NTE928M & NTE928SM
Integrated Circuit
Low Power Dual Operational Amplifier
Description:
Utilizing the circuit designs perfected for recently introduced Quad Operational Amplifiers, the
NTE928M/NTE928SM dual operational amplifier features low power drain, a common mode input
voltage range extending to ground/VEE, and Single Supply or Split Supply Operation.
This amplifier has several distinct advantages over standard operational amplifier types in single sup-
ply applications. It can operate at supply voltages as low as 3.0 Volts or as high as 32 Volts with quies-
cent currents about one–fifth of those associated with the NTE941 (on a per amplifier basis). The
common mode input range includes the negative supply, thereby eliminating the necessity for exter-
nal biasing power supply voltage.
Features:
DShort Circuit Protected Outputs
DTrue Differential Input Stage
DSingle Supply Operation: 3.0 to 32 Volts
DLow Input Bias Currents
DInternally compensated
DCommon Mode Range Extends to Negative Supply
DSingle and Split Supply Operation
Maximum Ratings:
Power Supply Voltages
Single Supply, VCC 32V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Split Supplies, VCC VEE ±16V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Differential Voltage Range (Note 1), VIDR ±32V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Common Mode Voltage Range (Note 2), VICR –0.3 to 32V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Forward Current (VI –0.3V, Note 3), IIF 50mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Short Circuit Duration, tSContinuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Junction Temperature, TJ–55° to +125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Ambient Temperature Range, TA0° to +70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Note 1. Split Power Supplies
Note 2. For supply voltages less than 32V, the absolute maximum input voltage is equal to the supply
voltage.
Note 3. This input current will only exist when the voltage is negative at any of the input leads. Normal
output states will reestablish when the input voltage returns to a voltage greater than 0.3V.
Electrical Characteristics: (VCC = 5V, VEE = Gnd, TA = +25°C unless otherwise specified)
Parameter Symbol Test Conditions Min Typ Max Unit
Input Offset Voltage VIO VCC = 5V to 30V, 2.0 7.0 mV
VIC =0 to VCC1.7V,
VO ] 1.4V, RS = 00° TA +70°C 9.0 mV
Average Temperature Coefficient
of Input Offset Voltage VIO/T 0° TA +70°C7.0 µV/°C
Input Offset Current IIO 5.0 50 nA
0° TA +70°C 150 nA
Average Temperature Coefficient
of Input Offset Current IIO/T 0° TA +70°C10 pA/°C
Input Bias Current IIB 45 250 nA
0° TA +70°C 50 500 nA
Input CommonMode Voltage VICR VCC = 30V, Note 4 028.3 V
Range 0° TA +70°C 0 28 V
Differential Input Voltage Range VIDR VCC V
Large Signal OpenLoop AVOL RL = 2k, VCC = 15V, 25 100 V/mV
Voltage Gain For Large VO Swing 0° TA +70°C 15 V/mV
Channel Separation 1kHz f 20kHz, Input Referenced 120 dB
CommonMode Rejection Ratio CMRR RS 10k65 70 dB
Power Supply Rejection Ratio PSRR 65 100 dB
Output Voltage Range VOR RL = 2k03.3 V
Output Voltage High Limit VOH VCC = 30V,
° °
RL = 2k26 V
0° TA +70°CRL = 10k27 28 V
Output Voltage Low Limit VOL VCC = 5V, RL = 10k, 0° TA +70°C5 20 mV
Output Source Current IO+ VID = +1V, VCC = 15V 20 40 mA
Output Sink Current IOVID = 1V, VCC = 15V 10 20 mA
VID = 1V, VO = 200mV 12 50 µA
Output ShortCircuit to GND Ios Note 5 40 60 mA
Power Supply Current ICC VO = 0, RL = ,
° °
VCC = 30V 1.5 3.0 mA
0° TA +70°CVCC = 5V 0.7 1.2 mA
Note 4. The input commonmode voltage or either input signal voltage should not be allowed to go
negative by more than 0.3V. The upper end of the commonmode voltage range is
VCC1.7V, but either or both inputs can goto +32V without damage.
Note 5. Short circuit from the output to VCC can cause excessive heating and eventual destruction.
Destructive dissipation can result from simultaneous shorts on all amplifiers.
VEE (GND)
VCC
Pin Connection Diagram
Output B
Inverting Input B
Inverting Input A
1
2
3
4
Output A
NonInverting Input A
8
7
6
5NonInverting Input B
NTE928M
NTE928SM
85
.256 (6.52) Max
.393 (10.0)
Max
14
.300 (7.62)
.300 (7.62)
.150
(3.81)
.070 (1.77) Min.100 (2.54)
.198 (5.03)
.236
(5.99)
NOTE: Pin1 on Beveled Edge
.154
(3.91)
061
(1.53)
.006 (.152)
14
85
.192 (4.9)
.050 (1.27) 016
(.406)