42 **Bipolar Pro Electron Series** 12 알 T-03-01 20 0.7 250 5 5 ଷ 8 S 45 20 TO-92 (97) BC337-16 20 0.7 100 500 8 8 흥 S 9 8 TO-92 (97) BC337A 200 0.7 400 8 6 5 4 ଷ 5 Ŋ 45 20 TO-92 (97) BC337-25 | ¥ | н | |---|-----------| | | Series | | | Electron | | | polar Pro | | | 窗 | | Conditions No. O. | | - | | SCRE
22 | 37 J | .E | (Notes 1, 11) 11 T | (Notes 1, 11) 11 E | (Notes 1, 11) 11 F | (Notes 1, 11) 10 | (Notes 1, 11) 10 C | (Notes 1, 11) 10 | (Notes 1, 11) 10 | |---|---|---------------|----------------|---------------|----------------|----------------|--------------------|--------------------|--------------------|------------------|--------------------|--------------------|------------------| | | NF
(dB) Cc | | | | | · | 10
(N | 10
(N | 10
(N | <u>ک</u>
2 | 10
(R | 10
(N | 10
(N | | | toff N (us) (d | - | | | | | <u>-</u> | | _ | - | | | | | | | | | | | | | | | I | Τ | 03 - 01
 | - | | | fr
(MHz) @ ^I C
Min Max | | | | | | | | | | | | | | | C _{ob}
(pF)
Max | | | | | | | | | 4.5 | 4.5 | 4.5 | 4.5 | | | Ic
(mA) | 500 | 200 | 200 | 1 A | 4 | 100
100 | 100 | 5
5 | 5 6 2 | 5 5 2 | 5
10
2 | 5 6 4 | | | VBE(SAT) VBE(ON)* @ (V) Min Max | | | | | | | | | 0.77* | 0.77* | 0.77* | 0.55 0.70* | | | VCE(SAT)
(V) &
Max | 2.0 | 0.7 | 0.7 | 0.5 | 0.5 | 0.25 | 0.25 | 0.25 | 0.25
0.6 | 0.25 | 0.25 | 0.25 | | | V _{CE} | 1 | 1 | 1 | 10
1 | 10 | သ | 5 | 5 | 5 | 5 | 5 | c. | | | ıc
(mA) | 100
500 | 100
500 | 100
500 | 5
500
1A | 5
500
1A | N | 0.01 | 0.01 | 2 | 2 | ~ | 8 | | | HFE
hte @
1 kHz* @
Min Max | 009 | 250 | 250 | 375 | 375 | 800 | 0X | 450 | *006 | 260* | \$00° | 006 | | = | Mi - H | 00
49 | 5 4 | 100
40 | 60
85
60 | 85
60
85 | 5 | 110 | 500 | 125 | 125 | 240 | 420 | | ntinuec | S (CB | 20 | 20 | 82 | 52 | 25 | 8 | 8 | 8 | 20 | 20 | 8 | 90 | | <u>လ</u> | lces*
lcB0 (nA) | 100 | 100 | 100 | 10 JuA | 10 μА | 15 | 15 | 5 | 9 | 10 | 2 | 55 | | Serie | VEBO | 5 | က | 5 | S | ro. | ဖ | 9 | 9 | 9 | 9 | 9 | വ | | lron : | V CEO | 20 | 8 | 20 | 20 | 82 | 8 | 59 | 59 | 45 | 45 | 45 | 45 | | Elect | VcES* | 30* | 30• | 30. | 25* | 25* | 8 | 88 | 8 | SS. | 99 | ος
• | ß | | ır Pro | Case | TO-92
(97) | TO-92
(97) | TO-92
(97) | TO-92
(94) | TO-92
(94) | TO-92
(97) | Bipolar Pro Electron Series (Continued) | Type
No. | BC338 | BC338-16 | BC338-25 | BC368 | BC369 | BC546 | BC546A | BC546B | BC547 | BC547A | BC547B | BC547C | | 1 | α | |---|---------| | ı | ☱ | | ı | Q | | ŀ | 9 | | ł | 8 | | ł | = | | ı | | | ı | Ţ | | ı | - | | ı | 0 | | l | | | ŀ | <u></u> | | l | æ | | l | Q | | l | = | | ı | c, | | ı | = | | ı | _ | | ł | co | | ı | Ä | | ı | ¥ | | ı | 苯 | | ſ | 10 | | IATL SE | MI COI | 1D [| DISCR | ETE | 11 | E D | 650 | 1130 | 0037 | | |--|---------------|---------------|---------------|---------------|------------|---------------|---------------|---------------|---------------|----------| | Process
No. | 10 | 01 | 5 | ٠
1 | 10 | 10 | 10, | 10 | 10 | T-03-01 | | Test | (Note 1) | NF
(dB)
Max | 10 | 9 | 10 | 10 | 4 | 4 | 4 | ო | m | 9 | | toff
(ns)
Max | | | | | | | | | | | | f _T l _C (MHz) @ (mA) | | - | | | | | | | | | | Cob
(pF)
Max | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | | | | | lc (mA) | ㅎ 호 ~ | 5 5 4 | 5 6 4 | 100
2 | 100
