at 0x00. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 188 20.10.9 GTCCR - General Timer/Counter Control Register Bit 7 6 5 4 3 2 1 0 0x23 (0x43) TSM - - - - - PSRASY PSRSYNC Read/Write R/W R R R R R R/W R/W Initial Value 0 0 0 0 0 0 0 0 GTCCR * Bit 1 - PSRASY: Prescaler Reset Timer/Counter2 When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchronous mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by hardware if the TSM bit is set. Refer to the description of the "Bit 7 - TSM: Timer/Counter Synchronization Mode" on page 166 for a description of the Timer/Counter Synchronization mode. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 189 21. SPI - Serial Peripheral Interface The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the ATmega640/1280/1281/2560/2561 and peripheral devices or between several AVR devices. The ATmega640/1280/1281/2560/2561 SPI includes the following features: * * * * * * * * Full-duplex, Three-wire Synchronous Data Transfer Master or Slave Operation LSB First or MSB First Data Transfer Seven Programmable Bit Rates End of Transmission Interrupt Flag Write Collision Flag Protection Wake-up from Idle Mode Double Speed (CK/2) Master SPI Mode USART can also be used in Master SPI mode, see "USART in SPI Mode" on page 227. The Power Reduction SPI bit, PRSPI, in "PRR0 - Power Reduction Register 0" on page 55 on page 50 must be written to zero to enable SPI module. Figure 21-1. SPI Block Diagram(1) SPI2X SPI2X DIVIDER /2/4/8/16/32/64/128 Note: 1. Refer to Figure 1-1 on page 2, and Table 13-6 on page 76 for SPI pin placement. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 190 The interconnection between Master and Slave CPUs with SPI is shown in Figure 21-2. The system consists of two shift Registers, and a Master clock generator. The SPI Master initiates the communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and Slave prepare the data to be sent in their respective shift Registers, and the Master generates the required clock pulses on the SCK line to interchange data. Data is always shifted from Master to Slave on the Master Out - Slave In, MOSI, line, and from Slave to Master on the Master In - Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling high the Slave Select, SS, line. When configured as a Master, the SPI interface has no automatic control of the SS line. This must be handled by user software before communication can start. When this is done, writing a byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be kept in the Buffer Register for later use. When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long as the SS pin is driven high. In this state, software may update the contents of the SPI Data Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt is requested. The Slave may continue to place new data to be sent into SPDR before reading the incoming data. The last incoming byte will be kept in the Buffer Register for later use. Figure 21-2. SPI Master-slave Interconnection SHIFT ENABLE The system is single buffered in the transmit direction and double buffered in the receive direction. This means that bytes to be transmitted cannot be written to the SPI Data Register before the entire shift cycle is completed. When receiving data, however, a received character must be read from the SPI Data Register before the next character has been completely shifted in. Otherwise, the first byte is lost. In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure correct sampling of the clock signal, the minimum low and high periods should be: Low period: Longer than two CPU clock cycles. High period: Longer than two CPU clock cycles. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 191 When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden according to Table 21-1. For more details on automatic port overrides, refer to "Alternate Port Functions" on page 72. Table 21-1. Pin Note: SPI Pin Overrides(1) Direction, Master SPI Direction, Slave SPI MOSI User Defined Input MISO Input User Defined SCK User Defined Input SS User Defined Input 1. See "Alternate Functions of Port B" on page 76 for a detailed description of how to define the direction of the user defined SPI pins. The following code examples show how to initialize the SPI as a Master and how to perform a simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins. For example, if MOSI is placed on pin PB5, replace DD_MOSI with DDB5 and DDR_SPI with DDRB. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 192 Assembly Code Example(1) SPI_MasterInit: ; Set MOSI and SCK output, all others input ldi r17,(1<>8); UBRRL = (unsigned char)ubrr; /* Enable receiver and transmitter */ UCSRB = (1<> 1) & 0x01; return ((resh << 8) | resl); } Note: 1. See "About Code Examples" on page 10. The receive function example reads all the I/O Registers into the Register File before any computation is done. This gives an optimal receive buffer utilization since the buffer location read will be free to accept new data as early as possible. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 211 22.7.3 Receive Compete Flag and Interrupt The USART Receiver has one flag that indicates the Receiver state. The Receive Complete (RXCn) Flag indicates if there are unread data present in the receive buffer. This flag is one when unread data exist in the receive buffer, and zero when the receive buffer is empty (that is, does not contain any unread data). If the Receiver is disabled (RXENn = 0), the receive buffer will be flushed and consequently the RXCn bit will become zero. When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART Receive Complete interrupt will be executed as long as the RXCn Flag is set (provided that global interrupts are enabled). When interruptdriven data reception is used, the receive complete routine must read the received data from UDRn in order to clear the RXCn Flag, otherwise a new interrupt will occur once the interrupt routine terminates. 22.7.4 Receiver Error Flags The USART Receiver has three Error Flags: Frame Error (FEn), Data OverRun (DORn) and Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the Error Flags is that they are located in the receive buffer together with the frame for which they indicate the error status. Due to the buffering of the Error Flags, the UCSRnA must be read before the receive buffer (UDRn), since reading the UDRn I/O location changes the buffer read location. Another equality for the Error Flags is that they can not be altered by software doing a write to the flag location. However, all flags must be set to zero when the UCSRnA is written for upward compatibility of future USART implementations. None of the Error Flags can generate interrupts. The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable frame stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly read (as one), and the FEn Flag will be one when the stop bit was incorrect (zero). This flag can be used for detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn Flag is not affected by the setting of the USBSn bit in UCSRnC since the Receiver ignores all, except for the first, stop bits. For compatibility with future devices, always set this bit to zero when writing to UCSRnA. The Data OverRun (DORn) Flag indicates data loss due to a receiver buffer full condition. A Data OverRun occurs when the receive buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a new start bit is detected. If the DORn Flag is set there was one or more serial frame lost between the frame last read from UDRn, and the next frame read from UDRn. For compatibility with future devices, always write this bit to zero when writing to UCSRnA. The DORn Flag is cleared when the frame received was successfully moved from the Shift Register to the receive buffer. The Parity Error (UPEn) Flag indicates that the next frame in the receive buffer had a Parity Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more details see "Parity Bit Calculation" on page 205 and "Parity Checker" . 22.7.5 Parity Checker The Parity Checker is active when the high USART Parity mode (UPMn1) bit is set. Type of Parity Check to be performed (odd or even) is selected by the UPMn0 bit. When enabled, the Parity Checker calculates the parity of the data bits in incoming frames and compares the result with the parity bit from the serial frame. The result of the check is stored in the receive buffer together with the received data and stop bits. The Parity Error (UPEn) Flag can then be read by software to check if the frame had a Parity Error. The UPEn bit is set if the next character that can be read from the receive buffer had a Parity Error when received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer (UDRn) is read. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 212 22.7.6 Disabling the Receiver In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing receptions will therefore be lost. When disabled (that is, the RXENn is set to zero) the Receiver will no longer override the normal function of the RxDn port pin. The Receiver buffer FIFO will be flushed when the Receiver is disabled. Remaining data in the buffer will be lost. 22.7.7 Flushing the Receive Buffer The receiver buffer FIFO will be flushed when the Receiver is disabled, that is, the buffer will be emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal operation, due to for instance an error condition, read the UDRn I/O location until the RXCn Flag is cleared. The following code example shows how to flush the receive buffer. Assembly Code Example(1) USART_Flush: sbis UCSRnA, RXCn ret in r16, UDRn rjmp USART_Flush C Code Example(1) void USART_Flush( void ) { unsigned char dummy; while ( UCSRnA & (1< 2 CPU clock cycles for fck < 12MHz, 3 CPU clock cycles for fck >= 12MHz High: > 2 CPU clock cycles for fck < 12MHz, 3 CPU clock cycles for fck >= 12MHz 30.8.2 Serial Programming Algorithm When writing serial data to the ATmega640/1280/1281/2560/2561, data is clocked on the rising edge of SCK. When reading data from the ATmega640/1280/1281/2560/2561, data is clocked on the falling edge of SCK. See Figure 30-12 on page 342 for timing details. To program and verify the ATmega640/1280/1281/2560/2561 in the serial programming mode, the following sequence is recommended (see four byte instruction formats in Table 30-17 on page 340): 1. Power-up sequence: Apply power between VCC and GND while RESET and SCK are set to "0". In some systems, the programmer can not guarantee that SCK is held low during power-up. In this case, RESET must be given a positive pulse of at least two CPU clock cycles duration after SCK has been set to "0". 2. Wait for at least 20ms and enable serial programming by sending the Programming Enable serial instruction to pin PDI. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 339 3. The serial programming instructions will not work if the communication is out of synchronization. When in sync. the second byte (0x53), will echo back when issuing the third byte of the Programming Enable instruction. Whether the echo is correct or not, all four bytes of the instruction must be transmitted. If the 0x53 did not echo back, give RESET a positive pulse and issue a new Programming Enable command. 4. The Flash is programmed one page at a time. The memory page is loaded one byte at a time by supplying the 7 LSB of the address and data together with the Load Program Memory Page instruction. To ensure correct loading of the page, the data low byte must be loaded before data high byte is applied for a given address. The Program Memory Page is stored by loading the Write Program Memory Page instruction with the address lines 15:8. Before issuing this command, make sure the instruction Load Extended Address Byte has been used to define the MSB of the address. The extended address byte is stored until the command is re-issued, that is, the command needs only be issued for the first page, and when crossing the 64KWord boundary. If polling (RDY/BSY) is not used, the user must wait at least tWD_FLASH before issuing the next page (see Table 30-16). Accessing the serial programming interface before the Flash write operation completes can result in incorrect programming. 5. The EEPROM array is programmed one byte at a time by supplying the address and data together with the appropriate Write instruction. An EEPROM memory location is first automatically erased before new data is written. If polling is not used, the user must wait at least tWD_EEPROM before issuing the next byte (see Table 30-16). In a chip erased device, no 0xFFs in the data file(s) need to be programmed. 6. Any memory location can be verified by using the Read instruction which returns the content at the selected address at serial output PDO. When reading the Flash memory, use the instruction Load Extended Address Byte to define the upper address byte, which is not included in the Read Program Memory instruction. The extended address byte is stored until the command is re-issued, that is, the command needs only be issued for the first page, and when crossing the 64KWord boundary. 7. At the end of the programming session, RESET can be set high to commence normal operation. 8. Power-off sequence (if needed): Set RESET to "1". Turn VCC power off. Table 30-16. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location 30.8.3 Symbol Minimum Wait Delay tWD_FLASH 4.5ms tWD_EEPROM 3.6ms tWD_ERASE 9.0ms Serial Programming Instruction set Table 30-17 and Figure 30-11 on page 342 describes the Instruction set. Table 30-17. Serial Programming Instruction Set Instruction Format Instruction/Operation Byte 1 Byte 2 Byte 3 Byte 4 Programming Enable $AC $53 $00 $00 Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00 Poll RDY/BSY $F0 $00 $00 data byte out Load Extended Address byte(1) $4D $00 Extended adr $00 Load Program Memory Page, High byte $48 $00 adr LSB high data byte in Load Program Memory Page, Low byte $40 $00 adr LSB low data byte in Load Instructions ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 340 Table 30-17. Serial Programming Instruction Set (Continued) Instruction Format Instruction/Operation Byte 1 Byte 2 Byte 3 Byte 4 $C1 $00 0000 000aa data byte in Read Program Memory, High byte $28 adr MSB adr LSB high data byte out Read Program Memory, Low byte $20 adr MSB adr LSB low data byte out Read EEPROM Memory $A0 0000 aaaa aaaa aaaa data byte out Read Lock bits $58 $00 $00 data byte out Read Signature Byte $30 $00 0000 000aa data byte out Read Fuse bits $50 $00 $00 data byte out Read Fuse High bits $58 $08 $00 data byte out Read Extended Fuse Bits $50 $08 $00 data byte out Read Calibration Byte $38 $00 $00 data byte out Write Program Memory Page $4C adr MSB adr LSB $00 Write EEPROM Memory $C0 0000 aaaa aaaa aaaa data byte in Write EEPROM Memory Page (page access) $C2 0000 aaaa aaaa 00 $00 Write Lock bits $AC $E0 $00 data byte in Write Fuse bits $AC $A0 $00 data byte in Write Fuse High bits $AC $A8 $00 data byte in Write Extended Fuse Bits $AC $A4 $00 data byte in Load EEPROM Memory Page (page access) Read Instructions Write Instructions Notes: 1. 2. 3. 4. 5. 6. Not all instructions are applicable for all parts. a = address. Bits are programmed `0', unprogrammed `1'. To ensure future compatibility, unused Fuses and Lock bits should be unprogrammed (`1'). Refer to the corresponding section for Fuse and Lock bits, Calibration and Signature bytes and Page size. See http://www.atmel.com/avr for Application Notes regarding programming and programmers. If the LSB in RDY/BSY data byte out is `1', a programming operation is still pending. Wait until this bit returns `0' before the next instruction is carried out. Within the same page, the low data byte must be loaded prior to the high data byte. After data is loaded to the page buffer, program the EEPROM page, see Figure 30-11 on page 342. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 341 Figure 30-11. Serial Programming Instruction example Serial Programming Instruction Load Program Memory Page (High/Low Byte)/ Load EEPROM Memory Page (page access) Byte 1 Byte 2 Adr A drr M MS MSB SB Byte 3 Write Program Memory Page/ Write EEPROM Memory Page Byte 1 Byte 4 Byte 2 Adr LSB Bit 15 B Adr MSB Byte 3 Adr A dr LS LSB SB Bit 15 B 0 Byte 4 0 Page Buffer Page Offset Page 0 Page 1 Page 2 Page Number Page N-1 Program Memory/ EEPROM Memory 30.8.4 Serial Programming Characteristics For characteristics of the Serial Programming module, see "SPI Timing Characteristics" on page 363. Figure 30-12. Serial Programming Waveforms SERIAL DATA INPUT (MOSI) MSB LSB SERIAL DATA OUTPUT (MISO) MSB LSB SERIAL CLOCK INPUT (SCK) SAMPLE 30.9 Programming via the JTAG Interface Programming through the JTAG interface requires control of the four JTAG specific pins: TCK, TMS, TDI, and TDO. Control of the reset and clock pins is not required. To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The device is default shipped with the fuse programmed. In addition, the JTD bit in MCUCR must be cleared. Alternatively, if the JTD bit is set, the external reset can be forced low. Then, the JTD bit will be cleared after two chip clocks, and the JTAG pins are available for programming. This provides a means of using the JTAG pins as normal port pins in Running mode ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 342 while still allowing In-System Programming via the JTAG interface. Note that this technique can not be used when using the JTAG pins for Boundary-scan or On-chip Debug. In these cases the JTAG pins must be dedicated for this purpose. During programming the clock frequency of the TCK Input must be less than the maximum frequency of the chip. The System Clock Prescaler can not be used to divide the TCK Clock Input into a sufficiently low frequency. As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers. 30.9.1 Programming Specific JTAG Instructions The Instruction Register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions useful for programming are listed below. The OPCODE for each instruction is shown behind the instruction name in hex format. The text describes which Data Register is selected as path between TDI and TDO for each instruction. The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can also be used as an idle state between JTAG sequences. The state machine sequence for changing the instruction word is shown in Figure 30-13. Figure 30-13. State Machine Sequence for Changing the Instruction Word 1 Test-Logic-Reset 0 0 Run-Test/Idle 1 Select-DR Scan 1 Select-IR Scan 0 0 1 1 Capture-DR Capture-IR 0 0 0 Shift-DR 1 1 Exit1-DR 1 Exit1-IR 0 0 Pause-DR 0 0 Pause-IR 1 1 0 Exit2-DR Exit2-IR 1 1 Update-DR 1 0 Shift-IR 1 0 1 Update-IR 0 1 0 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 343 30.9.2 AVR_RESET (0xC) The AVR specific public JTAG instruction for setting the AVR device in the Reset mode or taking the device out from the Reset mode. The TAP controller is not reset by this instruction. The one bit Reset Register is selected as Data Register. Note that the reset will be active as long as there is a logic "one" in the Reset Chain. The output from this chain is not latched. The active states are: * 30.9.3 Shift-DR: The Reset Register is shifted by the TCK input PROG_ENABLE (0x4) The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-bit Programming Enable Register is selected as Data Register. The active states are the following: * Shift-DR: The programming enable signature is shifted into the Data Register * Update-DR: The programming enable signature is compared to the correct value, and Programming mode is entered if the signature is valid 30.9.4 PROG_COMMANDS (0x5) The AVR specific public JTAG instruction for entering programming commands via the JTAG port. The 15-bit Programming Command Register is selected as Data Register. The active states are the following: * Capture-DR: The result of the previous command is loaded into the Data Register * Shift-DR: The Data Register is shifted by the TCK input, shifting out the result of the previous command and shifting in the new command * Update-DR: The programming command is applied to the Flash inputs * Run-Test/Idle: One clock cycle is generated, executing the applied command 30.9.5 PROG_PAGELOAD (0x6) The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port. An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs of the Programming Command Register. The active states are the following: * Shift-DR: The Flash Data Byte Register is shifted by the TCK input. * Update-DR: The content of the Flash Data Byte Register is copied into a temporary register. A write sequence is initiated that within 11 TCK cycles loads the content of the temporary register into the Flash page buffer. The AVR automatically alternates between writing the low and the high byte for each new Update-DR state, starting with the low byte for the first Update-DR encountered after entering the PROG_PAGELOAD command. The Program Counter is pre-incremented before writing the low byte, except for the first written byte. This ensures that the first data is written to the address set up by PROG_COMMANDS, and loading the last location in the page buffer does not make the program counter increment into the next page. 30.9.6 PROG_PAGEREAD (0x7) The AVR specific public JTAG instruction to directly capture the Flash content via the JTAG port. An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs of the Programming Command Register. The active states are the following: * Capture-DR: The content of the selected Flash byte is captured into the Flash Data Byte Register. The AVR automatically alternates between reading the low and the high byte for each new Capture-DR state, starting with the low byte for the first Capture-DR encountered after entering the PROG_PAGEREAD command. The Program Counter is post-incremented after reading each high byte, including the first read byte. This ensures that the first data is captured from the first address set up by PROG_COMMANDS, and reading the last location in the page makes the program counter increment into the next page. * Shift-DR: The Flash Data Byte Register is shifted by the TCK input. