© by SEMIKRON 000831 B 6 – 37
SKM 10 0 GB 125 DN
Absolute Ma ximum Ratings Values
Symbol Conditions 1) Units
VCES
VCGR
IC
ICM
VGES
Ptot
Tj, (Tstg)
Visol
humidity
climate
RGE = 20 k
Tcase = 25/80 °C
Tcase = 25/80 °C; tp = 1 ms
per IGBT, Tcase = 25 °C
AC, 1 min.
IEC 60721-3 -3
IEC 68 T.1
1200
1200
100 / 80
200 / 160
± 20
690
–40 ... + 150 (125)
2500
class 3K7/IE32
40/125/56
V
V
A
A
V
W
°C
V
Inverse Diode
IF = –IC
IFM = –ICM
IFSM
I2t
Tcase = 25/80 °C
Tcase = 25/80 °C; tp = 1 ms
tp = 10 ms; sin.; Tj = 150 °C
tp = 10 ms; Tj = 150 °C
95 / 65
200 / 160
720
2600
A
A
A
A2s
Characteristics
Symbol Conditions 1) min. typ. max. Units
V(BR)CES
VGE(th)
ICES
IGES
VCEsat
VCEsat
gfs
VGE = 0, IC = 4 mA
VGE = VCE, IC = 2 mA
VGE = 0 Tj = 25 °C
VCE = VCES Tj = 125 °C
VGE = 20 V, VCE = 0
IC = 75 A VGE = 15 V;
IC = 100 A Tj = 25 °C
VCE = 20 V, IC = 75 A
VCES
4,5
31
5,5
0,1
6
3,3
3,8
6,5
1,5
300
3,65
V
V
mA
mA
nA
V
V
S
CCHC
Cies
Coes
Cres
LCE
per IGBT
VGE = 0
VCE = 25 V
f = 1 MHz
5
720
380
350
6,6
900
500
25
pF
nF
pF
pF
nH
td(on)
tr
td(off)
tf
Eon
Eoff
VCC = 600 V
VGE = –15 V / +15 V 3)
IC = 75 A, ind. load
RGon = RGoff = 8
Tj = 125 °C
80
40
360
20
9
3,5
ns
ns
ns
ns
mWs
mWs
Inverse D iode 8)
VF = VEC
VF = VEC
VTO
rt
IRRM
Qrr
IF = 75 A VGE = 0 V;
IF = 100 A Tj = 25 (125) °C
Tj = 125 °C
Tj = 125 °C
IF = 75 A; Tj = 25 (125) °C 2)
IF = 75 A; Tj = 25 (125) °C 2)
2,0(1,8)
2,25(2,05)
12
27(40)
3(10)
2,5
1,2
15
V
V
V
m
A
µC
Thermal character isti c s
Rthjc
Rthjc
Rthch
per IGBT
per diode
per module
0,18
0,50
0,05
°C/W
°C/W
°C/W
SEMITRANS® M
Ultra Fast IGBT Modules
SKM 10 0 GB 125 DN
Features
N channel, homogeneous Si
Low inductance case
Short tail current with low
temperature dependence
High short circuit capability,
self limiting to 6 * Icnom
Fast & soft inverse CAL diodes 8)
Isolated copper baseplate using
DCB Direct Copper Bonding
Technology
Large clearance (10 mm) and
creepage distances (20 mm)
Typical Applications
Switched mode power supplies
at fsw > 20 kHz
Resonant inverters up to
100 kHz
Inductive heating
Electronic welders at
fsw > 20 kHz
1) Tcase = 25 °C, unless otherwis e
specified
2) IF = – IC, VR = 600 V,
–diF/dt = 800 A/µs, VGE = 0 V
3) Use VGEoff = –5... –15 V
8) CAL = Controlled Axial Lifetime
Technology
GB
SEMITRANS 2N (low inductance)
B 6 – 38 000831 © by SEMIKRON
SKM 100 GB 125 DN
0
10
20
30
40
020406080
RG
E
mWs
Eon
Eoff
M100G125 - 3
0
10
20
30
0 20406080100120
ICA
E
mWs Eon
Eoff
M100G125 - 2
0
2
4
6
8
10
12
0 200 400 600 800 1000 1200 1400
VCE V
ICSC/IC
allowed numbers of
short circuits: <1000
time between short
circuits: >1s
di/dt=1000 A/µs
3000 A/µs
5000 A/µs
M100G125 - 6
0
0,5
1
1,5
2
2,5
0 200 400 600 800 1000 1200 1400
VCE V
ICpuls/IC
M100G125 - 5
0,1
1
10
100
1000
1 10 100 1000 10000
VCE V
IC
Atp=
10µs
100µs
1ms
10ms
M100G125 - 4
0
200
400
600
800
0 20406080100120140160
TC°C
Ptot
W
M100G125 - 1
Fig. 3 Turn-on /-off energy = f (RG) Fig. 4 Maximum safe operating area (SOA) IC = f (VCE)
Fig. 1 Rated power dissipation Ptot = f (TC) Fig. 2 Turn-on /-off energy = f (IC)
Fig. 5 Turn-off safe operating area (RBSOA) Fig. 6 Safe operating area at short circuit IC = f (VCE)
Tj = 125 °C
VCE = 600 V
VGE = + 15 V
RG = 12
1 pulse
TC = 25 °C
Tj 150 °C
Tj = 125 °C
VCE = 600 V
VGE = + 15 V
IC = 75 A
Tj 150 °C
VGE = ± 15 V
tsc 10 µs
L < 25 nH
IC = 75 A
Tj 150 °C
VGE = 15 V
RGoff = 12
IC = 75 A
Not for
linear use
© by SEMIKRON 000831 B 6 – 39
SKM 10 0 GB 125 DN
0
50
100
150
024681012
VGV
IC
A
M100G125 - 12
0
20
40
60
80
100
120
140
160
0123456
VCE V
IC
A
17V
15V
13V
11V
9V
7V
M100G125 - 10
0
20
40
60
80
100
120
140
160
0123456
VCE V
IC
A17V
15V
13V
11V
