5/2/11
Benefits
lWorldwide Best RDS(on) in TO-220
lImproved Gate, Avalanche and Dynamic dV/dt
Ruggedness
lFully Characterized Capacitance and Avalanche
SOA
lEnhanced body diode dV/dt and dI/dt Capability
www.irf.com 1
IRFB3077PbF
HEXFET® Power MOSFET
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
TO-220AB
IRFB3077PbF
D
S
D
G
S
D
G
GDS
Gate Drain Source
VDSS 75V
RDS
(
on
)
typ. 2.8m:
max. 3.3m:
ID (Silicon Limited) 210A c
ID (Package Limited) 120A
Absolute Maximum Ratings
Symbol Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) A
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited
)
IDM Pulsed Drain Current d
PD @TC = 25°C Maximum Power Dissipation W
Linear Derating Factor W/°C
VGS Gate-to-Source Voltage V
dV/dt Peak Diode Recovery fV/ns
TJ Operating Junction and °C
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
EAS (Thermally limited) Single Pulse Avalanche Energy emJ
IAR Avalanche Current dA
EAR Repetitive Avalanche Energy gmJ
Thermal Resistance
Symbol Parameter Typ. Max. Units
RθJC Junction-to-Case k––– 0.402
RθCS Case-to-Sink, Flat Greased Surface 0.50 ––– °C/W
RθJA Junction-to-Ambient jk ––– 62
200
See Fig. 14, 15, 22a, 22b,
370
2.5
-55 to + 175
± 20
2.5
10lbxin (1.1Nxm)
300
Max.
210c
120
850
150c
PD - 97047B
IRFB3077PbF
2www.irf.com
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 120A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements.
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by TJmax, starting TJ = 25°C, L = 0.028mH
RG = 25Ω, IAS = 120A, VGS =10V. Part not recommended for use
above this value.
ISD 75A, di/dt 400A/μs, VDD V(BR)DSS, TJ 175°C.
S
D
G
Pulse width 400μs; duty cycle 2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
Rθ is measured at TJ approximately 90°C
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
V(BR)DSS Drain-to-Source Breakdown Voltage 75 ––– ––– V
ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.091 ––– V/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 2.8 3.3 mΩ
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V
IDSS Drain-to-Source Leakage Current ––– ––– 20 μA
––– ––– 250
IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
RGGate Input Resistance ––– 1.2 ––– Ωf = 1MHz, open drain
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
gfs Forward Transconductance 160 ––– ––– S
QgTotal Gate Charge ––– 160 220 nC
Qgs Gate-to-Source Charge ––– 37 –––
Qgd Gate-to-Drain ("Miller") Charge ––– 42 –––
td(on) Turn-On Delay Time ––– 25 ––– ns
trRise Time ––– 87 –––
td(off) Turn-Off Delay Time ––– 69 –––
tfFall Time ––– 95 –––
Ciss Input Capacitance ––– 9400 ––– pF
Coss Output Capacitance ––– 820 –––
Crss Reverse Transfer Capacitance ––– 350 –––
Coss eff. (ER) Effective Output Capacitance (Energy Related)
i
––– 1090 –––
Coss eff. (TR) Effective Output Capacitance (Time Related)h––– 1260 –––
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units
ISContinuous Source Current ––– ––– 210cA
(Body Diode)
ISM Pulsed Source Current ––– ––– 850
(Body Diode)di
VSD Diode Forward Voltage ––– ––– 1.3 V
trr Reverse Recovery Time ––– 42 63 ns TJ = 25°C VR = 64V,
––– 50 75 TJ = 125°C IF = 75A
Qrr Reverse Recovery Charge ––– 59 89 nC TJ = 25°C di/dt = 100A/μs g
––– 86 130 TJ = 125°C
IRRM Reverse Recovery Current ––– 2.5 ––– A TJ = 25°C
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
ID = 75A
RG = 2.1Ω
VGS = 10V g
VDD = 38V
TJ = 25°C, IS = 75A, VGS = 0V g
integral reverse
p-n junction diode.