2 | 5 6 4 | 5 6 4 | 5 g 2 | 5 5 4 | 00 00 | | VBE(SAT) VBE(ON)* @ (V) Min Max | | | 1 | 0.55 0.70* | 0.55 0.70* | 0.55 0.70* | 0.55 0.70* | 0.55 0.70* | 0.55 0.70* | | | VCE(SAT) (V) & Max | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25
0.6 | 0.25
0.6 | 0.3 | | VCE
(3) | 5 | 5 | 5 | 2 | 2 | r. | ro. | 5 | 5 | ιn | | D (B) | N | N | ~ | ~ | ~ | ~ | α | 2 | 2 | N | | HFE hte @ 1 KHz* Min Max | 125 900* | 125 260* | 240 500* | 450 900* | 240 900* | 240 500* | 450 900* | 240 900* | 240 500* | 75 475 | | 3,5 | 8 | 8 | 8 | 8 | 20 | 20 | 20 | 45 | δ | . 30 | | CES (nA) | 5 | 10 | 우 | 10 | 10 | 10 | 10 | 10 | 01 | 5 | | VEBO (3) | c, | 9 | r, | 5 | 5 | 5 | ر | ري
د | 2 | ι
ω | | V CEO | 20 | 50 | 20 | 50 | 20 | 20 | 20 | 2 | 45 | 65 | | VCES* | 8 | e
e | 30 | 30 | 93 | 30 | 93 | 20 | 20 | 88 | | Type Case VCEO (V) (V) (rate (V) (N) (mA) (V) (Min Min Max | TO-92
(97) | TO-92
(97) | TO-92
(97) | TO-92
(97) | TO-92 (97) | TO-92
(97) | TO-92
(97) | TO-92
(97) | TO-92
(97) | (97) | | Type
No. | BC548 | BC548A | BC548B | BC548C | BC549 | BC549B | BC549C | BC550 | BC550B | BC556 | The state of s | 9 | | | [| | | . | 1 | | T-03 | -01 | |---|---------------|---------------|----------------|---------------|----------------|----------------|----------------|----------------|----------------|---------------| | Process
No. | 8 | 69 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | Test
Conditions | (Note 1) | NF
(dB)
Max | 5 | 10 | 9 | 10 | 9 | 10 | 9 | 9 | 10 | 4 | | toff
(ns)
Max | | | | | | | | | | | | e lc (mA) | | | | | | | | | | | | ft
(MHz) (
Min Max | | , | | | · | | | | | | | Cob
(pF) | | | | | | | | | | | | lc
(mA) | 5 5 | 5 <u>5</u> | 10
100
2 | 100
2 | 10
100
2 | 10
100
2 | 10
100
2 | 10
100
2 | 10
100
2 | 100
22 | | VBE(SAT) VBE(ON)*@ (V) Min Max | | | 0.82* | 0.82* | 0.82* | 0.82* | 0.82* | 0.82* | 0.82* | 0.82* | | VBE
VBE | | | 9.0 | 0.6 | 0.6 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | | VCE(SAT)
(V) &
Max | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3
0.65 | | 3.6 | rs. | ro. | r. | 5 | 5 | 5 | 2 | 5 | 5 | . 5 | | lc
(mA) | 2 | 2 | 8 | 8 | N | ~ | જ | 8 | 8 | 2 | | 8 | 250 | 475 | *006 | 260* | 200 | 500* | . 560 | 500 | •006 | 500 | | . 5 | 125 | 220 | 75 | 125 | 240 | 75 | 125 | 240 | 450 | 125 | | S, CB | 90 | 8 | 82 | 20 | 20 | 20 | 20 | 20 | 20 | 8 | | Ices* ceo @ Vce cha (v) | 15 | 15 | 100 | 901 | 90 | 90 | 5 | 5 | 5 | <u>5</u> | | VEBO
(Y) | Ω. | 5 | 3 | 5 | 5 | 5 | 5 | က | w | ro | | VCEO (3) | 28 | 88 | 45 | 45 | 45 | 52 | 32 | 25 | 25 | 20 | | VCES* | 8 | 8 | 20 | 20 | 92 | 30 | 30 | 98 | 90 | 25 | | Type Case VCES* VCEO VEEO No. Style (V) Min Min | TO-92
(97) | Type
No. | BC556A | BC556B | BC557 | BC557A | BC557B | BC558 | BC558A | BC558B | BC558C | BC559 | | | 6 | | l | l | 1 | İ | <u> </u> | |
 |
 | | - | |--------------------------|---|----------------|---------------|---------------|----------------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------| | | Process
No. | 89 | 88 | 88 | 8 | 88 | 82 | •
88 | 82 . | 8 . | 82 · | 29 | | | Test
Conditions | (Note 1) | (Note 1) | (Note 1) | (Note 1) | | | | | T-0 | 3 - 01 | | | | NF
(dB)
Max | 4 | 4 | m | n | | | | | | | | | | toff
(ns)
Max | | | | | | | | | | | | | | [@] (mA) | | | | | | | | | | | | | | f _T
