NTE928M & NTE928SM Integrated Circuit Low Power Dual Operational Amplifier Description: Utilizing the circuit designs perfected for recently introduced Quad Operational Amplifiers, the NTE928M/NTE928SM dual operational amplifier features low power drain, a common mode input voltage range extending to ground/VEE, and Single Supply or Split Supply Operation. This amplifier has several distinct advantages over standard operational amplifier types in single supply applications. It can operate at supply voltages as low as 3.0 Volts or as high as 32 Volts with quiescent currents about one-fifth of those associated with the NTE941 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing power supply voltage. Features: D Short Circuit Protected Outputs D True Differential Input Stage D Single Supply Operation: 3.0 to 32 Volts D Low Input Bias Currents D Internally compensated D Common Mode Range Extends to Negative Supply D Single and Split Supply Operation Maximum Ratings: Power Supply Voltages Single Supply, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32V Split Supplies, VCC VEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16V Input Differential Voltage Range (Note 1), VIDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32V Input Common Mode Voltage Range (Note 2), VICR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to 32V Input Forward Current (VI -0.3V, Note 3), IIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA Output Short Circuit Duration, tS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous Junction Temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55 to +125C Operating Ambient Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to +70C Note 1. Split Power Supplies Note 2. For supply voltages less than 32V, the absolute maximum input voltage is equal to the supply voltage. Note 3. This input current will only exist when the voltage is negative at any of the input leads. Normal output states will reestablish when the input voltage returns to a voltage greater than 0.3V. Electrical Characteristics: (VCC = 5V, VEE = Gnd, TA = +25C unless otherwise specified) Parameter Input Offset Voltage Average Temperature Coefficient of Input Offset Voltage Input Offset Current Average Temperature Coefficient of Input Offset Current Input Bias Current Symbol VIO VIO/T Test Conditions Min Typ Max Unit - 2.0 7.0 mV - - 9.0 mV - 7.0 - V/C - 5.0 50 nA 0 TA +70C - - 150 nA 0 TA +70C - 10 - pA/C - -45 -250 nA 0 TA +70C - -50 -500 nA VCC = 30V, Note 4 0 - 28.3 V 0 - 28 V - - VCC V 25 100 - V/mV 15 - - V/mV 1kHz f 20kHz, Input Referenced - -120 - dB RS 10k 65 70 - dB 65 100 - dB 0 - 3.3 V RL = 2k 26 - - V RL = 10k 27 28 - V VCC = 5V to 30V, VIC =0 to VCC-1.7V, VO ] 1.4V, RS = 0 0 TA +70C 0 TA +70C IIO IIO/T IIB Input Common-Mode Voltage Range VICR Differential Input Voltage Range VIDR Large Signal Open-Loop Voltage Gain AVOL 0 TA +70C Channel Separation Common-Mode Rejection Ratio CMRR Power Supply Rejection Ratio PSRR RL = 2k, VCC = 15V, For Large VO Swing Output Voltage Range VOR RL = 2k Output Voltage - High Limit VOH VCC = 30V, 0 TA +70C 0 TA +70C Output Voltage - Low Limit VOL VCC = 5V, RL = 10k, 0 TA +70C - 5 20 mV Output Source Current IO+ VID = +1V, VCC = 15V 20 40 - mA Output Sink Current IO- VID = -1V, VCC = 15V 10 20 - mA VID = -1V, VO = 200mV 12 50 - A - 40 60 mA VCC = 30V - 1.5 3.0 mA VCC = 5V - 0.7 1.2 mA Output Short-Circuit to GND Ios Note 5 Power Supply Current ICC VO = 0, RL = , 0 TA +70C Note 4. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VCC-1.7V, but either or both inputs can goto +32V without damage. Note 5. Short circuit from the output to VCC can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers. Pin Connection Diagram Output A 1 8 VCC Inverting Input A 2 7 Output B Non-Inverting Input A 3 6 Inverting Input B VEE (GND) 4 5 Non-Inverting Input B NTE928M 8 5 .256 (6.52) Max 1 4 .393 (10.0) Max .300 (7.62) .150 (3.81) .100 (2.54) .070 (1.77) Min .300 (7.62) NTE928SM .192 (4.9) 8 5 1 4 .050 (1.27) .236 (5.99) .154 (3.91) 016 (.406) .198 (5.03) 061 (1.53) .006 (.152) NOTE: Pin1 on Beveled Edge