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 344 30.9.7 Data Registers The Data Registers are selected by the JTAG instruction registers described in section "Programming Specific JTAG Instructions" on page 343. The Data Registers relevant for programming operations are: 30.9.8 * Reset Register * Programming Enable Register * Programming Command Register * Flash Data Byte Register Reset Register The Reset Register is a Test Data Register used to reset the part during programming. It is required to reset the part before entering Programming mode. A high value in the Reset Register corresponds to pulling the external reset low. The part is reset as long as there is a high value present in the Reset Register. Depending on the Fuse settings for the clock options, the part will remain reset for a Reset Time-out period (refer to "Clock Sources" on page 40) after releasing the Reset Register. The output from this Data Register is not latched, so the reset will take place immediately, as shown in Figure 28-2 on page 297. 30.9.9 Programming Enable Register The Programming Enable Register is a 16-bit register. The contents of this register is compared to the programming enable signature, binary code 0b1010_0011_0111_0000. When the contents of the register is equal to the programming enable signature, programming via the JTAG port is enabled. The register is reset to 0 on Power-on Reset, and should always be reset when leaving Programming mode. Figure 30-14. Programming Enable Register TDI D A T A 0xA370 = D Q Programming Enable ClockDR & PROG_ENABLE TDO 30.9.10 Programming Command Register The Programming Command Register is a 15-bit register. This register is used to serially shift in programming commands, and to serially shift out the result of the previous command, if any. The JTAG Programming Instruction Set is shown in Table 30-18 on page 347. The state sequence when shifting in the programming commands is illustrated in Figure 30-16 on page 350. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 345 Figure 30-15. Programming Command Register TDI S T R O B E S A D D R E S S / D A T A Flash EEPROM Fuses Lock Bits TDO ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 346 Table 30-18. JTAG Programming Instruction Set a = address high bits, b = address low bits, c = address extended bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don't care Instruction TDI Sequence TDO Sequence Notes 1a. Chip Erase 0100011_10000000 0110001_10000000 0110011_10000000 0110011_10000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx 1b. Poll for Chip Erase Complete 0110011_10000000 xxxxxox_xxxxxxxx 2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx 2b. Load Address Extended High Byte 0001011_cccccccc xxxxxxx_xxxxxxxx 2c. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx 2d. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx 2e. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx 2f. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx 2g. Latch Data 0110111_00000000 1110111_00000000 0110111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (1) 2h. Write Flash Page 0110111_00000000 0110101_00000000 0110111_00000000 0110111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (1) 2i. Poll for Page Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2) 3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx 3b. Load Address Extended High Byte 0001011_cccccccc xxxxxxx_xxxxxxxx 3c. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx 3d. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx 3e. Read Data Low and High Byte 0110010_00000000 0110110_00000000 0110111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_oooooooo xxxxxxx_oooooooo 4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx 4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx 4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx 4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx 4e. Latch Data 0110111_00000000 1110111_00000000 0110111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (1) 4f. Write EEPROM Page 0110011_00000000 0110001_00000000 0110011_00000000 0110011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (1) 4g. Poll for Page Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2) (2) (10) (10) Low byte High byte (10) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 347 Table 30-18. JTAG Programming Instruction (Continued) Set (Continued) a = address high bits, b = address low bits, c = address extended bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don't care Instruction TDI Sequence TDO Sequence 5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx 5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx 5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx 5d. Read Data Byte 0110011_bbbbbbbb 0110010_00000000 0110011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_oooooooo 6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx 6b. Load Data Low Byte(6) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3) 6c. Write Fuse Extended Byte 0111011_00000000 0111001_00000000 0111011_00000000 0111011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (1) 6d. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2) 6e. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3) 6f. Write Fuse High Byte 0110111_00000000 0110101_00000000 0110111_00000000 0110111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (1) 6g. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2) 6h. Load Data Low Byte(7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3) 6i. Write Fuse Low Byte 0110011_00000000 0110001_00000000 0110011_00000000 0110011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (1) 6j. Poll for Fuse Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2) 7a. Enter Lock Bit Write 0100011_00100000 xxxxxxx_xxxxxxxx 7b. Load Data Byte 0010011_11iiiiii xxxxxxx_xxxxxxxx (4) 7c. Write Lock Bits 0110011_00000000 0110001_00000000 0110011_00000000 0110011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (1) 7d. Poll for Lock Bit Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2) 8a. Enter Fuse/Lock Bit Read 0100011_00000100 xxxxxxx_xxxxxxxx 8b. Read Extended Fuse Byte(6) 0111010_00000000 0111011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_oooooooo 8c. Read Fuse High Byte(7) 0111110_00000000 0111111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_oooooooo 8d. Read Fuse Low Byte(8) 0110010_00000000 0110011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_oooooooo (7) (9) Notes (10) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 348 Table 30-18. JTAG Programming Instruction (Continued) Set (Continued) a = address high bits, b = address low bits, c = address extended bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don't care Instruction TDI Sequence TDO Sequence Notes 8e. Read Lock Bits(9) 0110110_00000000 0110111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxoooooo (5) 8f. Read Fuses and Lock Bits 0111010_00000000 0111110_00000000 0110010_00000000 0110110_00000000 0110111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_oooooooo xxxxxxx_oooooooo xxxxxxx_oooooooo xxxxxxx_oooooooo (5) Fuse Ext. byte Fuse High byte Fuse Low byte Lock bits 9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx 9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx 9c. Read Signature Byte 0110010_00000000 0110011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_oooooooo 10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx 10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx 10c. Read Calibration Byte 0110110_00000000 0110111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_oooooooo 11a. Load No Operation Command 0100011_00000000 0110011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is normally the case). 2. Repeat until o = "1". 3. Set bits to "0" to program the corresponding Fuse, "1" to unprogram the Fuse. 4. Set bits to "0" to program the corresponding Lock bit, "1" to leave the Lock bit unchanged. 5. "0" = programmed, "1" = unprogrammed. 6. The bit mapping for Fuses Extended byte is listed in Table 30-3 on page 326. 7. The bit mapping for Fuses High byte is listed in Table 30-4 on page 327. 8. The bit mapping for Fuses Low byte is listed in Table 30-5 on page 327. 9. The bit mapping for Lock bits byte is listed in Table 30-1 on page 325. 10. Address bits exceeding PCMSB and EEAMSB (Table 30-7 and Table 30-8 on page 328) are don't care. 11. All TDI and TDO sequences are represented by binary digits (0b...). ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 349 Figure 30-16. State Machine Sequence for Changing/Reading the Data Word 1 Test-Logic-Reset 0 0 Run-Test/Idle 1 Select-DR Scan 1 Select-IR Scan 0 0 1 1 Capture-DR Capture-IR 0 0 0 Shift-DR 1 1 Exit1-DR 0 0 Pause-DR 0 Pause-IR 1 1 0 Exit2-DR Exit2-IR 1 1 Update-DR 30.9.11 1 Exit1-IR 0 1 0 Shift-IR 1 0 1 Update-IR 0 1 0 Flash Data Byte Register The Flash Data Byte Register provides an efficient way to load the entire Flash page buffer before executing Page Write, or to read out/verify the content of the Flash. A state machine sets up the control signals to the Flash and senses the strobe signals from the Flash, thus only the data words need to be shifted in/out. The Flash Data Byte Register actually consists of the 8-bit scan chain and a 8-bit temporary register. During page load, the Update-DR state copies the content of the scan chain over to the temporary register and initiates a write sequence that within 11 TCK cycles loads the content of the temporary register into the Flash page buffer. The AVR automatically alternates between writing the low and the high byte for each new Update-DR state, starting with the low byte for the first Update-DR encountered after entering the PROG_PAGELOAD command. The Program Counter is pre-incremented before writing the low byte, except for the first written byte. This ensures that the first data is written to the address set up by PROG_COMMANDS, and loading the last location in the page buffer does not make the Program Counter increment into the next page. During Page Read, the content of the selected Flash byte is captured into the Flash Data Byte Register during the Capture-DR state. The AVR automatically alternates between reading the low and the high byte for each new Capture-DR state, starting with the low byte for the first Capture-DR encountered after entering the PROG_PAGEREAD command. The Program Counter is post-incremented after reading each high byte, including the first read byte. This ensures that the first data is captured from the first address set up by PROG_COMMANDS, and reading the last location in the page makes the program counter increment into the next page. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 350 Figure 30-17. Flash Data Byte Register STROBES TDI State Machine ADDRESS Flash EEPROM Fuses Lock Bits D A T A TDO The state machine controlling the Flash Data Byte Register is clocked by TCK. During normal operation in which eight bits are shifted for each Flash byte, the clock cycles needed to navigate through the TAP controller automatically feeds the state machine for the Flash Data Byte Register with sufficient number of clock pulses to complete its operation transparently for the user. However, if too few bits are shifted between each Update-DR state during page load, the TAP controller should stay in the Run-Test/Idle state for some TCK cycles to ensure that there are at least 11 TCK cycles between each Update-DR state. 30.9.12 Programming Algorithm All references below of type "1a", "1b", and so on, refer to Table 30-18 on page 347. 30.9.13 Entering Programming Mode 1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register. 2. Enter instruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the Programming Enable Register. 30.9.14 Leaving Programming Mode 1. Enter JTAG instruction PROG_COMMANDS. 2. Disable all programming instructions by using no operation instruction 11a. 3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the programming Enable Register. 4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register. 30.9.15 Performing Chip Erase 1. Enter JTAG instruction PROG_COMMANDS. 2. Start Chip Erase using programming instruction 1a. 3. Poll for Chip Erase complete using programming instruction 1b, or wait for tWLRH_CE (refer to Table 30-14 on page 338). ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 351 30.9.16 Programming the Flash Before programming the Flash a Chip Erase must be performed, see "Performing Chip Erase" on page 351. 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Flash write using programming instruction 2a. 3. Load address Extended High byte using programming instruction 2b. 4. Load address High byte using programming instruction 2c. 5. Load address Low byte using programming instruction 2d. 6. Load data using programming instructions 2e, 2f and 2g. 7. Repeat steps 5 and 6 for all instruction words in the page. 8. Write the page using programming instruction 2h. 9. Poll for Flash write complete using programming instruction 2i, or wait for tWLRH (refer to Table 30-14 on page 338). 10. Repeat steps 3 to 9 until all data have been programmed. A more efficient data transfer can be achieved using the PROG_PAGELOAD instruction: 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Flash write using programming instruction 2a. 3. Load the page address using programming instructions 2b, 2c and 2d. PCWORD (refer to Table 30-7 on page 328) is used to address within one page and must be written as 0. 4. Enter JTAG instruction PROG_PAGELOAD. 5. Load the entire page by shifting in all instruction words in the page byte-by-byte, starting with the LSB of the first instruction in the page and ending with the MSB of the last instruction in the page. Use Update-DR to copy the contents of the Flash Data Byte Register into the Flash page location and to auto-increment the Program Counter before each new word. 6. Enter JTAG instruction PROG_COMMANDS. 7. Write the page using programming instruction 2h. 8. Poll for Flash write complete using programming instruction 2i, or wait for tWLRH (refer to Table 30-14 on page 338). 9. Repeat steps 3 to 8 until all data have been programmed. 30.9.17 Reading the Flash 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Flash read using programming instruction 3a. 3. Load address using programming instructions 3b, 3c and 3d. 4. Read data using programming instruction 3e. 5. Repeat steps 3 and 4 until all data have been read. A more efficient data transfer can be achieved using the PROG_PAGEREAD instruction: 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Flash read using programming instruction 3a. 3. Load the page address using programming instructions 3b, 3c and 3d. PCWORD (refer to Table 30-7 on page 328) is used to address within one page and must be written as 0. 4. Enter JTAG instruction PROG_PAGEREAD. 5. Read the entire page (or Flash) by shifting out all instruction words in the page (or Flash), starting with the LSB of the first instruction in the page (Flash) and ending with the MSB of the last instruction in the page (Flash). The Capture-DR state both captures the data from the Flash, and also auto-increments the program counter after each word is read. Note that Capture-DR comes before the shift-DR state. Hence, the first byte which is shifted out contains valid data. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 352 6. Enter JTAG instruction PROG_COMMANDS. 7. Repeat steps 3 to 6 until all data have been read. 30.9.18 Programming the EEPROM Before programming the EEPROM a Chip Erase must be performed, see "Performing Chip Erase" on page 351. 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable EEPROM write using programming instruction 4a. 3. Load address High byte using programming instruction 4b. 4. Load address Low byte using programming instruction 4c. 5. Load data using programming instructions 4d and 4e. 6. Repeat steps 4 and 5 for all data bytes in the page. 7. Write the data using programming instruction 4f. 8. Poll for EEPROM write complete using programming instruction 4g, or wait for tWLRH (refer to Table 30-14 on page 338). 9. Repeat steps 3 to 8 until all data have been programmed. Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM. 30.9.19 Reading the EEPROM 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable EEPROM read using programming instruction 5a. 3. Load address using programming instructions 5b and 5c. 4. Read data using programming instruction 5d. 5. Repeat steps 3 and 4 until all data have been read. Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM. 30.9.20 Programming the Fuses 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Fuse write using programming instruction 6a. 3. Load data high byte using programming instructions 6b. A bit value of "0" will program the corresponding fuse, a "1" will unprogram the fuse. 4. Write Fuse High byte using programming instruction 6c. 5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH (refer to Table 30-14 on page 338). 6. Load data low byte using programming instructions 6e. A "0" will program the fuse, a "1" will unprogram the fuse. 7. Write Fuse low byte using programming instruction 6f. 8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH (refer to Table 30-14 on page 338). 30.9.21 Programming the Lock Bits 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Lock bit write using programming instruction 7a. 3. Load data using programming instructions 7b. A bit value of "0" will program the corresponding lock bit, a "1" will leave the lock bit unchanged. 4. Write Lock bits using programming instruction 7c. 5. Poll for Lock bit write complete using programming instruction 7d, or wait for tWLRH (refer to Table 30-14 on page 338). ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 353 30.9.22 Reading the Fuses and Lock Bits 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Fuse/Lock bit read using programming instruction 8a. 3. To read all Fuses and Lock bits, use programming instruction 8e. To only read Fuse High byte, use programming instruction 8b. To only read Fuse Low byte, use programming instruction 8c. To only read Lock bits, use programming instruction 8d. 30.9.23 Reading the Signature Bytes 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Signature byte read using programming instruction 9a. 3. Load address 0x00 using programming instruction 9b. 4. Read first signature byte using programming instruction 9c. 5. Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second and third signature bytes, respectively. 30.9.24 Reading the Calibration Byte 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Calibration byte read using programming instruction 10a. 3. Load address 0x00 using programming instruction 10b. 4. Read the calibration byte using programming instruction 10c. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 354 31. Electrical Characteristics Absolute Maximum Ratings* Operating Temperature.................................. -55C to +125C Storage Temperature ..................................... -65C to +150C Voltage on any Pin except RESET with respect to Ground ................................-0.5V to VCC+0.5V Voltage on RESET with respect to Ground......-0.5V to +13.0V Maximum Operating Voltage ............................................ 6.0V *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC Current per I/O Pin ................................................ 40.0mA DC Current VCC and GND Pins................................. 200.0mA 31.1 DC Characteristics TA = -40C to 85C, VCC = 1.8V to 5.5V (unless otherwise noted) Symbol Parameter Condition Min. Typ. Max. VIL Input Low Voltage, Except XTAL1 and Reset pin VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V -0.5 -0.5 0.2VCC(1) 0.3VCC(1) VIL1 Input Low Voltage, XTAL1 pin VCC = 1.8V - 5.5V -0.5 0.1VCC(1) VIL2 Input Low Voltage, RESET pin VCC = 1.8V - 5.5V -0.5 0.1VCC(1) VIH Input High Voltage, Except XTAL1 and RESET pins VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V 0.7VCC(2) 0.6VCC(2) VCC + 0.5 VCC + 0.5 VIH1 Input High Voltage, XTAL1 pin VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V 0.8VCC(2) 0.7VCC(2) VCC + 0.5 VCC + 0.5 VIH2 Input High Voltage, RESET pin VCC = 1.8V - 5.5V 0.9VCC(2) VCC + 0.5 VOL Output Low Voltage(3), Except RESET pin IOL = 20mA, VCC = 5V IOL = 10mA, VCC = 3V VOH Output High Voltage(4), Except RESET pin IOH = -20mA, VCC = 5V IOH = -10mA, VCC = 3V IIL Input Leakage Current I/O Pin VCC = 5.5V, pin low (absolute value) 1 IIH Input Leakage Current I/O Pin VCC = 5.5V, pin high (absolute value) 1 RRST Reset Pull-up Resistor 30 60 RPU I/O Pin Pull-up Resistor 20 50 Units V 0.9 0.6 4.2 2.3 A ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A k 355 TA = -40C to 85C, VCC = 1.8V to 5.5V (unless otherwise noted) (Continued) Symbol Parameter Power Supply Current Condition (5) ICC Power-down mode Typ. Max. Active 1MHz, VCC = 2V (ATmega640/1280/2560/1V) 0.5 0.8 Active 4MHz, VCC = 3V (ATmega640/1280/2560/1L) 3.2 5 Active 8MHz, VCC = 5V (ATmega640/1280/1281/2560/2561) 10 14 Idle 1MHz, VCC = 2V (ATmega640/1280/2560/1V) 0.14 0.22 Idle 4MHz, VCC = 3V (ATmega640/1280/2560/1L) 0.7 1.1 Idle 8MHz, VCC = 5V (ATmega640/1280/1281/2560/2561) 2.7 4 WDT enabled, VCC = 3V <5 15 WDT disabled, VCC = 3V <1 7.5 <10 40 mV 50 nA VACIO Analog Comparator Input Offset Voltage VCC = 5V Vin = VCC/2 IACLK Analog Comparator Input Leakage Current VCC = 5V Vin = VCC/2 tACID Analog Comparator Propagation Delay VCC = 2.7V VCC = 4.0V Notes: Min. Units mA -50 750 500 A ns 1. "Max" means the highest value where the pin is guaranteed to be read as low. 2. "Min" means the lowest value where the pin is guaranteed to be read as high. 3. Although each I/O port can sink more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady state conditions (non-transient), the following must be observed: ATmega1281/2561: 1.)The sum of all IOL, for ports A0-A7, G2, C4-C7 should not exceed 100mA. 2.)The sum of all IOL, for ports C0-C3, G0-G1, D0-D7 should not exceed 100mA. 3.)The sum of all IOL, for ports G3-G5, B0-B7, E0-E7 should not exceed 100mA. 4.)The sum of all IOL, for ports F0-F7 should not exceed 100mA. ATmega640/1280/2560: 1.)The sum of all IOL, for ports J0-J7, A0-A7, G2 should not exceed 200mA. 2.)The sum of all IOL, for ports C0-C7, G0-G1, D0-D7, L0-L7 should not exceed 200mA. 3.)The sum of all IOL, for ports G3-G4, B0-B7, H0-B7 should not exceed 200mA. 4.)The sum of all IOL, for ports E0-E7, G5 should not exceed 100mA. 5.)The sum of all IOL, for ports F0-F7, K0-K7 should not exceed 100mA. If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition. 4. Although each I/O port can source more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady state conditions (non-transient), the following must be observed: ATmega1281/2561: 1)The sum of all IOH, for ports A0-A7, G2, C4-C7 should not exceed 100mA. 2)The sum of all IOH, for ports C0-C3, G0-G1, D0-D7 should not exceed 100mA. 3)The sum of all IOH, for ports G3-G5, B0-B7, E0-E7 should not exceed 100mA. 4)The sum of all IOH, for ports F0-F7 should not exceed 100mA. ATmega640/1280/2560: 1)The sum of all IOH, for ports J0-J7, G2, A0-A7 should not exceed 200mA. 2)The sum of all IOH, for ports C0-C7, G0-G1, D0-D7, L0-L7 should not exceed 200mA. 3)The sum of all IOH, for ports G3-G4, B0-B7, H0-H7 should not exceed 200mA. 4)The sum of all IOH, for ports E0-E7, G5 should not exceed 100mA. 5)The sum of all IOH, for ports F0-F7, K0-K7 should not exceed 100mA. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 356 If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition. 5. Values with "PRR1 - Power Reduction Register 1" on page 56 enabled (0xFF). 31.2 Speed Grades Maximum frequency is depending on VCC. As shown in Figure 31-1 trough Figure 31-4 on page 358, the Maximum Frequency vs. VCC curve is linear between 1.8V < VCC < 2.7V and between 2.7V < VCC < 4.5V. 31.2.1 8MHz Figure 31-1. Maximum Frequency vs. VCC, ATmega640V/1280V/1281V/2560V/2561V 8 MHz Safe Operating Area 4 MHz 1.8V 2.7V 5.5V Figure 31-2. Maximum Frequency vs. VCC when also No-Read-While-Write Section(1), ATmega2560V/ATmega2561V, is used 8 MHz Safe Operating Area 2 MHz 1.8V Note: 2.7V 5.5V 1. When only using the Read-While-Write Section of the program memory, a higher speed can be achieved at low voltage, see "Read-While-Write and No Read-While-Write Flash Sections" on page 310 for addresses. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 357 31.2.2 16MHz Figure 31-3. Maximum Frequency vs. VCC, ATmega640/ATmega1280/ATmega1281 16 MHz 8 MHz Safe Operating Area 2.7V 4.5V 5.5V Figure 31-4. Maximum Frequency vs. VCC, ATmega2560/ATmega2561 16 MHz Safe Operating Area 4.5V 5.5V ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 358 31.3 31.3.1 Clock Characteristics Calibrated Internal RC Oscillator Accuracy Table 31-1. Calibration Accuracy of Internal RC Oscillator Factory Calibration User Calibration Notes: 31.3.2 Frequency VCC 8.0MHz 3V (1) 1.8V - 5.5V 2.7V - 5.5V(2) 7.3MHz - 8.1MHz Temperature Calibration Accuracy 25C 10% -40C - 85C 1% 1. Voltage range for ATmega640V/1281V/1280V/2561V/2560V. 2. Voltage range for ATmega640/1281/1280/2561/2560. External Clock Drive Waveforms Figure 31-5. External Clock Drive Waveforms V IH1 V IL1 31.4 External Clock Drive Table 31-2. External Clock Drive VCC = 1.8V - 5.5V Symbol Parameter 1/tCLCL Oscillator Frequency VCC = 2.7V - 5.5V VCC = 4.5V - 5.5V Min. Max. Min. Max. Min. Max. Units 0 2 0 8 0 16 MHz tCLCL Clock Period 500 125 62.5 tCHCX High Time 200 50 25 tCLCX Low Time 200 50 25 tCLCH Rise Time 2.0 1.6 0.5 tCHCL Fall Time 2.0 1.6 0.5 tCLCL Change in period from one clock cycle to the next 2 2 2 ns ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A s % 359 31.5 System and Reset Characteristics Table 31-3. Symbol Parameter Condition Min Typ 0.2VCC VRST RESET Pin Threshold Voltage tRST Minimum pulse width on RESET Pin Max Units 0.9VCC V 2.5 s Brown-out Detector Hysteresis 50 mV tBOD Min Pulse Width on Brown-out Reset 2 s VBG Bandgap reference voltage VCC=2.7V, TA= 25C tBG Bandgap reference start-up time IBG Bandgap reference current consumption VHYST Note: 31.5.1 Reset, Brown-out and Internal voltage CharacteristicsCharacteristics 1.0 1.1 1.2 V VCC=2.7V, TA= 25C 40 70 s VCC=2.7V, TA= 25C 10 A 1. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling). Standard Power-On Reset This implementation of power-on reset existed in early versions of ATmega640/1280/1281/2560/2561. The table below describes the characteristics of this power-on reset and it is valid for the following devices only: * ATmega640: revision A * ATmega1280: revision A * ATmega1281: revision A * ATmega2560: revision A to E * ATmega2561: revision A to E Table 31-4. Symbol Characteristics of Standard Power-On Reset. TA= -40 to +85C. Parameter (2) VPOT VPSR Notes: Power-on Reset Threshold Voltage (rising) Power-on Reset Threshold Voltage (falling) Power-on slope rate (3) Min.(1) Typ.(1) Max.(1) Units 0.7 1.0 1.4 V 0.05 0.9 1.3 V 4.5 V/ms 0.01 1. Values are guidelines only. 2. Threshold where device is released from reset when voltage is rising. 3. The power-on reset threshold voltage (falling) will not work unless the supply voltage has been below VPOT. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 360 31.5.2 Enhanced Power-On Reset This implementation of power-on reset exists in newer versions of ATmega640/1280/1281/2560/2561. The table below describes the characteristics of this power-on reset and it is valid for the following devices only: * ATmega640: revision B and newer * ATmega1280: revision B and newer * ATmega1281: revision B and newer * ATmega2560: revision F and newer * ATmega2561: revision F and newer Table 31-5. Symbol Parameter Power-on Reset Threshold Voltage (rising) VPOT (2) Power-on Reset Threshold Voltage (falling) VPSR Notes: Characteristics of Enhanced Power-On Reset. TA= -40 to +85C. Power-On Slope Rate (3) Min.(1) Typ.(1) Max.(1) Units 1.1 1.4 1.6 V 0.6 1.3 1.6 V 0.01 V/ms 1. Values are guidelines only. 2. Threshold where device is released from reset when voltage is rising. 3. The power-on reset threshold voltage (falling) will not work unless the supply voltage has been below VPOT. Table 31-6. BODLEVEL Fuse Coding(1) BODLEVEL 2:0 Fuses Min. VBOT 111 Typ. VBOT Max. VBOT Units BOD Disabled 110 1.7 1.8 2.0 101 2.5 2.7 2.9 100 4.1 4.3 4.5 V 011 010 Reserved 001 000 Note: 31.6 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where this is the case, the device is tested down to VCC = VBOT during the production test. This guarantees that a Brown-Out Reset will occur before VCC drops to a voltage where correct operation of the microcontroller is no longer guaranteed. The test is performed using BODLEVEL = 110 for 4MHz operation of ATmega640V/1280V/1281V/2560V/2561V, BODLEVEL = 101 for 8MHz operation of ATmega640V/1280V/1281V/2560V/2561V and ATmega640/1280/1281, and BODLEVEL = 100 for 16MHz operation of ATmega640/1280/1281/2560/2561. 2-wire Serial Interface Characteristics Table 31-7 on page 362 describes the requirements for devices connected to the 2-wire Serial Bus. The ATmega640/1280/1281/2560/2561 2-wire Serial Interface meets or exceeds these requirements under the noted conditions. Timing symbols refer to Figure 31-6 on page 363. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 361 Table 31-7. 2-wire Serial Bus Requirements Symbol Parameter VIL VIH Vhys (1) Min. Max. Input Low-voltage -0.5 0.3 VCC Input High-voltage 0.7 VCC VCC + 0.5 Hysteresis of Schmitt Trigger Inputs (1) VOL tr Condition 0.05 Output Low-voltage (1) 3mA sink current Output Fall Time from VIHmin to VILmax (1) tSP Spikes Suppressed by Input Filter Ii Input Current each I/O Pin Ci(1) Capacitance for each I/O Pin 300 20 + 0.1Cb(3)(2) 250 0 50(2) -10 10 A - 10 pF 0 400 kHz fSCL 100kHz V CC - 0.4V ---------------------------3mA 1000ns ------------------Cb fSCL > 100kHz V CC - 0.4V ---------------------------3mA 300 ns----------------Cb fSCL 100kHz 4.0 - fSCL > 100kHz 0.6 - fSCL 100kHz(6) 4.7 - (7) 1.3 - fSCL 100kHz 4.0 - fSCL > 100kHz 0.6 - fSCL 100kHz 4.7 - fSCL > 100kHz 0.6 - fSCL 100kHz 0 3.45 fSCL > 100kHz 0 0.9 fSCL 100kHz 250 - fSCL > 100kHz 100 - fSCL 100kHz 4.0 - fSCL > 100kHz 0.6 - fSCL 100kHz 4.7 - fSCL > 100kHz 1.3 - 10pF < Cb < 400pF(3) > max(16fSCL, 250kHz)(5) Value of Pull-up resistor tHD;STA Hold Time (repeated) START Condition tLOW Low Period of the SCL Clock tHIGH High period of the SCL clock tSU;STA Set-up time for a repeated START condition fSCL > 100kHz tHD;DAT Data hold time tSU;DAT Data setup time tSU;STO Setup time for STOP condition tBUF Bus free time between a STOP and START condition Note: 20 + 0.1Cb(3)(2) fCK(4) Rp V 0.4 0.1VCC < Vi < 0.9VCC SCL Clock Frequency fSCL - 0 Rise Time for both SDA and SCL (1) tof VCC(2) Units ns s 1. In ATmega640/1280/1281/2560/2561, this parameter is characterized and not 100% tested. 2. 3. 4. 5. Required only for fSCL > 100kHz. Cb = capacitance of one bus line in pF. fCK = CPU clock frequency. This requirement applies to all ATmega640/1280/1281/2560/2561 2-wire Serial Interface operation. Other devices connected to the 2-wire Serial Bus need only obey the general fSCL requirement. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 362 6. The actual low period generated by the ATmega640/1280/1281/2560/2561 2-wire Serial Interface is (1/fSCL - 2/fCK), thus fCK must be greater than 6MHz for the low time requirement to be strictly met at fSCL = 100kHz. 7. The actual low period generated by the ATmega640/1280/1281/2560/2561 2-wire Serial Interface is (1/fSCL - 2/fCK), thus the low time requirement will not be strictly met for fSCL > 308kHz when fCK = 8MHz. Still, ATmega640/1280/1281/2560/2561 devices connected to the bus may communicate at full speed (400kHz) with other ATmega640/1280/1281/2560/2561 devices, as well as any other device with a proper tLOW acceptance margin. Figure 31-6. 2-wire Serial Bus Timing tof tHIGH tr tLOW tLOW SCL tSU;STA tHD;STA tHD;DAT tSU;DAT tSU;STO SDA tBUF 31.7 SPI Timing Characteristics See Figure 31-7 and Figure 31-8 on page 364 for details. Table 31-8. SPI Timing Parameters Description Mode 1 SCK period Master See Table 21-5 on page 198 2 SCK high/low Master 50% duty cycle 3 Rise/Fall time Master 3.6 4 Setup Master 10 5 Hold Master 10 6 Out to SCK Master 0.5 * tsck 7 SCK to out Master 10 8 SCK to out high Master 10 9 SS low to out Slave 15 10 SCK period Slave 4 * tck 11 SCK high/low(1) Slave 2 * tck 12 Rise/Fall time Slave 13 Setup Slave 10 14 Hold Slave tck 15 SCK to out Slave 16 SCK to SS high Slave 17 SS high to tri-state Slave 18 SS low to SCK Slave Note: Min. Typ. Max. ns 1600 15 20 10 20 1. In SPI Programming mode the minimum SCK high/low period is: - 2 tCLCL for fCK < 12MHz - 3 tCLCL for fCK > 12MHz ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 363 Figure 31-7. SPI Interface Timing Requirements (Master Mode) SS 6 1 SCK (CPOL = 0) 2 2 SCK (CPOL = 1) 4 MISO (Data Input) 5 3 MSB ... LSB 8 7 MOSI (Data Output) MSB ... LSB Figure 31-8. SPI Interface Timing Requirements (Slave Mode) SS 10 9 16 SCK (CPOL = 0) 11 11 SCK (CPOL = 1) 13 MOSI (Data Input) 14 12 MSB ... LSB 15 MISO (Data Output) MSB 17 ... LSB X ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 364 31.8 ADC Characteristics - Preliminary Data Table 31-9. Symbol ADC Characteristics, Singel Ended Channels Typ. (1) Max. (1) Condition Resolution Single Ended Conversion 10 Single Ended Conversion VREF = 4V, VCC = 4V, CLKADC= 200kHz 2.25 Single Ended Conversion VREF = 4V, VCC = 4V, CLKADC = 1MHz 3 Single Ended Conversion VREF = 4V, VCC = 4V, CLKADC = 200kHz Noise Reduction Mode 2 Single Ended Conversion VREF = 4V, VCC = 4V, CLKADC = 1MHz Noise Reduction Mode 3 Integral Non-Linearity (INL) Single Ended Conversion VREF = 4V, VCC = 4V, CLKADC = 200kHz 1.25 Differential Non-Linearity (DNL) Single Ended Conversion VREF = 4V, VCC = 4V, CLKADC = 200kHz 0.5 Gain Error Single Ended Conversion VREF = 4V, VCC = 4V, CLKADC= 200kHz 2 Offset Error Single Ended Conversion VREF = 4V, VCC = 4V, CLKADC = 200kHz -2 Conversion Time Free Running Conversion 13 260 s Clock Frequency Single Ended Conversion 50 1000 kHz VCC - 0.3 VCC + 0.3 1.0 AVCC GND VREF Absolute accuracy (Including INL, DNL, quantization error, gain and offset error) AVCC Analog Supply Voltage VREF Reference Voltage VIN Min. (1) Parameter Input Voltage Units Bits 2.5 LSB Input Bandwidth 38,5 V kHz VINT1 Internal Voltage Reference 1.1V 1.0 1.1 1.2 VINT2 Internal Voltage Reference 2.56V 2.4 2.56 2.8 RREF Reference Input Resistance 32 k RAIN Analog Input Resistance 100 M Note: V 1. Values are guidelines only. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 365 Table 31-10. ADC Characteristics, Differential Channels Symbol Parameter Condition Gain = Resolution Absolute Accuracy(Including INL, DNL, Quantization Error, Gain and Offset Error) Integral Non-Linearity (INL) Differential Non-Linearity (DNL) Gain Error Offset Error Clock Frequency Min. (1) Typ. (1) 1x 8 Gain = 10x 8 Gain = 200x 7 Gain = 1x VREF = 4V, VCC = 5V CLKADC = 50 - 200kHz 18 Gain = 10x VREF = 4V, VCC = 5V CLKADC = 50 - 200kHz 17 Gain = 200x VREF = 4V, VCC = 5V CLKADC = 50 - 200kHz 9 Gain = 1x VREF = 4V, VCC = 5V CLKADC = 50 - 200kHz 2.5 Gain = 10x VREF = 4V, VCC = 5V CLKADC = 50 - 200kHz 5 Gain = 200x VREF = 4V, VCC = 5V CLKADC = 50 - 200kHz 9 Gain = 1x VREF = 4V, VCC = 5V CLKADC = 50 - 200kHz 0.75 Gain = 10x VREF = 4V, VCC = 5V CLKADC = 50 - 200kHz Max. (1) Unit s Bits LSB 1.5 Gain = 200x VREF = 4V, VCC = 5V CLKADC = 50 - 200kHz 10 Gain = 1x 1.7 Gain = 10x 1.7 Gain = 200x 0.5 Gain = 1x VREF = 4V, VCC = 5V CLKADC = 50 - 200kHz 2 Gain = 10x VREF = 4V, VCC = 5V CLKADC = 50 - 200kHz 2 Gain = 200x VREF = 4V, VCC = 5V CLKADC = 50 - 200kHz 3 50 % LSB 200 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A kHz 366 Table 31-10. ADC Characteristics, Differential Channels (Continued) Symbol Max. (1) Unit s 65 260 s VCC - 0.3 VCC + 0.3 2.7 AVCC - 0.5 GND VCC Input Differential Voltage -VREF/Gain VREF/Gain ADC Conversion Output -511 511 Parameter Condition Min. (1) Conversion Time AVCC Analog Supply Voltage VREF Reference Voltage VIN Input Voltage VDIFF Input Bandwidth Typ. (1) 4 LSB kHz VINT Internal Voltage Reference RREF Reference Input Resistance 32 k RAIN Analog Input Resistance 100 M Note: Values are guidelines only. 31.9 External Data Memory Timing 2.3 V 2.56 2.8 V Table 31-11. External Data Memory Characteristics, 4.5 to 5.5 Volts, No Wait-state 8MHz Oscillator Min. Max. Variable Oscillator Symbol Parameter 0 1/tCLCL Oscillator Frequency 1 tLHLL ALE Pulse Width 115 1.0tCLCL-10 2 tAVLL Address Valid A to ALE Low 57.5 0.5tCLCL-5(1) 3a tLLAX_ST Address Hold After ALE Low, write access 5 5 3b tLLAX_LD Address Hold after ALE Low, read access 5 5 4 tAVLLC Address Valid C to ALE Low 57.5 0.5tCLCL-5(1) 5 tAVRL Address Valid to RD Low 115 1.0tCLCL-10 6 tAVWL Address Valid to WR Low 115 1.0tCLCL-10 7 tLLWL ALE Low to WR Low 47.5 67.5 8 tLLRL ALE Low to RD Low 47.5 67.5 9 tDVRH Data Setup to RD High 10 tRLDV Read Low to Data Valid 11 tRHDX Data Hold After RD High 12 tRLRH 13 40 Min. Max. 0.0 16 MHz 0.5tCLCL-15(2) 0.5tCLCL+5(2) 0.5tCLCL-15(2) 0.5tCLCL+5(2) ns 40 75 1.0tCLCL-50 0 0 RD Pulse Width 115 1.0tCLCL-10 tDVWL Data Setup to WR Low 42.5 0.5tCLCL-20(1) 14 tWHDX Data Hold After WR High 115 1.0tCLCL-10 15 tDVWH Data Valid to WR High 125 1.0tCLCL 16 tWLWH WR Pulse Width 115 1.0tCLCL-10 Notes: Unit 1. This assumes 50% clock duty cycle. The half period is actually the high time of the external clock, XTAL1. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 367 2. This assumes 50% clock duty cycle. The half period is actually the low time of the external clock, XTAL1. Table 31-12. External Data Memory Characteristics, 4.5 to 5.5 Volts, 1 Cycle Wait-state 8MHz Oscillator Min. Max. Variable Oscillator Symbol Parameter Min. Max. Unit 0 1/tCLCL Oscillator Frequency 0.0 16 MHz 10 tRLDV Read Low to Data Valid 12 tRLRH RD Pulse Width 240 2.0tCLCL-10 15 tDVWH Data Valid to WR High 240 2.0tCLCL 16 tWLWH WR Pulse Width 240 2.0tCLCL-10 200 2.0tCLCL-50 ns Table 31-13. External Data Memory Characteristics, 4.5 to 5.5 Volts, SRWn1 = 1, SRWn0 = 0 4MHz Oscillator Symbol Parameter Min. Max. Variable Oscillator Min. Max. Unit 0.0 16 MHz 0 1/tCLCL Oscillator Frequency 10 tRLDV Read Low to Data Valid 12 tRLRH RD Pulse Width 365 3.0tCLCL-10 15 tDVWH Data Valid to WR High 375 3.0tCLCL 16 tWLWH WR Pulse Width 365 3.0tCLCL-10 325 3.0tCLCL-50 ns Table 31-14. External Data Memory Characteristics, 4.5 to 5.5 Volts, SRWn1 = 1, SRWn0 = 1 4MHz Oscillator Min. Max. Variable Oscillator Symbol Parameter Min. Max. Unit 0 1/tCLCL Oscillator Frequency 0.0 16 MHz 10 tRLDV Read Low to Data Valid 12 tRLRH RD Pulse Width 365 3.0tCLCL-10 14 tWHDX Data Hold After WR High 240 2.0tCLCL-10 15 tDVWH Data Valid to WR High 375 3.0tCLCL 16 tWLWH WR Pulse Width 365 3.0tCLCL-10 325 3.0tCLCL-50 ns ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 368 Table 31-15. External Data Memory Characteristics, 2.7 to 5.5 Volts, No Wait-state 4MHz Oscillator Min. Max. Variable Oscillator Symbol Parameter Min. Max. Unit 0 1/tCLCL Oscillator Frequency 0.0 8 MHz 1 tLHLL ALE Pulse Width 235 tCLCL-15 2 tAVLL Address Valid A to ALE Low 115 0.5tCLCL-10(1) 3a tLLAX_ST Address Hold After ALE Low, write access 5 5 3b tLLAX_LD Address Hold after ALE Low, read access 5 5 4 tAVLLC Address Valid C to ALE Low 115 0.5tCLCL-10(1) 5 tAVRL Address Valid to RD Low 235 1.0tCLCL-15 6 tAVWL Address Valid to WR Low 235 1.0tCLCL-15 7 tLLWL ALE Low to WR Low 115 130 0.5tCLCL-10(2) 0.5tCLCL+5(2) 8 tLLRL ALE Low to RD Low 115 130 0.5tCLCL-10(2) 0.5tCLCL+5(2) ns 9 tDVRH Data Setup to RD High 45 10 tRLDV Read Low to Data Valid 11 tRHDX Data Hold After RD High 12 tRLRH 13 45 190 1.0tCLCL-60 0 0 RD Pulse Width 235 1.0tCLCL-15 tDVWL Data Setup to WR Low 105 0.5tCLCL-20(1) 14 tWHDX Data Hold After WR High 235 1.0tCLCL-15 15 tDVWH Data Valid to WR High 250 1.0tCLCL 16 tWLWH WR Pulse Width 235 1.0tCLCL-15 Notes: 1. This assumes 50% clock duty cycle. The half period is actually the high time of the external clock, XTAL1. 2. This assumes 50% clock duty cycle. The half period is actually the low time of the external clock, XTAL1. Table 31-16. External Data Memory Characteristics, 2.7 to 5.5 Volts, SRWn1 = 0, SRWn0 = 1 4MHz Oscillator Min. Max. Variable Oscillator Symbol Parameter Min. Max. Unit 0 1/tCLCL Oscillator Frequency 0.0 8 MHz 10 tRLDV Read Low to Data Valid 12 tRLRH RD Pulse Width 485 2.0tCLCL-15 15 tDVWH Data Valid to WR High 500 2.0tCLCL 16 tWLWH WR Pulse Width 485 2.0tCLCL-15 440 2.0tCLCL-60 ns ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 369 Table 31-17. External Data Memory Characteristics, 2.7 to 5.5 Volts, SRWn1 = 1, SRWn0 = 0 4MHz Oscillator Min. Variable Oscillator Symbol Parameter Max. Min. Max. Unit 0 1/tCLCL Oscillator Frequency 0.0 8 MHz 10 tRLDV Read Low to Data Valid 12 tRLRH RD Pulse Width 735 3.0tCLCL-15 15 tDVWH Data Valid to WR High 750 3.0tCLCL 16 tWLWH WR Pulse Width 735 3.0tCLCL-15 690 3.0tCLCL-60 ns Table 31-18. External Data Memory Characteristics, 2.7 to 5.5 Volts, SRWn1 = 1, SRWn0 = 1 4MHz Oscillator Min. Variable Oscillator Symbol Parameter Max. Min. Max. Unit 0 1/tCLCL Oscillator Frequency 0.0 8 MHz 10 tRLDV Read Low to Data Valid 12 tRLRH RD Pulse Width 735 3.0tCLCL-15 14 tWHDX Data Hold After WR High 485 2.0tCLCL-15 15 tDVWH Data Valid to WR High 750 3.0tCLCL 16 tWLWH WR Pulse Width 735 3.0tCLCL-15 690 3.0tCLCL-60 ns Figure 31-9. External Memory Timing (SRWn1 = 0, SRWn0 = 0 T1 T2 T3 T4 System Clock (CLKCPU ) 1 ALE 4 A15:8 7 Prev. addr. Address 15 3a DA7:0 Prev. data Address 13 XX Data 14 16 6 Write 2 WR 3b 9 Address 11 Data 5 Read DA7:0 (XMBK = 0) 10 8 12 RD ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 370 Figure 31-10. External Memory Timing (SRWn1 = 0, SRWn0 = 1) T1 T2 T3 T4 T5 System Clock (CLKCPU ) 1 ALE 4 A15:8 7 Prev. addr. Address 15 3a DA7:0 Prev. data Address 13 Data XX 14 16 6 Write 2 WR 3b DA7:0 (XMBK = 0) 11 9 Data 5 Read Address 10 8 12 RD Figure 31-11. External Memory Timing (SRWn1 = 1, SRWn0 = 0) T1 T2 T3 T4 T5 T6 System Clock (CLKCPU ) 1 ALE 4 A15:8 7 Address Prev. addr. 15 DA7:0 Prev. data 3a Address 13 XX Data 14 16 6 Write 2 WR 9 3b Address Data 5 Read DA7:0 (XMBK = 0) 11 10 8 12 RD ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 371 Figure 31-12. External Memory Timing (SRWn1 = 1, SRWn0 = 1)() T1 T2 T3 T4 T6 T5 T7 System Clock (CLKCPU ) 1 ALE 4 A15:8 7 Address Prev. addr. 15 3a DA7:0 Prev. data Address 13 XX Data 14 16 6 Write 2 WR 9 3b Address 11 Data 5 Read DA7:0 (XMBK = 0) 10 8 12 RD The ALE pulse in the last period (T4-T7) is only present if the next instruction accesses the RAM (internal or external). ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 372 32. Typical Characteristics The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock source. All Active- and Idle current consumption measurements are done with all bits in the PRR registers set and thus, the corresponding I/O modules are turned off. Also the Analog Comparator is disabled during these measurements. Table 32-1 on page 378 and Table 32-2 on page 379 show the additional current consumption compared to ICC Active and ICC Idle for every I/O module controlled by the Power Reduction Register. See "Power Reduction Register" on page 52 for details. The power consumption in Power-down mode is independent of clock selection. The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency. The current drawn from capacitive loaded pins may be estimated (for one pin) as CL x VCC x f where CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin. The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at frequencies higher than the ordering code indicates. The difference between current consumption in Power-down mode with Watchdog Timer enabled and Power-down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer. Active Supply Current Figure 32-1. Active Supply Current vs. frequency (0.1MHz - 1.0MHz) 2.5 2 5.5V 5.0V ICC (m A) 32.1 1.5 4.5V 4.0V 1 3.3V 2.7V 1.8V 0.5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency (MHz) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 373 Figure 32-2. Active Supply Current vs. Frequency (1MHz - 16MHz) 1 MHz - 16 MHz 25 5.5V 5.0V 20 ICC (m A) 4.5V 15 4.0V 10 3.3V 2.7V 5 1.8V 0 0 2 4 6 8 10 12 14 16 Frequency (MHz) Figure 32-3. Active Supply Current vs. VCC (Internal RC Oscillator, 8MHz) INTERNAL RC OSCILLATOR, 8 MHz 14 85C 25C -40C 12 ICC (mA) 10 8 6 4 2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 374 Figure 32-4. Active Supply Current vs. VCC (Internal Oscillator, INTERNAL RCRC OSCILLATOR, 1 MHz 1MHz) 2.5 -40C 85C 25C 2 ICC (mA) 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 32-5. Active Supply Current vs. VCC (Internal RC Oscillator, 128kHz) 0.7 0.6 -40C ICC (mA) 0.5 0.4 25C 85C 0.3 0.2 0.1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 375 Idle Supply Current Figure 32-6. Idle Supply Current vs. Low Frequency (0.1MHz 0.1 MHz - 1.0 MHz - 1.0MHz) 0.6 5.5V 0.5 5.0V ICC (mA) 0.4 4.5V 4.0V 0.3 3.3V 0.2 2.7V 1.8V 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency (MHz) Figure 32-7. Idle Supply Current vs. Frequency (1MHz - 16MHz) 8 7 5.5V 6 5.0V 5 ICC (m A) 32.2 4.5V 4 4.0V 3 2 3.3V 2.7V 1 1.8V 0 0 2 4 6 8 10 12 14 16 Frequency (MHz) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 376 Figure 32-8. Idle Supply Current vs. VCC (Internal RC Oscillator, 8MHz) 3.5 85C 25C -40C 3 ICC (mA) 2.5 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 32-9. Idle Supply Current vs. VCC (Internal RC Oscillator, 1MHz) INTERNAL RC OSCILLATOR, 1 MHz 0.9 -40C 0.8 0.7 85C 25C ICC (mA) 0.6 0.5 0.4 0.3 0.2 0.1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 377 Figure 32-10. Idle Supply Current vs. VCC (Internal RC Oscillator, 128kHz)I INTERNAL RC OSCILLATOR, 128 kHz 0.3 -40C 0.25 ICC (m A) 0.2 0.15 25C 85C 0.1 0.05 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 32.2.1 Supply Current of IO modules The tables and formulas below can be used to calculate the additional current consumption for the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules are controlled by the Power Reduction Register. See "Power Reduction Register" on page 52 for details. Table 32-1. Additional Current Consumption for the different I/O modules (absolute values) PRR bit Typical numbers VCC = 2V, F = 1MHz VCC = 3V, F = 4MHz VCC = 5V, F = 8MHz PRUSART3 8.0A 51A 220A PRUSART2 8.0A 51A 220A PRUSART1 8.0A 51A 220A PRUSART0 8.0A 51A 220A PRTWI 12A 75A 315A PRTIM5 6.0A 39A 150A PRTIM4 6.0A 39A 150A PRTIM3 6.0A 39A 150A PRTIM2 11A 72A 300A PRTIM1 6.0A 39A 150A PRTIM0 4.0A 24A 100A PRSPI 15A 95A 400A PRADC 12A 75A 315A ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 378 Table 32-2. Additional Current Consumption (percentage) in Active and Idle mode Additional Current consumption compared to Active with external clock Additional Current consumption compared to Idle with external clock PRUSART3 3.0% 17% PRUSART2 3.0% 17% PRUSART1 3.0% 17% PRUSART0 3.0% 17% PRTWI 4.4% 24% PRTIM5 1.8% 10% PRTIM4 1.8% 10% PRTIM3 1.8% 10% PRTIM2 4.3% 23% PRTIM1 1.8% 10% PRTIM0 1.5% 8.0% PRSPI 3.3% 18% PRADC 4.5% 24% PRR bit It is possible to calculate the typical current consumption based on the numbers from Table 32-1 on page 378 for other VCC and frequency settings than listed in Table 32-2. 32.2.1.1 Example 1 Calculate the expected current consumption in idle mode with USART0, TIMER1, and TWI enabled at VCC = 2.0V and F = 1MHz. From Table 32-2, third column, we see that we need to add 17% for the USART0, 24% for the TWI, and 10% for the TIMER1 module. Reading from Figure 32-6 on page 376, we find that the idle current consumption is ~0.15mA at VCC = 2.0V and F = 1MHz. The total current consumption in idle mode with USART0, TIMER1, and TWI enabled, gives: I CC total 0.15mA 1 + 0.17 + 0.24 + 0.10 0.227mA ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 379 Power-down Supply Current Figure 32-11. Power-down Supply Current vs.WATCHDOG VCC (Watchdog Timer Disabled) TIMERDISABLED 4 85C 3.5 3 ICC (A) 2.5 2 1.5 -40C 25C 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 32-12. Power-down Supply Current vs. VCC (Watchdog Timer Enabled) 12 85C 10 -40C 25C 8 ICC (A) 32.3 6 4 2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 380 Power-save Supply Current Figure 32-13. Power-save Supply Current vs. VCC (Watchdog Timer Disabled) 11 25C 10 ICC(A) 9 8 7 6 5 4 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 32-14. Power-save Supply Current vs.WATCHDOG VCC (Watchdog Timer Enabled) TIMERENABLED 9 8 25C 7 6 I CC (A) 32.4 5 4 3 2 1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 381 32.5 Standby Supply Current Figure 32-15. Standby Supply Current vs. VCCWATCHDOG (Watchdog Timer Disabled) TIMER DISABLED 0.2 6MHz xtal 6MHz res 0.18 0.16 ICC (mA) 0.14 4MHz res 4MHz xtal 0.12 0.1 0.08 2MHz res 2MHz xtal 0.06 1MHz res 455kHz res 0.04 0.02 32kHz xtal 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Pin Pull-up Figure 32-16. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V) 60 50 40 IOP (A) 32.6 30 20 10 25C 85C -40C 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOP (V) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 382 Figure 32-17. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V) 90 80 70 IOP (A) 60 50 40 30 20 85C 25C -40C 10 0 0 0.5 1 1.5 2 2.5 3 VOP (V) Figure 32-18. I/O Pin Pull-up Resistor Current vs. InputCCVoltage (VCC = 5V) 160 140 120 IOP (A) 100 80 60 40 25C 85C -40C 20 0 0 1 2 3 4 5 6 VOP (V) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 383 Figure 32-19. Reset Pull-up Resistor Current vs. ResetCCPin Voltage (VCC = 1.8V) 40 35 IRESET (A) 30 25 20 15 10 25C -40C 85C 5 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VRESET (V) Figure 32-20. Reset pull-up Resistor Current vs. ResetccPin Voltage (VCC = 2.7V) 70 60 IRESET (A) 50 40 30 20 25C -40C 85C 10 0 0 0.5 1 1.5 2 2.5 3 VRESET (V) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 384 Figure 32-21. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V) 120 100 IRESET (A) 80 60 40 20 25C -40C 85C 0 0 1 2 3 4 5 6 VRESET (V) Pin Driver Strength Figure 32-22. I/O Pin output Voltage vs.Sink Current (VCCCC = 3V) 1 0.9 85C 0.8 VOL (V) 32.7 0.7 25C 0.6 -40C 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 25 IOL (mA) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 385 Figure 32-23. I/O Pin Output Voltage vs. Sink Current (V CC CC = 5V) 0.6 85C 0.5 25C -40C VOL (V) 0.4 0.3 0.2 0.1 0 0 5 10 15 20 25 IOL (mA) Figure 32-24. I/O Pin Output Voltage vs. Source Current CC (VCC = 3V) 3.5 3 VOH (V) 2.5 -40C 25C 85C 2 1.5 1 0.5 0 0 5 10 15 20 25 IOH (mA) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 386 Figure 32-25. I/O Pin Output Voltage vs. Source Current (VCC = 5V) CC 5.1 5 4.9 VOH (V) 4.8 4.7 4.6 -40C 4.5 25C 4.4 85C 4.3 0 5 10 15 20 25 IOH (mA) Pin Threshold and Hysteresis Figure 32-26. I/O Pin Input Threshold Voltage vs. Pin Read as "1") VIH,V IOCC PIN(V READ AS '1' IH, IO 3.5 -40C 25C 85C 3 2.5 Threshold (V) 32.8 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 387 Figure 32-27. I/O Pin Input Threshold Voltage vs. VCC (VIL, IO Pin Read as "0") 2.5 85C 25C -40C Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 32-28. I/O Pin Input Hysteresis CC 0.8 -40C Input Hyst eresis (mV) 0.7 0.6 0.5 25C 85C 0.4 0.3 0.2 0.1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 388 Figure 32-29. Reset Input Threshold Voltage vs. VCC (VIH, IO Pin Read as "1") 2.5 -40C 25C 85C Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 32-30. Reset Input Threshold Voltage vs. VIL, VCC , IO AS Pin IO(V PINILREAD '0' Read as "0") 2.5 85C 25C -40C Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 389 Figure 32-31. Reset Pin Input Hysteresis vs. VCC 0.7 Input Hysteresis (mV) 0.6 0.5 0.4 0.3 0.2 0.1 -40C 25C 85C 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 60 80 100 VCC (V) BOD Threshold and Analog Comparator Offset Figure 32-32. BOD Threshold vs. Temperature (BOD Level is 4.3V) 4.4 4.35 Rising Vcc Threshold (V) 32.9 4.3 4.25 Falling Vcc 4.2 -60 -40 -20 0 20 40 Temperature (C) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 390 Figure 32-33. BOD Threshold vs. Temperature (BOD Level is 2.7V) 2.8 Rising Vcc Threshold (V) 2.75 2.7 Falling Vcc 2.65 2.6 -60 -40 -20 0 20 40 60 80 60 80 100 Temperature (C) Figure 32-34. BOD Threshold vs. Temperature (BOD Level is 1.8V) 1.9 1.85 T hre shold ( V ) Rising Vcc 1.8 Fallling Vcc 1.75 1.7 -60 -40 -20 0 20 40 Temperature (C) 100 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 391 32.10 Internal Oscillator Speed Figure 32-35. Watchdog Oscillator Frequency vs. VCC CC 128 126 -40C FRC (kHz) 124 25C 122 120 118 116 85C 114 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 32-36. Watchdog Oscillator Frequency vs. Temperature WATCHDOG OSCILLATOR FREQUENCY vs. TEMPERATURE 128 126 FRC (kHz) 124 122 120 2.1V 2.7V 3.3V 4.0V 5.5V 118 116 114 -60 -40 -20 0 20 40 60 80 100 Temperature (C) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 392 Figure 32-37. Calibrated 8MHz RC Oscillator Frequency vs. VCC 8.3 85C 8.2 FRC (MHz) 8.1 25C 8 7.9 -40C 7.8 7.7 7.6 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 32-38. Calibrated 8MHz RC Oscillator Frequency vs.FREQUENCY Temperature CALIBRATED 8 MHz RC OSCILLATOR vs. TEMPERATURE 8.5 5.0V 8.4 3.0V FRC (MHz) 8.3 8.2 8.1 8 7.9 -60 -40 -20 0 20 40 60 80 100 Temperature (C) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 393 Figure 32-39. Calibrated 8MHz RC Oscillator Frequency vs. Osccal Value CALIBRATED 8 MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE 16 85C 25C -40C 14 FRC (MHz) 12 10 8 6 4 2 0 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 OSCCAL (X1) 32.11 Current Consumption of Peripheral Units Figure 32-40. Brownout Detector Current vs. VCC DETECTORCURRENT vs. VCC BROWNOUT 30 85C 25C -40C 25 ICC (A) 20 15 10 5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 394 Figure 32-41. ADC Current vs. VCC (AREF = AVCC) CC 350 -40C 25C 85C 300 ICC (A) 250 200 150 100 50 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 32-42. AREF External Reference Current vs. VCC 250 -40C 25C 85C 200 ICC (A) 150 100 50 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 395 Figure 32-43. Watchdog Timer Current vs. VCC 9 -40C 8 25C 85C 7 ICC (A) 6 5 4 3 2 1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 32-44. Analog Comparator Current vs. VCC CC 100 -40C 25C 85C 90 80 ICC (A) 70 60 50 40 30 20 10 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 396 Figure 32-45. Programming Current vs. VCC cc 16 -40C 14 12 25C ICC (mA) 10 8 85C 6 4 2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 32.12 Current Consumption in Reset and Reset Pulsewidth Figure 32-46. Reset Supply Current VMHz, 1.0MHz, Excluding Current 0.1 MHzvs - 1.0 EXCLUDING-CURRENT THROUGH THE RESET PULLUPThrough The Reset Pull-up) CC (0.1MHz 0.35 5.5V 0.3 5.0V 0.25 ICC (m A) 4.5V 0.2 4.0V 0.15 3.3V 0.1 2.7V 1.8V 0.05 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency (MHz) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 397 Figure 32-47. Reset Supply Current VCCEXCLUDING (1MHz - CURRENT 16MHz,THROUGH Excluding Current Through The Reset Pull-up) 1 MHzvs. - 16 MHz, THE RESET PULLUP 4 5.5V 3.5 5.0V ICC (m A) 3 4.5V 2.5 2 4.0V 1.5 1 3.3V 2.7V 0.5 1.8V 0 0 2 4 6 8 10 12 14 16 Frequency (MHz) Figure 32-48. Minimum Reset Pulse Width vs. VCC CC 2500 Pu lsewidth (ns) 2000 1500 1000 85C 25C -40C 500 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 398 33. Register Summary Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (0x1FF) Reserved - - - - - - - - - - - - - - - - - - - ... Reserved (0x13F) Reserved (0x13E) Reserved (0x13D) Reserved (0x13C) Reserved (0x13B) Reserved (0x13A) Reserved (0x139) Reserved (0x138) Reserved (0x137) Reserved (0x136) UDR3 (0x135) UBRR3H USART3 I/O Data Register (0x134) UBRR3L (0x133) Reserved - - (0x132) UCSR3C UMSEL31 UMSEL30 (0x131) UCSR3B RXCIE3 TXCIE3 (0x130) UCSR3A RXC3 TXC3 (0x12F) Reserved - - - - - page 218 USART3 Baud Rate Register High Byte page 222 USART3 Baud Rate Register Low Byte - - - UPM31 UPM30 UDRIE3 RXEN3 UDRE3 Page page 222 - - - USBS3 UCSZ31 UCSZ30 UCPOL3 page 235 TXEN3 UCSZ32 RXB83 TXB83 page 234 FE3 DOR3 UPE3 U2X3 MPCM3 page 233 - - - - - - - - - - - - (0x12E) Reserved (0x12D) OCR5CH Timer/Counter5 - Output Compare Register C High Byte page 160 (0x12C) OCR5CL Timer/Counter5 - Output Compare Register C Low Byte page 160 (0x12B) OCR5BH Timer/Counter5 - Output Compare Register B High Byte page 160 (0x12A) OCR5BL Timer/Counter5 - Output Compare Register B Low Byte page 160 (0x129) OCR5AH Timer/Counter5 - Output Compare Register A High Byte page 160 (0x128) OCR5AL Timer/Counter5 - Output Compare Register A Low Byte page 160 (0x127) ICR5H Timer/Counter5 - Input Capture Register High Byte page 161 (0x126) ICR5L Timer/Counter5 - Input Capture Register Low Byte page 161 (0x125) TCNT5H Timer/Counter5 - Counter Register High Byte page 158 (0x124) TCNT5L Timer/Counter5 - Counter Register Low Byte (0x123) Reserved - - - - - page 158 - - - (0x122) TCCR5C FOC5A FOC5B FOC5C - - - - - page 157 (0x121) TCCR5B ICNC5 ICES5 - WGM53 WGM52 CS52 CS51 CS50 page 156 (0x120) TCCR5A COM5A1 COM5A0 COM5B1 COM5B0 COM5C1 COM5C0 WGM51 WGM50 page 154 (0x11F) Reserved - - - - - - - - (0x11E) Reserved - - - - - - - - (0x11D) Reserved - - - - - - - - (0x11C) Reserved - - - - - - - - (0x11B) Reserved - - - - - - - - (0x11A) Reserved - - - - - - - - (0x119) Reserved - - - - - - - - (0x118) Reserved - - - - - - - - (0x117) Reserved - - - - - - - - (0x116) Reserved - - - - - - - - (0x115) Reserved - - - - - - - - (0x114) Reserved - - - - - - - - (0x113) Reserved - - - - - - - - (0x112) Reserved - - - - - - - - (0x111) Reserved - - - - - - - - (0x110) Reserved - - - - - - - - (0x10F) Reserved - - - - - - - - (0x10E) Reserved - - - - - - - - (0x10D) Reserved - - - - - - - - (0x10C) Reserved - - - - - - - - (0x10B) PORTL PORTL7 PORTL6 PORTL5 PORTL4 PORTL3 PORTL2 PORTL1 PORTL0 page 100 (0x10A) DDRL DDL7 DDL6 DDL5 DDL4 DDL3 DDL2 DDL1 DDL0 page 100 (0x109) PINL PINL7 PINL6 PINL5 PINL4 PINL3 PINL2 PINL1 PINL0 page 100 (0x108) PORTK PORTK7 PORTK6 PORTK5 PORTK4 PORTK3 PORTK2 PORTK1 PORTK0 page 99 (0x107) DDRK DDK7 DDK6 DDK5 DDK4 DDK3 DDK2 DDK1 DDK0 page 99 (0x106) PINK PINK7 PINK6 PINK5 PINK4 PINK3 PINK2 PINK1 PINK0 page 99 (0x105) PORTJ PORTJ7 PORTJ6 PORTJ5 PORTJ4 PORTJ3 PORTJ2 PORTJ1 PORTJ0 page 99 (0x104) DDRJ DDJ7 DDJ6 DDJ5 DDJ4 DDJ3 DDJ2 DDJ1 DDJ0 page 99 (0x103) PINJ PINJ7 PINJ6 PINJ5 PINJ4 PINJ3 PINJ2 PINJ1 PINJ0 page 99 (0x102) PORTH PORTH7 PORTH6 PORTH5 PORTH4 PORTH3 PORTH2 PORTH1 PORTH0 page 98 (0x101) DDRH DDH7 DDH6 DDH5 DDH4 DDH3 DDH2 DDH1 DDH0 page 99 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 399 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page (0x100) PINH PINH7 PINH6 PINH5 PINH4 PINH3 PINH2 PINH1 PINH0 page 99 (0xFF) Reserved - - - - - - - - (0xFE) Reserved - - - - - - - - (0xFD) Reserved - - - - - - - - (0xFC) Reserved - - - - - - - - (0xFB) Reserved - - - - - - - - (0xFA) Reserved - - - - - - - - (0xF9) Reserved - - - - - - - - (0xF8) Reserved - - - - - - - - (0xF7) Reserved - - - - - - - - (0xF6) Reserved - - - - - - - - (0xF5) Reserved - - - - - - - - (0xF4) Reserved - - - - - - - - (0xF3) Reserved - - - - - - - - (0xF2) Reserved - - - - - - - - (0xF1) Reserved - - - - - - - - (0xF0) Reserved - - - - - - - - (0xEF) Reserved - - - - - - - - (0xEE) Reserved - - - - - - - - (0xED) Reserved - - - - - - - - (0xEC) Reserved - - - - - - - - (0xEB) Reserved - - - - - - - (0xEA) Reserved - - - - - - - - (0xE9) Reserved - - - - - - - - (0xE8) Reserved - - - - - - - - (0xE7) Reserved - - - - - - - (0xE6) Reserved - - - - - - - - (0xE5) Reserved - - - - - - - - (0xE4) Reserved - - - - - - - - (0xE3) Reserved - - - - - - - (0xE2) Reserved - - - - - - - (0xE1) Reserved - - - - - - - (0xE0) Reserved - - - - - - - (0xDF) Reserved - - - - - - - - (0xDE) Reserved - - - - - - - - (0xDD) Reserved - - - - - - - (0xDC) Reserved - - - - - - - - (0xDB) Reserved - - - - - - - - (0xDA) Reserved - - - - - - - - (0xD9) Reserved - - - - - - - (0xD8) Reserved - - - - - - - - (0xD7) Reserved - - - - - - - - (0xD6) UDR2 (0xD5) UBRR2H (0xD4) UBRR2L (0xD3) Reserved - - (0xD2) UCSR2C UMSEL21 UMSEL20 (0xD1) UCSR2B RXCIE2 TXCIE2 (0xD0) UCSR2A RXC2 TXC2 (0xCF) Reserved - - USART2 I/O Data Register - - - - page 218 USART2 Baud Rate Register High Byte page 222 USART2 Baud Rate Register Low Byte - - UPM21 UPM20 UDRIE2 RXEN2 UDRE2 - - - - (0xCE) UDR1 (0xCD) UBRR1H (0xCC) UBRR1L (0xCB) Reserved - - (0xCA) UCSR1C UMSEL11 UMSEL10 (0xC9) UCSR1B RXCIE1 TXCIE1 (0xC8) UCSR1A RXC1 TXC1 (0xC7) Reserved - - page 222 - - - USBS2 UCSZ21 UCSZ20 UCPOL2 page 235 TXEN2 UCSZ22 RXB82 TXB82 page 234 FE2 DOR2 UPE2 U2X2 MPCM2 page 233 - - - - - USART1 I/O Data Register - page 218 USART1 Baud Rate Register High Byte page 222 USART1 Baud Rate Register Low Byte - - - UPM11 UPM10 UDRIE1 RXEN1 UDRE1 - - - - page 222 - - - USBS1 UCSZ11 UCSZ10 UCPOL1 page 235 TXEN1 UCSZ12 RXB81 TXB81 page 234 FE1 DOR1 UPE1 U2X1 MPCM1 page 233 - - - - - (0xC6) UDR0 (0xC5) UBRR0H USART0 I/O Data Register (0xC4) UBRR0L (0xC3) Reserved - - (0xC2) UCSR0C UMSEL01 UMSEL00 (0xC1) UCSR0B RXCIE0 TXCIE0 (0xC0) UCSR0A RXC0 TXC0 (0xBF) Reserved - - (0xBE) Reserved - - - - - (0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 - page 218 USART0 Baud Rate Register High Byte page 222 USART0 Baud Rate Register Low Byte - - - UPM01 UPM00 UDRIE0 RXEN0 UDRE0 - page 222 - - - USBS0 UCSZ01 UCSZ00 UCPOL0 page 235 TXEN0 UCSZ02 RXB80 TXB80 page 234 FE0 DOR0 UPE0 U2X0 MPCM0 page 234 - - - - - - - - TWAM1 TWAM0 - page 264 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 400 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page (0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE page 261 (0xBB) TWDR (0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE page 263 (0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 - TWPS1 TWPS0 page 262 2-wire Serial Interface Data Register page 263 (0xB8) TWBR (0xB7) Reserved - - - 2-wire Serial Interface Bit Rate Register - - - - - page 261 (0xB6) ASSR - EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB (0xB5) Reserved - - - - - - - - page 179 (0xB4) OCR2B Timer/Counter2 Output Compare Register B page 186 (0xB3) OCR2A Timer/Counter2 Output Compare Register A page 186 (0xB2) TCNT2 Timer/Counter2 (8 Bit) (0xB1) TCCR2B FOC2A FOC2B - - WGM22 CS22 CS21 CS20 page 185 (0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 - - WGM21 WGM20 page 186 (0xAF) Reserved - - - - - - - - - - - - - - - - page 186 (0xAE) Reserved (0xAD) OCR4CH Timer/Counter4 - Output Compare Register C High Byte page 160 (0xAC) OCR4CL Timer/Counter4 - Output Compare Register C Low Byte page 160 (0xAB) OCR4BH Timer/Counter4 - Output Compare Register B High Byte page 160 (0xAA) OCR4BL Timer/Counter4 - Output Compare Register B Low Byte page 160 (0xA9) OCR4AH Timer/Counter4 - Output Compare Register A High Byte page 159 (0xA8) OCR4AL Timer/Counter4 - Output Compare Register A Low Byte page 159 (0xA7) ICR4H Timer/Counter4 - Input Capture Register High Byte page 161 (0xA6) ICR4L Timer/Counter4 - Input Capture Register Low Byte page 161 (0xA5) TCNT4H Timer/Counter4 - Counter Register High Byte page 158 (0xA4) TCNT4L Timer/Counter4 - Counter Register Low Byte (0xA3) Reserved - - - (0xA2) TCCR4C FOC4A FOC4B FOC4C - - - - - page 157 (0xA1) TCCR4B ICNC4 ICES4 - WGM43 WGM42 CS42 CS41 CS40 page 156 (0xA0) TCCR4A COM4A1 COM4A0 COM4B1 COM4B0 COM4C1 COM4C0 WGM41 WGM40 page 154 (0x9F) Reserved - - - - - - - - - - - - - - - - - - page 158 - - - (0x9E) Reserved (0x9D) OCR3CH Timer/Counter3 - Output Compare Register C High Byte page 159 (0x9C) OCR3CL Timer/Counter3 - Output Compare Register C Low Byte page 159 (0x9B) OCR3BH Timer/Counter3 - Output Compare Register B High Byte page 159 (0x9A) OCR3BL Timer/Counter3 - Output Compare Register B Low Byte page 159 (0x99) OCR3AH Timer/Counter3 - Output Compare Register A High Byte page 159 (0x98) OCR3AL Timer/Counter3 - Output Compare Register A Low Byte page 159 (0x97) ICR3H Timer/Counter3 - Input Capture Register High Byte page 161 (0x96) ICR3L Timer/Counter3 - Input Capture Register Low Byte page 161 (0x95) TCNT3H Timer/Counter3 - Counter Register High Byte page 158 (0x94) TCNT3L Timer/Counter3 - Counter Register Low Byte (0x93) Reserved - - - - - page 158 - - - (0x92) TCCR3C FOC3A FOC3B FOC3C - - - - - page 157 (0x91) TCCR3B ICNC3 ICES3 - WGM33 WGM32 CS32 CS31 CS30 page 156 (0x90) TCCR3A COM3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3C0 WGM31 WGM30 page 154 (0x8F) Reserved - - - - - - - - - - - - - - - - (0x8E) Reserved (0x8D) OCR1CH Timer/Counter1 - Output Compare Register C High Byte page 159 (0x8C) OCR1CL Timer/Counter1 - Output Compare Register C Low Byte page 159 (0x8B) OCR1BH Timer/Counter1 - Output Compare Register B High Byte page 159 (0x8A) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte page 159 (0x89) OCR1AH Timer/Counter1 - Output Compare Register A High Byte page 159 (0x88) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte page 159 (0x87) ICR1H Timer/Counter1 - Input Capture Register High Byte page 160 (0x86) ICR1L Timer/Counter1 - Input Capture Register Low Byte page 160 (0x85) TCNT1H Timer/Counter1 - Counter Register High Byte page 158 (0x84) TCNT1L Timer/Counter1 - Counter Register Low Byte (0x83) Reserved - - - - - page 158 - - - (0x82) TCCR1C FOC1A FOC1B FOC1C - - - - - page 157 (0x81) TCCR1B ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10 page 156 (0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10 page 154 (0x7F) DIDR1 - - - - - - AIN1D AIN0D page 267 (0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D page 287 (0x7D) DIDR2 ADC15D ADC14D ADC13D ADC12D ADC11D ADC10D ADC9D ADC8D page 288 (0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 page 281 (0x7B) ADCSRB - ACME - - MUX5 ADTS2 ADTS1 ADTS0 page 266, 282, 287 (0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 page 285 (0x79) ADCH ADC Data Register High byte page 286 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 401 Address Name (0x78) ADCL Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (0x77) Reserved - - - - - - - (0x76) Reserved - - - - - - - - (0x75) XMCRB XMBK - - - - XMM2 XMM1 XMM0 (0x74) XMCRA SRE SRL2 SRL1 SRL0 SRW11 SRW10 SRW01 SRW00 page 36 (0x73) TIMSK5 - - ICIE5 - OCIE5C OCIE5B OCIE5A TOIE5 page 162 (0x72) TIMSK4 - - ICIE4 - OCIE4C OCIE4B OCIE4A TOIE4 page 161 (0x71) TIMSK3 - - ICIE3 - OCIE3C OCIE3B OCIE3A TOIE3 page 161 (0x70) TIMSK2 - - - - - OCIE2B OCIE2A TOIE2 page 188 (0x6F) TIMSK1 - - ICIE1 - OCIE1C OCIE1B OCIE1A TOIE1 page 161 (0x6E) TIMSK0 - - - - - OCIE0B OCIE0A TOIE0 page 131 (0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 page 113 (0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 page 113 (0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 page 114 (0x6A) EICRB ISC71 ISC70 ISC61 ISC60 ISC51 ISC50 ISC41 ISC40 page 110 (0x69) EICRA ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 page 110 (0x68) PCICR - - - - - PCIE2 PCIE1 PCIE0 page 112 (0x67) Reserved - - - - - - - - (0x66) OSCCAL (0x65) PRR1 - - PRTIM5 PRTIM4 PRTIM3 PRUSART3 PRUSART2 PRUSART1 page 56 (0x64) PRR0 PRTWI PRTIM2 PRTIM0 - PRTIM1 PRSPI PRUSART0 PRADC page 55 (0x63) Reserved - - - - - - - - (0x62) Reserved - - - - - - - - (0x61) CLKPR CLKPCE - - - CLKPS3 CLKPS2 CLKPS1 CLKPS0 page 48 (0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 page 65 0x3F (0x5F) SREG I T H S V N Z C page 13 0x3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 page 15 0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 page 15 0x3C (0x5C) EIND - - - - - - - EIND0 page 16 0x3B (0x5B) RAMPZ - - - - - - RAMPZ1 RAMPZ0 page 16 0x3A (0x5A) Reserved - - - - - - - - 0x39 (0x59) Reserved - - - - - - - - 0x38 (0x58) Reserved - - - - - - - - 0x37 (0x57) SPMCSR SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN 0x36 (0x56) Reserved - - - - - - - - 0x35 (0x55) MCUCR JTD - - PUD - - IVSEL IVCE page 64, 108, 96, 301 0x34 (0x54) MCUSR - - - JTRF WDRF BORF EXTRF PORF page 301 0x33 (0x53) SMCR - - - - SM2 SM1 SM0 SE page 50 0x32 (0x52) Reserved - - - - - - - - 0x31 (0x51) OCDR OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0 page 294 0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 page 266 0x2F (0x4F) Reserved - - - - - - - - ADC Data Register Low byte Page page 286 - Oscillator Calibration Register page 38 page 48 SPI Data Register page 323 0x2E (0x4E) SPDR 0x2D (0x4D) SPSR SPIF WCOL - - - - - SPI2X page 198 0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 page 197 0x2B (0x4B) GPIOR2 General Purpose I/O Register 2 0x2A (0x4A) GPIOR1 General Purpose I/O Register 1 0x29 (0x49) Reserved 0x28 (0x48) OCR0B Timer/Counter0 Output Compare Register B page 130 0x27 (0x47) OCR0A Timer/Counter0 Output Compare Register A page 130 0x26 (0x46) TCNT0 Timer/Counter0 (8 Bit) 0x25 (0x45) TCCR0B FOC0A FOC0B - - WGM02 CS02 CS01 CS00 0x24 (0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 - - WGM01 WGM00 page 126 0x23 (0x43) GTCCR TSM - - - - - PSRASY PSRSYNC page 166, 189 - - - - - - - page 199 page 36 page 36 - 0x22 (0x42) EEARH EEARL EEPROM Address Register Low Byte 0x20 (0x40) EEDR EEPROM Data Register 0x1F (0x3F) EECR 0x1E (0x3E) GPIOR0 0x1D (0x3D) EIMSK INT7 INT6 INT5 INT4 INT3 0x1C (0x3C) EIFR INTF7 INTF6 INTF5 INTF4 INTF3 INTF2 0x1B (0x3B) PCIFR - - - - - PCIF2 0x1A (0x3A) TIFR5 - - ICF5 - OCF5C OCF5B 0x19 (0x39) TIFR4 - - ICF4 - OCF4C 0x18 (0x38) TIFR3 - - ICF3 - 0x17 (0x37) TIFR2 - - - 0x16 (0x36) TIFR1 - - 0x15 (0x35) TIFR0 - - - EEPM1 EEPM0 - - page 130 0x21 (0x41) - - - EEPROM Address Register High Byte EERIE page 129 page 34 page 34 page 34 EEMPE EEPE EERE page 34 INT2 INT1 INT0 page 111 INTF1 INTF0 page 112 PCIF1 PCIF0 page 113 OCF5A TOV5 page 162 OCF4B OCF4A TOV4 page 162 OCF3C OCF3B OCF3A TOV3 page 162 - - OCF2B OCF2A TOV2 page 188 ICF1 - OCF1C OCF1B OCF1A TOV1 page 162 - - - OCF0B OCF0A TOV0 page 131 General Purpose I/O Register 0 page 36 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 402 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page 0x14 (0x34) PORTG - - PORTG5 PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 page 98 0x13 (0x33) DDRG - - DDG5 DDG4 DDG3 DDG2 DDG1 DDG0 page 98 0x12 (0x32) PING - - PING5 PING4 PING3 PING2 PING1 PING0 page 98 0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 page 97 0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 page 98 0x0F (0x2F) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 page 98 0x0E (0x2E) PORTE PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 page 97 0x0D (0x2D) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 page 97 0x0C (0x2C) PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 page 98 0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 page 97 0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 page 97 0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 page 97 0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 page 97 0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 page 97 0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 page 97 0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 page 96 0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 page 96 0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 page 96 0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 page 96 0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 page 96 0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 page 96 Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. 2. I/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. 3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only. 4. When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O registers as data space using LD and ST instructions, $20 must be added to these addresses. The ATmega640/1280/1281/2560/2561 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from $60 - $1FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 403 34. Instruction Set Summary Mnemonics Operands Description Operation Flags #Clocks ARITHMETIC AND LOGIC INSTRUCTIONS ADD Rd, Rr Add two Registers Rd Rd + Rr Z, C, N, V, H ADC Rd, Rr Add with Carry two Registers Rd Rd + Rr + C Z, C, N, V, H 1 ADIW Rdl,K Add Immediate to Word Rdh:Rdl Rdh:Rdl + K Z, C, N, V, S 2 SUB Rd, Rr Subtract two Registers Rd Rd - Rr Z, C, N, V, H 1 SUBI Rd, K Subtract Constant from Register Rd Rd - K Z, C, N, V, H 1 SBC Rd, Rr Subtract with Carry two Registers Rd Rd - Rr - C Z, C, N, V, H 1 SBCI Rd, K Subtract with Carry Constant from Reg. Rd Rd - K - C Z, C, N, V, H 1 SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl Rdh:Rdl - K Z, C, N, V, S 2 AND Rd, Rr Logical AND Registers Rd Rd Rr Z, N, V 1 1 1 ANDI Rd, K Logical AND Register and Constant Rd Rd K Z, N, V OR Rd, Rr Logical OR Registers Rd Rd v Rr Z, N, V 1 ORI Rd, K Logical OR Register and Constant Rd Rd v K Z, N, V 1 EOR Rd, Rr Exclusive OR Registers Rd Rd Rr Z, N, V 1 COM Rd One's Complement Rd 0xFF Rd Z, C, N, V 1 NEG Rd Two's Complement Rd 0x00 Rd Z, C, N, V, H 1 SBR Rd,K Set Bit(s) in Register Rd Rd v K Z, N, V 1 CBR Rd,K Clear Bit(s) in Register Rd Rd (0xFF - K) Z, N, V 1 INC Rd Increment Rd Rd + 1 Z, N, V 1 DEC Rd Decrement Rd Rd 1 Z, N, V 1 TST Rd Test for Zero or Minus Rd Rd Rd Z, N, V 1 CLR Rd Clear Register Rd Rd Rd Z, N, V 1 SER Rd Set Register Rd 0xFF None 1 MUL Rd, Rr Multiply Unsigned R1:R0 Rd x Rr Z, C 2 MULS Rd, Rr Multiply Signed R1:R0 Rd x Rr Z, C 2 MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 Rd x Rr Z, C 2 FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 (Rd x Rr) << Z, C 2 FMULS Rd, Rr Fractional Multiply Signed Z, C 2 FMULSU Rd, Rr Fractional Multiply Signed with Unsigned 1 R1:R0 (Rd x Rr) << 1 R1:R0 (Rd x Rr) << 1 Z, C 2 Relative Jump PC PC + k + 1 None 2 Indirect Jump to (Z) None 2 BRANCH INSTRUCTIONS RJMP k Extended Indirect Jump to (Z) PC Z PC (EIND:Z) None 2 JMP k Direct Jump PC k None 3 RCALL k Relative Subroutine Call PC PC + k + 1 None 4 Indirect Call to (Z) None 4 Extended Indirect Call to (Z) PC Z PC (EIND:Z) None 4 Direct Subroutine Call PC k None 5 RET Subroutine Return PC STACK None 5 RETI Interrupt Return PC STACK I if (Rd = Rr) PC PC + 2 or 3 None IJMP EIJMP ICALL EICALL CALL k 5 CPSE Rd,Rr Compare, Skip if Equal 1/2/3 CP Rd,Rr Compare Rd Rr Z, N, V, C, H 1 CPC Rd,Rr Compare with Carry Rd Rr C Z, N, V, C, H 1 CPI Rd,K Compare Register with Immediate Rd K Z, N, V, C, H SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC PC + 2 or 3 None 1 1/2/3 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PCPC+k + 1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PCPC+k + 1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC PC + k + 1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC PC + k + 1 None 1/2 BRPL k Branch if Plus if (N = 0) then PC PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if (N V= 0) then PC PC + k + 1 None 1/2 BRLT k Branch if Less Than Zero, Signed if (N V= 1) then PC PC + k + 1 None 1/2 BRHS k Branch if Half Carry Flag Set if (H = 1) then PC PC + k + 1 None 1/2 BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC PC + k + 1 None 1/2 BRTS k Branch if T Flag Set if (T = 1) then PC PC + k + 1 None 1/2 BRTC k Branch if T Flag Cleared if (T = 0) then PC PC + k + 1 None 1/2 BRVS k Branch if Overflow Flag is Set if (V = 1) then PC PC + k + 1 None 1/2 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 404 Mnemonics Operands Description Operation Flags #Clocks BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC PC + k + 1 None 1/2 BRIE k Branch if Interrupt Enabled if ( I = 1) then PC PC + k + 1 None 1/2 BRID k Branch if Interrupt Disabled if ( I = 0) then PC PC + k + 1 None 1/2 BIT AND BIT-TEST INSTRUCTIONS SBI P,b Set Bit in I/O Register I/O(P,b) 1 None 2 CBI P,b Clear Bit in I/O Register I/O(P,b) 0 None 2 LSL Rd Logical Shift Left Rd(n+1) Rd(n), Rd(0) 0 Z, C, N, V 1 LSR Rd Logical Shift Right Rd(n) Rd(n+1), Rd(7) 0 Z, C, N, V 1 ROL Rd Rotate Left Through Carry Rd(0)C,Rd(n+1) Rd(n),CRd(7) Z, C, N, V 1 ROR Rd Rotate Right Through Carry Rd(7)C,Rd(n) Rd(n+1),CRd(0) Z, C, N, V 1 ASR Rd Arithmetic Shift Right Rd(n) Rd(n+1), n=0..6 Z, C, N, V 1 SWAP Rd Swap Nibbles Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0) None 1 BSET s Flag Set SREG(s) 1 SREG(s) 1 BCLR s Flag Clear SREG(s) 0 SREG(s) 1 BST Rr, b Bit Store from Register to T T Rr(b) T 1 BLD Rd, b Bit load from T to Register Rd(b) T None 1 1 SEC Set Carry C1 C CLC Clear Carry C0 C 1 SEN Set Negative Flag N1 N 1 CLN Clear Negative Flag N0 N 1 SEZ Set Zero Flag Z1 Z 1 CLZ Clear Zero Flag Z0 Z 1 SEI Global Interrupt Enable I1 I 1 CLI Global Interrupt Disable I 0 I 1 1 SES Set Signed Test Flag S1 S CLS Clear Signed Test Flag S0 S 1 SEV Set Twos Complement Overflow. V1 V 1 CLV Clear Twos Complement Overflow V0 V 1 SET Set T in SREG T1 T 1 CLT Clear T in SREG T0 T 1 SEH CLH Set Half Carry Flag in SREG Clear Half Carry Flag in SREG H1 H0 H H 1 1 None 1 None 1 DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move Between Registers MOVW Rd, Rr Copy Register Word Rd Rr Rd+1:Rd Rr+1:Rr LDI Rd, K Load Immediate Rd K None 1 LD Rd, X Load Indirect Rd (X) None 2 LD Rd, X+ Load Indirect and Post-Inc. Rd (X), X X + 1 None 2 LD Rd, - X Load Indirect and Pre-Dec. X X - 1, Rd (X) None 2 2 LD Rd, Y Load Indirect Rd (Y) None LD Rd, Y+ Load Indirect and Post-Inc. Rd (Y), Y Y + 1 None 2 LD Rd, - Y Load Indirect and Pre-Dec. Y Y - 1, Rd (Y) None 2 LDD Rd,Y+q Load Indirect with Displacement Rd (Y + q) None 2 LD Rd, Z Load Indirect Rd (Z) None 2 LD Rd, Z+ Load Indirect and Post-Inc. Rd (Z), Z Z+1 None 2 LD Rd, -Z Load Indirect and Pre-Dec. Z Z - 1, Rd (Z) None 2 LDD Rd, Z+q Load Indirect with Displacement Rd (Z + q) None 2 2 LDS Rd, k Load Direct from SRAM Rd (k) None ST X, Rr Store Indirect (X) Rr None 2 ST X+, Rr Store Indirect and Post-Inc. (X) Rr, X X + 1 None 2 ST - X, Rr Store Indirect and Pre-Dec. X X - 1, (X) Rr None 2 ST Y, Rr Store Indirect (Y) Rr None 2 ST Y+, Rr Store Indirect and Post-Inc. (Y) Rr, Y Y + 1 None 2 ST - Y, Rr Store Indirect and Pre-Dec. Y Y - 1, (Y) Rr None 2 STD Y+q,Rr Store Indirect with Displacement (Y + q) Rr None 2 ST Z, Rr Store Indirect (Z) Rr None 2 ST Z+, Rr Store Indirect and Post-Inc. (Z) Rr, Z Z + 1 None 2 ST -Z, Rr Store Indirect and Pre-Dec. Z Z - 1, (Z) Rr None 2 STD Z+q,Rr Store Indirect with Displacement (Z + q) Rr None 2 STS k, Rr Store Direct to SRAM (k) Rr None 2 Load Program Memory R0 (Z) None 3 LPM LPM Rd, Z Load Program Memory Rd (Z) None 3 LPM Rd, Z+ Load Program Memory and Post-Inc Rd (Z), Z Z+1 None 3 Extended Load Program Memory R0 (RAMPZ:Z) None 3 ELPM ELPM Rd, Z Extended Load Program Memory Rd (RAMPZ:Z) None 3 ELPM Rd, Z+ Extended Load Program Memory Rd (RAMPZ:Z), RAMPZ:Z RAMPZ:Z+1 None 3 Store Program Memory (Z) R1:R0 None - Rd, P In Port Rd P None 1 SPM IN ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 405 Mnemonics Operands Description Operation Flags #Clocks OUT P, Rr Out Port P Rr None 1 PUSH Rr Push Register on Stack STACK Rr None 2 POP Rd Pop Register from Stack Rd STACK None 2 MCU CONTROL INSTRUCTIONS NOP No Operation None 1 SLEEP Sleep (see specific descr. for Sleep function) None 1 WDR BREAK Watchdog Reset Break (see specific descr. for WDR/timer) For On-chip Debug Only None None 1 N/A Note: EICALL and EIJMP do not exist in ATmega640/1280/1281. ELPM does not exist in ATmega640. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 406 35. Ordering Information 35.1 ATmega640 Speed [MHz](2) 8 16 Notes: Power Supply Ordering Code Package(1)(3) 1.8 - 5.5V ATmega640V-8AU ATmega640V-8AUR(4) ATmega640V-8CU ATmega640V-8CUR(4) 100A 100A 100C1 100C1 2.7 - 5.5V ATmega640-16AU ATmega640-16AUR(4) ATmega640-16CU ATmega640-16CUR(4) 100A 100A 100C1 100C1 Operation Range Industrial (-40C to 85C) 1. This device can also be supplied in wafer form. Contact your local Microchip sales office for detailed ordering information and minimum quantities. 2. See "Speed Grades" on page 357. 3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 4. Tape & Reel. Package Type 100A 100-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP) 100C1 100-ball, Chip Ball Grid Array (CBGA) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 407 35.2 ATmega1280 Speed [MHz](2) 8 16 Notes: Power Supply Ordering Code Package(1)(3) 1.8V - 5.5V ATmega1280V-8AU ATmega1280V-8AUR(4) ATmega1280V-8CU ATmega1280V-8CUR(4) 100A 100A 100C1 100C1 2.7V - 5.5V ATmega1280-16AU ATmega1280-16AUR(4) ATmega1280-16CU ATmega1280-16CUR(4) 100A 100A 100C1 100C1 Operation Range Industrial (-40C to 85C) 1. This device can also be supplied in wafer form. Contact your local Microchip sales office for detailed ordering information and minimum quantities. 2. See "Speed Grades" on page 357. 3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 4. Tape & Reel. Package Type 100A 100-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP) 100C1 100-ball, Chip Ball Grid Array (CBGA) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 408 35.3 ATmega1281 Speed [MHz](2) 8 16 Notes: Ordering Code Package(1)(3) 1.8 - 5.5V ATmega1281V-8AU ATmega1281V-8AUR(4) ATmega1281V-8MU ATmega1281V-8MUR(4) 64A 64A 64M2 64M2 2.7 - 5.5V ATmega1281-16AU ATmega1281-16AUR(4) ATmega1281-16MU ATmega1281-16MUR(4) 64A 64A 64M2 64M2 Power Supply Operation Range Industrial (-40C to 85C) 1. This device can also be supplied in wafer form. Contact your local Microchip sales office for detailed ordering information and minimum quantities. 2. See "Speed Grades" on page 357. 3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 4. Tape & Reel. Package Type 64A 64-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP) 64M2 64-pad, 9mm x 9mm x 1.0mm Body, Quad Flat No-lead/Micro Lead Frame Package (QFN/MLF) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 409 35.4 ATmega2560 Speed [MHz](2) 8 16 Notes: Power Supply Ordering Code Package(1)(3) 1.8V - 5.5V ATmega2560V-8AU ATmega2560V-8AUR(4) ATmega2560V-8CU ATmega2560V-8CUR(4) 100A 100A 100C1 100C1 4.5V - 5.5V ATmega2560-16AU ATmega2560-16AUR(4) ATmega2560-16CU ATmega2560-16CUR(4) 100A 100A 100C1 100C1 Operation Range Industrial (-40C to 85C) 1. This device can also be supplied in wafer form. Contact your local Microchip sales office for detailed ordering information and minimum quantities. 2. See "Speed Grades" on page 357. 3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 4. Tape & Reel. Package Type 100A 100-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP) 100C1 100-ball, Chip Ball Grid Array (CBGA) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 410 35.5 ATmega2561 Speed [MHz](2) 8 16 Notes: Power Supply Ordering Code Package(1)(3) 1.8V - 5.5V ATmega2561V-8AU ATmega2561V-8AUR(4) ATmega2561V-8MU ATmega2561V-8MUR(4) 64A 64A 64M2 64M2 4.5V - 5.5V ATmega2561-16AU ATmega2561-16AUR(4) ATmega2561-16MU ATmega2561-16MUR(4) 64A 64A 64M2 64M2 Operation Range Industrial (-40C to 85C) 1. This device can also be supplied in wafer form.Contact your local Microchip sales office for detailed ordering information and minimum quantities. 2. See "Speed Grades" on page 357. 3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 4. Tape & Reel. Package Type 64A 64-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP) 64M2 64-pad, 9mm x 9mm x 1.0mm Body, Quad Flat No-lead/Micro Lead Frame Package (QFN/MLF) ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 411 36. Packaging Information 36.1 100A PIN 1 B PIN 1 IDENTIFIER E1 e E D1 D C 0~7 A1 A2 A L COMMON DIMENSIONS (Unit of Measure = mm) Notes: 1. This package conforms to JEDEC reference MS-026, Variation AED. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch. 3. Lead coplanarity is 0.08 mm maximum. SYMBOL MIN NOM MAX A - - 1.20 A1 0.05 - 0.15 A2 0.95 1.00 1.05 D 15.75 16.00 16.25 D1 13.90 14.00 14.10 E 15.75 16.00 16.25 E1 13.90 14.00 14.10 B 0.17 - 0.27 C 0.09 - 0.20 L 0.45 - 0.75 e NOTE Note 2 Note 2 0.50 TYP 2010-10-20 100A, 100-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) 100A ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A D 412 36.2 100C1 0.12 Z E Marked A1 Identifier SIDE VIEW D A TOP VIEW A1 Ob e A1 Corner 0.90 TYP 10 9 8 7 6 5 4 3 2 1 A 0.90 TYP B C D COMMON DIMENSIONS (Unit of Measure = mm) E D1 F e SYMBOL MIN H A I A1 G J E1 BOTTOM VIEW NOM MAX 1.10 - 1.20 0.30 0.35 0.40 D 8.90 9.00 9.10 E 8.90 9.00 9.10 D1 7.10 7.20 7.30 E1 7.10 7.20 7.30 Ob 0.35 0.40 0.45 e NOTE 0.80 TYP 5/25/06 2325 Orchard Parkway San Jose, CA 95131 TITLE 100C1, 100-ball, 9 x 9 x 1.2 mm Body, Ball Pitch 0.80 mm Chip Array BGA Package (CBGA) DRAWING NO. 100C1 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A REV. A 413 36.3 64A PIN 1 B e PIN 1 IDENTIFIER E1 E D1 D C 0~7 A1 A2 A L COMMON DIMENSIONS (Unit of measure = mm) Notes: 1.This package conforms to JEDEC reference MS-026, Variation AEB. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch. 3. Lead coplanarity is 0.10mm maximum. SYMBOL MIN NOM MAX A - - 1.20 A1 0.05 - 0.15 A2 0.95 1.00 1.05 D 15.75 16.00 16.25 D1 13.90 14.00 14.10 E 15.75 16.00 16.25 E1 13.90 14.00 14.10 B 0.30 - 0.45 C 0.09 - 0.20 L 0.45 - 0.75 e NOTE Note 2 Note 2 0.80 TYP 2010-10-20 2325 Orchard Parkway San Jose, CA 95131 TITLE 64A, 64-lead, 14 x 14mm Body Size, 1.0mm Body Thickness, 0.8mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) DRAWING NO. REV. 64A C ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 414 36.4 64M2 D Marked pin# 1 I D E C SEATING PLANE A1 TOP VIEW A3 A K 0.08 C L Pin #1 Corner D2 1 2 3 SIDE VIEW Pin #1 Triangle Option A COMMON DIMENSIONS (Unit of measure = mm) E2 Option B Pin #1 Chamfer (C 0.30) SYMBOL MIN NOM MAX A 0.80 0.90 1.00 A1 - 0.02 0.05 A3 K Option C b e Pin #1 Notch (0.20 R) BOTTOM VIEW 0.20 REF b 0.18 0.25 0.30 D 8.90 9.00 9.10 D2 7.50 7.65 7.80 E 8.90 9.00 9.10 E2 7.50 7.65 7.80 e Notes: 1. JEDEC Standard MO-220, (SAW Singulation) fig . 1, VMMD. 2. Dimension and tolerance conform to ASMEY14.5M-1994. NOTE 0.50 BSC L 0.35 0.40 0.45 K 0.20 0.27 0.40 2014-02-12 2325 Orchard Parkway San Jose, CA 95131 TITLE 64M2, 64-pad, 9 x 9 x 1.0mm Bod y, Lead Pitch 0.50mm , 7.65mm Exposed Pad, Micro Lead Frame Package (MLF) DRAWING NO. 64M2 REV. E ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 415 37. Errata 37.1 ATmega640 rev. B * Inaccurate ADC conversion in differential mode with 200x gain * High current consumption in sleep mode 1. Inaccurate ADC conversion in differential mode with 200x gain With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may reach 64 LSB. Problem Fix/Workaround None. 2. High current consumption in sleep mode If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction. Problem Fix/Workaround Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled. 37.2 ATmega640 rev. A * Inaccurate ADC conversion in differential mode with 200x gain * High current consumption in sleep mode 1. Inaccurate ADC conversion in differential mode with 200x gain With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may reach 64 LSB. Problem Fix/Workaround None. 2. High current consumption in sleep mode If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction. Problem Fix/Workaround Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled. 37.3 ATmega1280 rev. B * High current consumption in sleep mode 1. High current consumption in sleep mode If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction. Problem Fix/Workaround Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled. 37.4 ATmega1280 rev. A * Inaccurate ADC conversion in differential mode with 200x gain * High current consumption in sleep mode 1. Inaccurate ADC conversion in differential mode with 200x gain With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may reach 64 LSB. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 416 Problem Fix/Workaround None. 2. High current consumption in sleep mode If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction. Problem Fix/Workaround Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled. 37.5 ATmega1281 rev. B * High current consumption in sleep mode 1. High current consumption in sleep mode If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction. Problem Fix/Workaround Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled. 37.6 ATmega1281 rev. A * Inaccurate ADC conversion in differential mode with 200x gain * High current consumption in sleep mode 1. Inaccurate ADC conversion in differential mode with 200x gain With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may reach 64 LSB. Problem Fix/Workaround None. 2. High current consumption in sleep mode If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction. Problem Fix/Workaround Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled. 37.7 ATmega2560 rev. F * ADC differential input amplification by 46dB (200x) not functional 1. ADC differential input amplification by 46dB (200x) not functional Problem Fix/Workaround None. 37.8 ATmega2560 rev. E No known errata. 37.9 ATmega2560 rev. D Not sampled. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 417 37.10 ATmega2560 rev. C * High current consumption in sleep mode 1. High current consumption in sleep mode If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction. Problem Fix/Workaround Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled. 37.11 ATmega2560 rev. B Not sampled. 37.12 ATmega2560 rev. A * * * * * * 1. Non-Read-While-Write area of flash not functional Part does not work under 2.4 volts Incorrect ADC reading in differential mode Internal ADC reference has too low value IN/OUT instructions may be executed twice when Stack is in external RAM EEPROM read from application code does not work in Lock Bit Mode 3 Non-Read-While-Write area of flash not functional The Non-Read-While-Write area of the flash is not working as expected. The problem is related to the speed of the part when reading the flash of this area. Problem Fix/Workaround - Only use the first 248K of the flash. - If boot functionality is needed, run the code in the Non-Read-While-Write area at maximum 1/4th of the maximum frequency of the device at any given voltage. This is done by writing the CLKPR register before entering the boot section of the code. 2. Part does not work under 2.4 volts The part does not execute code correctly below 2.4 volts. Problem Fix/Workaround Do not use the part at voltages below 2.4 volts. 3. Incorrect ADC reading in differential mode The ADC has high noise in differential mode. It can give up to 7 LSB error. Problem Fix/Workaround Use only the 7 MSB of the result when using the ADC in differential mode. 4. Internal ADC reference has too low value The internal ADC reference has a value lower than specified. Problem Fix/Workaround - Use AVCC or external reference. - The actual value of the reference can be measured by applying a known voltage to the ADC when using the internal reference. The result when doing later conversions can then be calibrated. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 418 5. IN/OUT instructions may be executed twice when Stack is in external RAM If either an IN or an OUT instruction is executed directly before an interrupt occurs and the stack pointer is located in external ram, the instruction will be executed twice. In some cases this will cause a problem, for example: - If reading SREG it will appear that the I-flag is cleared. - If writing to the PIN registers, the port will toggle twice. - If reading registers with interrupt flags, the flags will appear to be cleared. Problem Fix/Workaround There are two application workarounds, where selecting one of them, will be omitting the issue: - Replace IN and OUT with LD/LDS/LDD and ST/STS/STD instructions. - Use internal RAM for stack pointer. 6. EEPROM read from application code does not work in Lock Bit Mode 3 When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does not work from the application code. Problem Fix/Workaround Do not set Lock Bit Protection Mode 3 when the application code needs to read from EEPROM. 37.13 ATmega2561 rev. F * ADC differential input amplification by 46dB (200x) not functional 1. ADC differential input amplification by 46dB (200x) not functional Problem Fix/Workaround None. 37.14 ATmega2561 rev. E No known errata. 37.15 ATmega2561 rev. D Not sampled. 37.16 ATmega2561 rev. C * High current consumption in sleep mode. 1. High current consumption in sleep mode If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction. Problem Fix/Workaround Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled. 37.17 ATmega2561 rev. B Not sampled. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 419 37.18 ATmega2561 rev. A * * * * * * 1. Non-Read-While-Write area of flash not functional Part does not work under 2.4 Volts Incorrect ADC reading in differential mode Internal ADC reference has too low value IN/OUT instructions may be executed twice when Stack is in external RAM EEPROM read from application code does not work in Lock Bit Mode 3 Non-Read-While-Write area of flash not functional The Non-Read-While-Write area of the flash is not working as expected. The problem is related to the speed of the part when reading the flash of this area. Problem Fix/Workaround - Only use the first 248K of the flash. - If boot functionality is needed, run the code in the Non-Read-While-Write area at maximum 1/4th of the maximum frequency of the device at any given voltage. This is done by writing the CLKPR register before entering the boot section of the code. 2. Part does not work under 2.4 volts The part does not execute code correctly below 2.4 volts. Problem Fix/Workaround Do not use the part at voltages below 2.4 volts. 3. Incorrect ADC reading in differential mode The ADC has high noise in differential mode. It can give up to 7 LSB error. Problem Fix/Workaround Use only the 7 MSB of the result when using the ADC in differential mode. 4. Internal ADC reference has too low value The internal ADC reference has a value lower than specified. Problem Fix/Workaround - Use AVCC or external reference. - The actual value of the reference can be measured by applying a known voltage to the ADC when using the internal reference. The result when doing later conversions can then be calibrated. 5. IN/OUT instructions may be executed twice when Stack is in external RAM If either an IN or an OUT instruction is executed directly before an interrupt occurs and the stack pointer is located in external ram, the instruction will be executed twice. In some cases this will cause a problem, for example: - If reading SREG it will appear that the I-flag is cleared. - If writing to the PIN registers, the port will toggle twice. - If reading registers with interrupt flags, the flags will appear to be cleared. Problem Fix/Workaround There are two application workarounds, where selecting one of them, will be omitting the issue: - Replace IN and OUT with LD/LDS/LDD and ST/STS/STD instructions. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 420 - Use internal RAM for stack pointer. 6. EEPROM read from application code does not work in Lock Bit Mode 3 When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does not work from the application code. Problem Fix/Workaround Do not set Lock Bit Protection Mode 3 when the application code needs to read from EEPROM. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 421 38. Datasheet Revision History Note that the referring page numbers in this section are referring to this document. The referring revisions in this section are referring to the document revision. 38.1 1. 38.2 Rev. DS40002211A-05/2020 Moved document to Microchip template. Replaces Atmel version 2549. No technical content changed. Rev. 2549Q-02/2014 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 38.3 Rev. 2549P-10/2012 1. 2. 3. 38.4 Updated the "Reset Sources" on page 57. Brown-out Reset: The MCU is reset when the supply voltage AVcc is below the Brown-out Reset threshold (VBOT) and the Brown-out Detector is enabled. Updated the Figure 12-1 on page 58. Power-on reset is now connected to AVcc and not to Vcc. Updated the content in "Brown-out Detection" on page 59. Replaced Vcc by AVcc throughout the section. Updated the Figure 12-5 on page 60. Replaced Vcc by AVcc. Updated "External Interrupts" on page 109. Removed the text "Note that recognition of falling or rising edge.....". Updated the description of "PCMSK1 - Pin Change Mask Register 1" on page 113. The description mentions "PCIE1 bit in EIMSK". This has been changed to "PCIE1 bit in PCICR". Updated "Ordering Information" in "ATmega2561" on page 411. Removed Errata "Inaccurate ADC conversion in differential mode with 200x gain" from "ATmega1280 rev. B" on page 416 and from "ATmega1281 rev. B" on page 417 Updated "Errata" in "ATmega2560 rev. F" on page 417 and in "ATmega2561 rev. F" on page 419. Updated the datasheet with new Atmel brand (new logo and addresses). Replaced drawing of "64M2" on page 415. Former page 439 has been deleted as the content of this page did not belong there (same page as the last page). Some small correction made in the setup. Rev. 2549O-05/2012 1. 2. 3. The datasheet changed status from Preliminary to Complete. Removed "Preliminary" from the front page. Replaced Figure 10-3 on page 44 by a new one. Updated the last page to include the new address for Atmel Japan site. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 422 38.5 Rev. 2549N-05/2011 1. 2. 3. 4. 5. 6. 7. 38.6 Rev. 2549M-09/2010 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 38.7 Added Atmel QTouch Library Support and QTouch Sensing Capablity Features. Updated Cross-reference in "Bit 5, 2:0 - WDP3:0: Watchdog Timer Prescaler 3, 2, 1 and 0" on page 65. Updated Assembly codes in section "USART Initialization" on page 205. Added "Standard Power-On Reset" on page 360. Added "Enhanced Power-On Reset" on page 361. Updated Figure 32-13 on page 381 Updated "Ordering Information" on page 407 to include Tape & Reel devices. Updated typos in Figure 26-9 on page 276 and in Figure 26-10 on page 277. Note is added below Table 1-1 on page 3. The values for "typical characteristics" in Table 31-9 on page 365 and Table 31-10 on page 366, has been rounded. Units for tRST and tBOD in Table 31-3 on page 360 have been changed from "ns" to "s". The figure text for Table 31-2 on page 359 has been changed. Text in first column in Table 30-3 on page 326 has been changed from "Fuse Low Byte" to "Extended Fuse Byte". The text in "Power Reduction Register" on page 52 has been changed. The value of the inductor in Figure 26-9 on page 276 and Figure 26-10 on page 277 has been changed to 10H. "Port A" has been changed into "Port K" in the first paragraph of "Features" on page 268. Minimum wait delay for tWD_EEPROM in Table 30-16 on page 340 has been changed from 9.0ms to 3.6ms Dimension A3 is added in "64M2" on page 415. Several cross-references are corrected. "COM0A1:0" on page 127 is corrected to "COM0B1:0". Corrected some Figure and Table numbering. Updated Section 10.6 "Low Frequency Crystal Oscillator" on page 43. Rev. 2549L-08/07 1. 