Conditions
VGS = 0V, ID = 250μA
Reference to 25°C, ID = 5mAd
VGS = 10V, ID = 75A g
VDS = VGS, ID = 250μA
VDS = 75V, VGS = 0V
VDS = 75V, VGS = 0V, TJ = 125°C
MOSFET symbol
showing the
VDS = 38V
Conditions
VGS = 10V g
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 60V j, See Fig.11
VGS = 0V, VDS = 0V to 60V h, See Fig. 5
Conditions
VDS = 50V, ID = 75A
ID = 75A
VGS = 20V
VGS = -20V
IRFB3077PbF
www.irf.com 3
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature
Fig 2. Typical Output Characteristics
Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage
0.1 110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
ID, Drain-to-Source Current (A)
60μs PULSE WIDTH
Tj = 25°C
4.5V
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM 4.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
ID, Drain-to-Source Current (A)
60μs PULSE WIDTH
Tj = 175°C
4.5V
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM 4.5V
2.0 3.0 4.0 5.0 6.0 7.0 8.0
VGS, Gate-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current
(Α)
VDS = 25V
60μs PULSE WIDTH
TJ = 25°C
TJ = 175°C
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 75A
VGS = 10V
110 100
VDS, Drain-to-Source Voltage (V)
0
4000
8000
12000
16000
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0 40 80 120 160 200 240 280
QG Total Gate Charge (nC)
0
4
8
12
16
20
VGS, Gate-to-Source Voltage (V)
VDS= 60V
VDS= 38V
VDS= 17V
ID= 75A
IRFB3077PbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 10. Drain-to-Source Breakdown Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 11. Typical COSS Stored Energy
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
0.0 0.4 0.8 1.2 1.6 2.0
VSD, Source-to-Drain Voltage (V)
0.1
1.0
10.0
100.0
1000.0
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
70
80
90
100
V(BR)DSS , Drain-to-Source Breakdown Voltage
020 40 60 80
VDS, Drain-to-Source Voltage (V)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Energy (μJ)
25 50 75 100 125 150 175
Starting TJ, Junction Temperature (°C)
0
200
400
600
800
1000
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 22A
40A
BOTTOM 120A
25 50 75 100 125 150 175
TC, Case Temperature (°C)
0
40
80
120
160
200
240
ID, Drain Current (A)
LIMITED BY PACKAGE
0.1 1 10 100
VDS, Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100μsec
DC
LIMITED BY PACKAGE
IRFB3077PbF
www.irf.com 5
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 14. Typical Avalanche Current vs.Pulsewidth
Fig 15. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z
thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.0766 0.000083
0.1743 0.000995
0.1513 0.007038
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci τi/Ri
Ci= τi/Ri
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
40
80
120
160
200
240
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 120A
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
IRFB3077PbF
6www.irf.com
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage Vs. Temperature
Fig. 19 - Typical Stored Charge vs. dif/dtFig. 18 - Typical Recovery Current vs. dif/dt
Fig. 20 - Typical Stored Charge vs. dif/dt
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
2.0
3.0
4.0
VGS(th) Gate threshold Voltage (V)
ID = 1.0A
ID = 1.0mA
ID = 250μA
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
0
4
8
12
16
20
24
IRRM - (A)
IF = 45A
VR = 64V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
0
4
8
12
16
20
24
IRRM - (A)
IF = 30A
VR = 64V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
0
100
200
300
400
QRR - (nC)
IF = 30A
VR = 64V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
0
100
200
300
400
QRR - (nC)
IF = 45A
VR = 64V
TJ = 125°C
TJ = 25°C
IRFB3077PbF
www.irf.com 7
Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms
VGS
VDS
90%
10%
td(on) td(off)
trtf
VGS
Pulse Width < 1μs
Duty Factor < 0.1%
VDD
VDS
LD
D.U.T
+
-
Fig 22b. Unclamped Inductive Waveforms
Fig 22a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
Ω
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
1K
VCC
DUT
0
L
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Inductor Current
IRFB3077PbF
8www.irf.com
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 101N. Sepulveda, El Segundo, California 90245, USA Tel: (310) 252-
7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 05/2011
TO-220AB packages are not recommended for Surface Mount Application.
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
EXAMPLE:
IN THE ASS EMBLY LINE "C"
T HIS IS AN IRF 1010
LOT CODE 1789
AS S E MB LE D ON WW 19, 1997 PART NUMBER
ASSEMBLY
LOT CODE
DAT E CODE
YEAR 7 = 1997
LINE C
WE E K 19
LOGO
R E CT IF IE R
INT E R NAT IONAL
Note: "P" in assembly line
position indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/