9V
7V
M100G125 - 9
0
50
100
150
0 20406080100120140160
TC°C
IC
A
M100G125 - 8
Pcond(t) = VCEsat(t) · IC(t)
VCEsat(t) = VCE(TO)(Tj) + rCE(Tj) · IC(t)
VCE(TO)(Tj) 1,4 + 0,003 (Tj –25) [V]
typ.: rCE(Tj) = 0,0253 + 0,000067 (Tj –25) []
max.: rCE(Tj) = 0,0307 + 0,00004 (Tj –25) []
valid for VGE = + 15 [V]; IC > 0,3 ICnom
Fig. 9 Typ. output characteristic, tp = 80 µs; 25 °C Fig. 10 Typ. output characteristic, tp = 80 µs; 125 °C
Fig. 8 Rated current vs. temperature IC = f (TC)
Fig. 11 Saturation characteristic (IGBT)
Calculation elements and equations Fig. 12 Typ. transfer characteristic, tp = 80 µs; VCE = 20 V
Tj = 150 °C
VGE 15V
+2
–1
B 6 – 40 000831 © by SEMIKRON
SKM 100 GB 125 DN
10
100
1000
10000
0 20406080
RG
t
ns tdoff
tdon
tr
tf
M100G125 - 16
10
100
1000
0 20406080100120
ICA
t
ns tdoff
tdon
tr
tf
M100G125 - 15
M100G125 - 18
0
1
2
3
4
5
6
050100150
IFA
EoffD
mJ
20
12
60 Ω
9
RG=
6
M100G125.XLS-17
0
20
40
60
80
100
0123
VFV
IF
ATj=125°C, typ.
Tj=25°C, typ.
Tj=125°C, max.
Tj=25°C, max.
Fig. 13 Typ. gate charge characteristic Fig. 14 Typ. capacitances vs.VCE
VGE = 0 V
f = 1 MHz
Fig. 15 Typ. switching times vs. ICFig. 16 Typ. switching times vs. gate resistor RG
Fig. 17 Typ. CAL diode forward characteristic Fig. 18 Diode turn-off energy dissipation per pulse
Tj = 125 °C
VCE = 600 V
VGE = ± 1 5 V
RGon = 12
RGoff = 12
induct. load
Tj = 125 °C
VCE = 600 V
VGE = ± 15 V
IC = 75 A
induct. load
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
0
2
4
6
8
10
12
14
16
18
20
0 200 400 600 800
QGate nC
VGE
V
600
800V
M100G125 - 13 M100G125.XLS-14
0,1
1
10
100
0102030
VCE V
C
nF
Cies
Coes
Cres
ICpuls = 75 A
© by SEMIKRON 000831 B 6 – 41
SKM 10 0 GB 125 DN
M100G125 - 19
0,0001
0,001
0,01
0,1
1
0,00001 0,0001 0,001 0,01 0,1 1
tps
ZthJC
K/W
D=0,50
0,20
0,10
0,05
0,02
0,01
sing le pul se
M100G125 - 22
0
40
80
120
04080120
IFA
IRR
A
RG=
6
20
12
9 Ω
60
M100G125 - 23
0
40
80
120
0 2500 5000
diF/dt A/us
IRR
ARG= 6
20
60
12
9
M100G125 - 24
0
5
10
15
20
0 2500 5000
diF/dt A/us
Qrr
uC
RG= 6
12 Ω
20
IF=
100 A
7
5
A
56 A
38 A
9 Ω
19 A
60
M100G125 - 20
0,0001
0,001
0,01
0,1
1
0,00001 0,0001 0,001 0,01 0,1 1
s
ZthJC
K/W
D=0,5
0,2
0,1
0,05
0,02
0,01
single pulse
tp
Fig. 19 Transient thermal impedance of IGBT
ZthJC = f (tp); D = tp / tc = tp · f Fig. 20 Transient thermal impedance of
inverse CAL diodes Zthjc = f (tp); D = tp / tc = tp · f
Fig. 22 Typ. CAL diode peak reverse recovery
current IRR = f (IF; RG)Fig. 23 Typ. CAL diode peak reverse recovery
current IRR = f (di/dt)
Fig. 24 Typ. CAL diode recovered charge Qrr = f (di/dt)
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
IF = 75 A
B 6 – 42 000831 © by SEMIKRON
SKM 100 GB 125 DN
SEMITRANS 2N (low inductance)
Case D 93
UL Recognized
File no. E 63 532
SKM 100 GB 125 DN
Dimensions in mm
Case outline and circuit diagram
Mechanical Data
Symbol Conditions Values Units
min. typ. max.
M1
M2
a
w
to heatsink, SI Units (M6)
to heatsink, US Units
for terminals, SI Units (M5)
for terminals, US Units
3
27
2,5
22
5
44
5
44
5x9,81
160
Nm
lb.in.
Nm
lb.in.
m/s2
g
This is an electrostatic discharge
sensitive device (ESDS).
Please observe the international
standard IEC 747-1 , Chapt er IX.
Eight devices are supplied in one
SEMIBOX A without mounting hard-
ware, which can be ordered separa-
tely under Ident No. 33321100 (for
10 SEMITRANS 2)
Larger packing units of 20 and 42
pieces are used if suitable
This tec hni ca l informa tio n s pec ifi es semico ndu cto r de vi ce s b ut promis es no cha r ac teri sti cs . No w arran ty or g uarantee e xpre ss ed or
implied is made regarding delivery, performance or suitability.