2. 3. 4. 5. 6. 7. 8. 9. Updated note in Table 10-11 on page 45. Updated Table 10-3 on page 42, Table 10-5 on page 43, Table 10-9 on page 45. Updated typos in "DC Characteristics" on page 355 Updated "Clock Characteristics" on page 359 Updated "External Clock Drive" on page 359. Added "System and Reset Characteristics" on page 360. Updated "SPI Timing Characteristics" on page 363. Updated "ADC Characteristics - Preliminary Data" on page 365. Updated ordering code in "ATmega640" on page 407. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 423 38.8 Rev. 2549K-01/07 1. 2. 3. 4. 5. 6: 7. 8. 9. 10. 38.9 Updated Table 1-1 on page 3. Updated "Pin Descriptions" on page 7. Updated "Stack Pointer" on page 15. Updated "Bit 1 - EEPE: EEPROM Programming Enable" on page 35. Updated Assembly code example in "Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user must always allow the reference to start up before the output from the Analog Comparator or ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three conditions above to ensure that the reference is turned off before entering Power-down mode." on page 60. Updated "EIMSK - External Interrupt Mask Register" on page 111. Updated Bit description in "PCIFR - Pin Change Interrupt Flag Register" on page 113. Updated code example in "USART Initialization" on page 205. Updated Figure 26-8 on page 276. Updated "DC Characteristics" on page 355. Rev. 2549J-09/06 1. 2. 3. 4. 5. 6. Updated "" on page 46. Updated code example in "Moving Interrupts Between Application and Boot Section" on page 107. Updated "Timer/Counter Prescaler" on page 180. Updated "Device Identification Register" on page 296. Updated "Signature Bytes" on page 328. Updated "Instruction Set Summary" on page 404. 38.10 Rev. 2549I-07/06 1. 2. 3. Added "Data Retention" on page 10. Updated Table 16-3 on page 126, Table 16-6 on page 127, Table 16-8 on page 128, Table 17-2 on page 145, Table 17-4 on page 155, Table 17-5 on page 155, Table 20-3 on page 182, Table 20-6 on page 183 and Table 20-8 on page 184. Updated "Fast PWM Mode" on page 146. 38.11 Rev. 2549H-06/06 1. 2. 3. Updated "" on page 46. Updated "OSCCAL - Oscillator Calibration Register" on page 48. Added Table 31-1 on page 359. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 424 38.12 Rev. 2549G-06/06 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Updated "Features" on page 1. Added Figure 1-2 on page 3, Table 1-1 on page 3. Updated "" on page 46. Updated "Power Management and Sleep Modes" on page 50. Updated note for Table 12-1 on page 65. Updated Figure 26-9 on page 276 and Figure 26-10 on page 277. Updated "Setting the Boot Loader Lock Bits by SPM" on page 316. Updated "Ordering Information" on page 407. Added Package information "100C1" on page 413. Updated "Errata" on page 416. 38.13 Rev. 2549F-04/06 1. 2. 3. 4. Updated Figure 9-3 on page 29, Figure 9-4 on page 30 and Figure 9-5 on page 30. Updated Table 20-2 on page 182 and Table 20-3 on page 182. Updated Features in "ADC - Analog to Digital Converter" on page 268. Updated "Fuse Bits" on page 326. 38.14 Rev. 2549E-04/06 1. 2. 3. 4. 5. 5. 6. Updated "Features" on page 1. Updated Table 12-1 on page 62. Updated note for Table 12-1 on page 62. Updated "Bit 6 - ACBG: Analog Comparator Bandgap Select" on page 266. Updated "Prescaling and Conversion Timing" on page 271. Updated "Maximum speed vs. VCC" on page 373. Updated "Ordering Information" on page 407. 38.15 Rev. 2549D-12/05 1. 2. 3. 4. 5. 6. 7. 8. Advanced Information Status changed to Preliminary. Changed number of I/O Ports from 51 to 54. Updatet typos in "TCCR0A - Timer/Counter Control Register A" on page 126. Updated Features in "ADC - Analog to Digital Converter" on page 268. Updated Operation in"ADC - Analog to Digital Converter" on page 268 Updated Stabilizing Time in "Changing Channel or Reference Selection" on page 274. Updated Figure 26-1 on page 269, Figure 26-9 on page 276, Figure 26-10 on page 277. Updated Text in "ADCSRB - ADC Control and Status Register B" on page 282. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 425 9. 10. 11. 12. 13. 14. Updated Note for Table 4 on page 42, Table 13-15 on page 82, Table 26-3 on page 281 and Table 26-6 on page 287. Updated Table 31-9 on page 365 and Table 31-10 on page 366. Updated "Filling the Temporary Buffer (Page Loading)" on page 315. Updated "Typical Characteristics" on page 373. Updated "Packaging Information" on page 412. Updated "Errata" on page 416. 38.16 Rev. 2549C-09/05 1. 2. 3. 4. 5. 6. 7. 8. Updated Speed Grade in section "Features" on page 1. Added "Resources" on page 10. Updated "SPI - Serial Peripheral Interface" on page 190. In Slave mode, low and high period SPI clock must be larger than 2 CPU cycles. Updated "Bit Rate Generator Unit" on page 242. Updated "Maximum speed vs. VCC" on page 373. Updated "Ordering Information" on page 407. Updated "Packaging Information" on page 412. Package 64M1 replaced by 64M2. Updated "Errata" on page 416. 38.17 Rev. 2549B-05/05 1. 2. 3. 4. JTAG ID/Signature for ATmega640 updated: 0x9608. Updated Table 13-7 on page 78. Updated "Serial Programming Instruction set" on page 340. Updated "Errata" on page 416. 38.18 Rev. 2549A-03/05 1. Initial version. ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] DS40002211A 426 Note the following details of the code protection feature on Microchip devices: * Microchip products meet the specification contained in their particular Microchip Data Sheet. * Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. * There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. * Microchip is willing to work with the customer who is concerned about the integrity of their code. * Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. Trademarks The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. (c) 2020, Microchip Technology Incorporated, All Rights Reserved. For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality. ISBN: 978-1-5224-6068-8 DS40002211A-page 427 Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Australia - Sydney Tel: 61-2-9868-6733 India - Bangalore Tel: 91-80-3090-4444 China - Beijing Tel: 86-10-8569-7000 India - New Delhi Tel: 91-11-4160-8631 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 China - Chengdu Tel: 86-28-8665-5511 India - Pune Tel: 91-20-4121-0141 Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829 China - Chongqing Tel: 86-23-8980-9588 Japan - Osaka Tel: 81-6-6152-7160 Finland - Espoo Tel: 358-9-4520-820 China - Dongguan Tel: 86-769-8702-9880 Japan - Tokyo Tel: 81-3-6880- 3770 China - Guangzhou Tel: 86-20-8755-8029 Korea - Daegu Tel: 82-53-744-4301 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 China - Hangzhou Tel: 86-571-8792-8115 Korea - Seoul Tel: 82-2-554-7200 China - Hong Kong SAR Tel: 852-2943-5100 Malaysia - Kuala Lumpur Tel: 60-3-7651-7906 China - Nanjing Tel: 86-25-8473-2460 Malaysia - Penang Tel: 60-4-227-8870 China - Qingdao Tel: 86-532-8502-7355 Philippines - Manila Tel: 63-2-634-9065 China - Shanghai Tel: 86-21-3326-8000 Singapore Tel: 65-6334-8870 China - Shenyang Tel: 86-24-2334-2829 Taiwan - Hsin Chu Tel: 886-3-577-8366 China - Shenzhen Tel: 86-755-8864-2200 Taiwan - Kaohsiung Tel: 886-7-213-7830 Israel - Ra'anana Tel: 972-9-744-7705 China - Suzhou Tel: 86-186-6233-1526 Taiwan - Taipei Tel: 886-2-2508-8600 China - Wuhan Tel: 86-27-5980-5300 Thailand - Bangkok Tel: 66-2-694-1351 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 China - Xian Tel: 86-29-8833-7252 Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Austin, TX Tel: 512-257-3370 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 Raleigh, NC Tel: 919-844-7510 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078 China - Xiamen Tel: 86-592-2388138 China - Zhuhai Tel: 86-756-3210040 Germany - Garching Tel: 49-8931-9700 Germany - Haan Tel: 49-2129-3766400 Germany - Heilbronn Tel: 49-7131-72400 Germany - Karlsruhe Tel: 49-721-625370 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Germany - Rosenheim Tel: 49-8031-354-560 Italy - Padova Tel: 39-049-7625286 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Norway - Trondheim Tel: 47-7288-4388 Poland - Warsaw Tel: 48-22-3325737 Romania - Bucharest Tel: 40-21-407-87-50 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Gothenberg Tel: 46-31-704-60-40 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820 DS40002211A-page 428 02/28/20 Table of Contents Features .................................................................................................... 1 1 Pin Configurations ................................................................................... 2 2 Overview ................................................................................................... 5 2.1Block Diagram ...........................................................................................................5 2.2Comparison Between ATmega1281/2561 and ATmega640/1280/2560 ...................7 2.3Pin Descriptions .........................................................................................................7 3 Resources ............................................................................................... 10 4 About Code Examples ........................................................................... 10 5 Data Retention ........................................................................................ 10 6 Capacitive touch sensing ...................................................................... 10 7 AVR CPU Core ........................................................................................ 11 7.1Introduction ..............................................................................................................11 7.2Architectural Overview .............................................................................................11 7.3ALU - Arithmetic Logic Unit .....................................................................................12 7.4Status Register ........................................................................................................12 7.5General Purpose Register File ................................................................................13 7.6Stack Pointer ...........................................................................................................15 7.7Instruction Execution Timing ...................................................................................16 7.8Reset and Interrupt Handling ...................................................................................17 8 AVR Memories ........................................................................................ 20 8.1In-System Reprogrammable Flash Program Memory .............................................20 8.2SRAM Data Memory ................................................................................................20 8.3EEPROM Data Memory ..........................................................................................22 8.4I/O Memory ..............................................................................................................26 9 External Memory Interface .................................................................... 27 9.1Overview ..................................................................................................................27 9.2Register Description ................................................................................................34 9.3General Purpose registers .......................................................................................36 9.4External Memory registers .......................................................................................36 10 System Clock and Clock Options ......................................................... 39 10.1Overview ................................................................................................................39 10.2Clock Systems and their Distribution .....................................................................39 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 2549Q-AVR-02/2014 i 10.3Clock Sources .......................................................................................................40 10.4Low Power Crystal Oscillator .................................................................................41 10.5Full Swing Crystal Oscillator ..................................................................................42 10.6Low Frequency Crystal Oscillator ..........................................................................43 10.7Calibrated Internal RC Oscillator ...........................................................................45 10.8128kHz Internal Oscillator .....................................................................................45 10.9External Clock .......................................................................................................46 10.10Clock Output Buffer .............................................................................................47 10.11Timer/Counter Oscillator ......................................................................................47 10.12System Clock Prescaler ......................................................................................47 10.13Register Description ............................................................................................48 11 Power Management and Sleep Modes ................................................. 50 11.1Sleep Modes ..........................................................................................................50 11.2Idle Mode ...............................................................................................................50 11.3ADC Noise Reduction Mode ..................................................................................51 11.4Power-down Mode .................................................................................................51 11.5Power-save Mode ..................................................................................................51 11.6Standby Mode .......................................................................................................51 11.7Extended Standby Mode .......................................................................................51 11.8Power Reduction Register .....................................................................................52 11.9Minimizing Power Consumption ............................................................................52 11.10Register Description ............................................................................................54 12 System Control and Reset ..................................................................... 57 12.1Resetting the AVR .................................................................................................57 12.2Reset Sources .......................................................................................................57 12.3Internal Voltage Reference ....................................................................................60 12.4Watchdog Timer ....................................................................................................61 12.5Register Description ..............................................................................................64 13 I/O-Ports .................................................................................................. 67 13.1Introduction ............................................................................................................67 13.2Ports as General Digital I/O ...................................................................................68 13.3Alternate Port Functions ........................................................................................72 13.4Register Description for I/O-Ports ..........................................................................96 14 Interrupts ............................................................................................... 101 14.1Interrupt Vectors in ATmega640/1280/1281/2560/2561 ......................................101 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 2549Q-AVR-02/2014 ii 14.2Reset and Interrupt Vector placement .................................................................102 14.3Moving Interrupts Between Application and Boot Section ...................................107 14.4Register Description ............................................................................................108 15 External Interrupts ............................................................................... 109 15.1Pin Change Interrupt Timing ................................................................................109 15.2Register Description ............................................................................................110 16 8-bit Timer/Counter0 with PWM .......................................................... 115 16.1Features ..............................................................................................................115 16.2Overview ..............................................................................................................115 16.3Timer/Counter Clock Sources .............................................................................116 16.4Counter Unit ........................................................................................................116 16.5Output Compare Unit ...........................................................................................117 16.6Compare Match Output Unit ................................................................................119 16.7Modes of Operation .............................................................................................120 16.8Timer/Counter Timing Diagrams .........................................................................124 16.9Register Description ............................................................................................126 17 16-bit Timer/Counter (Timer/Counter 1, 3, 4, and 5) .......................... 133 17.1Features ..............................................................................................................133 17.2Overview ..............................................................................................................133 17.3Accessing 16-bit Registers ..................................................................................135 17.4Timer/Counter Clock Sources .............................................................................138 17.5Counter Unit ........................................................................................................139 17.6Input Capture Unit ...............................................................................................140 17.7Output Compare Units .........................................................................................141 17.8Compare Match Output Unit ................................................................................143 17.9Modes of Operation .............................................................................................144 17.10Timer/Counter Timing Diagrams .......................................................................152 17.11Register Description ..........................................................................................154 18 Timer/Counter 0, 1, 3, 4, and 5 Prescaler ........................................... 164 18.1Internal Clock Source ..........................................................................................164 18.2Prescaler Reset ...................................................................................................164 18.3External Clock Source .........................................................................................164 18.4Register Description ............................................................................................166 19 Output Compare Modulator (OCM1C0A) ............................................ 167 19.1Overview ..............................................................................................................167 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 2549Q-AVR-02/2014 iii 19.2Description ...........................................................................................................167 20 8-bit Timer/Counter2 with PWM and Asynchronous Operation ....... 169 20.1Overview ..............................................................................................................169 20.2Timer/Counter Clock Sources .............................................................................170 20.3Counter Unit ........................................................................................................170 20.4Modes of Operation .............................................................................................171 20.5Output Compare Unit ...........................................................................................175 20.6Compare Match Output Unit ................................................................................176 20.7Timer/Counter Timing Diagrams .........................................................................177 20.8Asynchronous Operation of Timer/Counter2 .......................................................179 20.9Timer/Counter Prescaler .....................................................................................180 20.10Register Description ..........................................................................................182 21 SPI - Serial Peripheral Interface ......................................................... 190 21.1SS Pin Functionality ............................................................................................195 21.2Register Description ............................................................................................197 22 USART ................................................................................................... 200 22.1Features ..............................................................................................................200 22.2Overview ..............................................................................................................200 22.3Clock Generation .................................................................................................201 22.4Frame Formats ....................................................................................................204 22.5USART Initialization .............................................................................................205 22.6Data Transmission - The USART Transmitter ....................................................207 22.7Data Reception - The USART Receiver .............................................................209 22.8Asynchronous Data Reception ............................................................................213 22.9Multi-processor Communication Mode ................................................................216 22.10Register Description ..........................................................................................218 22.11Examples of Baud Rate Setting .........................................................................223 23 USART in SPI Mode .............................................................................. 227 23.1Overview ..............................................................................................................227 23.2USART MSPIM vs. SPI .......................................................................................227 23.3SPI Data Modes and Timing ................................................................................228 23.4Frame Formats ....................................................................................................229 23.5Data Transfer .......................................................................................................231 23.6USART MSPIM Register Description ..................................................................232 24 2-wire Serial Interface .......................................................................... 236 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 2549Q-AVR-02/2014 iv 24.1Features ..............................................................................................................236 24.22-wire Serial Interface Bus Definition ..................................................................236 24.3Data Transfer and Frame Format ........................................................................237 24.4Multi-master Bus Systems, Arbitration, and Synchronization ..............................239 24.5Overview of the TWI Module ...............................................................................241 24.6Using the TWI ......................................................................................................244 24.7Transmission Modes ...........................................................................................247 24.8Multi-master Systems and Arbitration ..................................................................259 24.9Register Description ............................................................................................261 25 AC - Analog Comparator ..................................................................... 265 25.1Analog Comparator Multiplexed Input .................................................................265 25.2Register Description ............................................................................................266 26 ADC - Analog to Digital Converter ..................................................... 268 26.1Features ..............................................................................................................268 26.2Operation .............................................................................................................269 26.3Starting a Conversion ..........................................................................................270 26.4Prescaling and Conversion Timing ......................................................................271 26.5Changing Channel or Reference Selection .........................................................274 26.6ADC Noise Canceler ...........................................................................................275 26.7ADC Conversion Result .......................................................................................280 26.8Register Description ............................................................................................281 27 JTAG Interface and On-chip Debug System ...................................... 289 27.1Features ..............................................................................................................289 27.2Overview ..............................................................................................................289 27.3TAP - Test Access Port .......................................................................................290 27.4Using the Boundary-scan Chain ..........................................................................292 27.5Using the On-chip Debug System .......................................................................292 27.6On-chip Debug Specific JTAG Instructions .........................................................293 27.7Using the JTAG Programming Capabilities .........................................................293 27.8Bibliography .........................................................................................................294 27.9On-chip Debug Related Register in I/O Memory .................................................294 28 IEEE 1149.1 (JTAG) Boundary-scan ................................................... 295 28.1Features ..............................................................................................................295 28.2System Overview .................................................................................................295 28.3Data Registers .....................................................................................................295 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 2549Q-AVR-02/2014 v 28.4Boundary-scan Specific JTAG Instructions .........................................................297 28.5Boundary-scan Chain ..........................................................................................298 28.6Boundary-scan Related Register in I/O Memory .................................................301 28.7ATmega640/1280/1281/2560/2561 Boundary-scan Order ..................................301 28.8Boundary-scan Description Language Files ........................................................301 29 Boot Loader Support - Read-While-Write Self-Programming ......... 310 29.1Features ..............................................................................................................310 29.2Application and Boot Loader Flash Sections .......................................................310 29.3Read-While-Write and No Read-While-Write Flash Sections ..............................310 29.4Boot Loader Lock Bits .........................................................................................312 29.5Addressing the Flash During Self-Programming .................................................314 29.6Self-Programming the Flash ................................................................................315 29.7Register Description ............................................................................................323 30 Memory Programming ......................................................................... 325 30.1Program And Data Memory Lock Bits .................................................................325 30.2Fuse Bits ..............................................................................................................326 30.3Signature Bytes ...................................................................................................328 30.4Calibration Byte ...................................................................................................328 30.5Page Size ............................................................................................................328 30.6Parallel Programming Parameters, Pin Mapping, and Commands .....................328 30.7Parallel Programming ..........................................................................................330 30.8Serial Downloading ..............................................................................................338 30.9Programming via the JTAG Interface ..................................................................342 31 Electrical Characteristics .................................................................... 355 31.1DC Characteristics ...............................................................................................355 31.2Speed Grades .....................................................................................................357 31.3Clock Characteristics ...........................................................................................359 31.4External Clock Drive ............................................................................................359 31.5System and Reset Characteristics ......................................................................360 31.62-wire Serial Interface Characteristics .................................................................361 31.7SPI Timing Characteristics ..................................................................................363 31.8ADC Characteristics - Preliminary Data ..............................................................365 31.9External Data Memory Timing .............................................................................367 32 Typical Characteristics ........................................................................ 373 32.1Active Supply Current ..........................................................................................373 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 2549Q-AVR-02/2014 vi 32.2Idle Supply Current ..............................................................................................376 32.3Power-down Supply Current ................................................................................380 32.4Power-save Supply Current .................................................................................381 32.5Standby Supply Current ......................................................................................382 32.6Pin Pull-up ...........................................................................................................382 32.7Pin Driver Strength ..............................................................................................385 32.8Pin Threshold and Hysteresis ..............................................................................387 32.9BOD Threshold and Analog Comparator Offset ..................................................390 32.10Internal Oscillator Speed ...................................................................................392 32.11Current Consumption of Peripheral Units ..........................................................394 32.12Current Consumption in Reset and Reset Pulsewidth ......................................397 33 Register Summary ................................................................................ 399 34 Instruction Set Summary ..................................................................... 404 35 Ordering Information ........................................................................... 407 35.1ATmega640 .........................................................................................................407 35.2ATmega1280 .......................................................................................................408 35.3ATmega1281 .......................................................................................................409 35.4ATmega2560 .......................................................................................................410 35.5ATmega2561 .......................................................................................................411 36 Packaging Information ......................................................................... 412 36.1100A ....................................................................................................................412 36.2100C1 ..................................................................................................................413 36.364A ......................................................................................................................414 36.464M2 ....................................................................................................................415 37 Errata ..................................................................................................... 416 37.1ATmega640 rev. B ...............................................................................................416 37.2ATmega640 rev. A ...............................................................................................416 37.3ATmega1280 rev. B .............................................................................................416 37.4ATmega1280 rev. A .............................................................................................416 37.5ATmega1281 rev. B .............................................................................................417 37.6ATmega1281 rev. A .............................................................................................417 37.7ATmega2560 rev. F .............................................................................................417 37.8ATmega2560 rev. E .............................................................................................417 37.9ATmega2560 rev. D ............................................................................................417 37.10ATmega2560 rev. C ..........................................................................................418 ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 2549Q-AVR-02/2014 vii 37.11ATmega2560 rev. B ...........................................................................................418 37.12ATmega2560 rev. A ...........................................................................................418 37.13ATmega2561 rev. F ...........................................................................................419 37.14ATmega2561 rev. E ...........................................................................................419 37.15ATmega2561 rev. D ..........................................................................................419 37.16ATmega2561 rev. C ..........................................................................................419 37.17ATmega2561 rev. B ...........................................................................................419 37.18ATmega2561 rev. A ...........................................................................................420 38 Datasheet Revision History ................................................................. 422 38.1Rev. 2549Q-02/2014 ...........................................................................................422 38.2Rev. 2549P-10/2012 ............................................................................................422 38.3Rev. 2549O-05/2012 ...........................................................................................422 38.4Rev. 2549N-05/2011 ...........................................................................................422 38.5Rev. 2549M-09/2010 ...........................................................................................423 38.6Rev. 2549L-08/07 ................................................................................................423 38.7Rev. 2549K-01/07 ................................................................................................424 38.8Rev. 2549J-09/06 ................................................................................................424 38.9Rev. 2549I-07/06 .................................................................................................424 38.10Rev. 2549H-06/06 .............................................................................................424 38.11Rev. 2549G-06/06 .............................................................................................425 38.12Rev. 2549F-04/06 ..............................................................................................425 38.13Rev. 2549E-04/06 ..............................................................................................425 38.14Rev. 2549D-12/05 .............................................................................................425 38.15Rev. 2549C-09/05 .............................................................................................426 38.16Rev. 2549B-05/05 ..............................................................................................426 38.17Rev. 2549A-03/05 ..............................................................................................426 Table of Contents ....................................................................................... i ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 2549Q-AVR-02/2014 viii