(MHz)
Min Max | | | | | | | | | | | | | | C _{ob}
(pF)
Max | | | | | | | | | | | | | | lc (mA) | 10
100
2 | 5 00 4 | 5 6 4 | 10
100
2 | 200 | 200 | 200 | 500 | 500 | 500 | 500 | | | VBE(SAT) VBE(ON)* @ (V) Min Max | 0.82* | 0.82* | 0.82* | 0.82* | | | | | | | | | | VCE(SAT)
(V) &
Max | 0.3 | 0.3 | 0.3 | 0.3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | | | VcE
(V) | 5 | 5 | ည | r, | 000 | 01 01 01 | 000 | ~ ~ ~ | 000 | 000 | | | | ® lc
(mA) | 84 | N | N | . ~ | 5
50
50
50 | 5
500
500 | 5
500
500 | 5
150
500 | 5
500
500 | 5
150
500 | 50 50 | | | HFE
hte @
1kHz* Min Max | 500 | •006 | 500 | 500 | 250 | 250 | 250 | 250 | 250 | 250 | 009 | | | | 240 | 450 | 125 | 240 | 8 4 8 | 8 4 8 | 8 4 8 | 8 4 8 | 8 4 8 | 8 4 8 | <u></u> 6 | | ntinued | VCB | 20 | 8 | 45 | 45 | | 8 | | 8 | | 8 | 8 | | ies (Continued) | ices*
Iceo _@ Vce
(nA) (V)
Max | 100 | 6 | 001 | 100 | | 92 | | 100 | | 100 | 100 | | | VEBO
(V)
Min | rð. | r. | c. | S | 2 | 5 | 2 | 2 | 2 | 5 | 5 | | tron | VCEO
(Y) | 20 | 82 | 45 | 45 | 45 | 45 | 8 | 8 | 80 | 80 | 45 | | Elec | VCES*
VCBO
(V) | 25 | 25 | 90 | 20 | 45 | 45 | 8 | 8 | 90 | 100 | 20• | | Bipolar Pro Electron Ser | Case
Style | TO-92
(97) | TO-92
(97) | TO-92
(97) | TO-92
(97) | TO-92
(94) | TO-92
(94) | TO-92
(94) | TO-92
(94) | TO-92
(94) | TO-92
(94) | TO-236
(49) | | Bipo | Type
No. | всезав | BC559C | BC560 | BC560B | BC635 | ВСЕЗЕ | BC637 | BC638 | BC639 | BC640 | BC807 | | _ | | | | - | | | 1 | | 1 | 1 | í | I | - 1 | Ī | i | | |---|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------------------|------------------|--------| | | Process
No. | 29 | 29 | 29 | | 67 | 29 | 29 | 57 | 51 | 5 | 12 | i | l | 12 | | | | Test | | | | | | | | | | | | | 03-0 | | | | | NF
(dB)
Max | | | | | | | | | | | | | | | | | | toff
(ns)
Max | | | | | | | | | | | | | | | | | | (mA) | | | | | | | | | | | | | : | | | | | ft
(MHz) (
Min Max | | | | | | | | | | | | | | | 1 | | | Cob
(PF) | | | | | | | | | | | | | | | | | | (mA) | 500 | 500 | 500 | 500 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | | | | VBE(SAT) VBE(ON)* @ (V) Min Max | | | | | | | | | | | į | | | | | | | VCE(SAT) (V) & Max | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | | | | V _{CE} | 1 | 1 | | | | | | | | | | | | | | | | اد
(mA) | 50 50 | 100
500 | 100
500 | 50
50
50 | 100
500 | 100
500 | 100
500 | 100 | 500 | 100
500 | 100
500 | 100
500 | 100
500 | 100
500 | | | | HFE
hre
1kHz*
Min Max | 550 | 400 | 009 | 909 | 250 | 400 | 89 | 009 | 250 | 400 | 900 | 009 | 250 | 400 | | | | ¥ + 5 | <u></u> 충 | 6
6
6 | 250
40 | 충
충 | <u>5</u> 8 | 6 6 | \$ 59 | ộ 8 | ₅ 8 | 160
40 | 250
40 | 00
40 | 5 4 | 9 6 6 | | | tinued) | چ
چو | ଷ | ล | 20 | 20 | ଷ | ଷ | 8 | ଷ | 8 | 8 | 20 | 20 | 8 | ଷ | | | S
S | lces*
lceo [®] \
(nA) (
Max | 9 | 100 | 100 | 100 | ē | ş | ş | 5 | 5 | 5 | 100 | 5 | 퉏 | ğ | | | erie | VEBO | ις | က | 2 | 9 | 2 | တ | 2 | က | ro. | ιo | ဌ | ဌ | G | က | | | ron S | VCEO | 45 | 45 | 45 | 25 | 25 | 52 | 52 | 52 | 52 | 52 | 52 | 22 | 52 | 52 | | | Electi | VCES*
VCBO
(V) | 50. | 50* | 50* | 30 • | 30• | 30. | 30* | 30* | 30. | 30. | 30 | 30* | 30* | 30• | | | Bipolar Pro Electron Series (Continued) | Case
Style | TO-236
(49) <u> </u> | | | Bipola | Type
No. | BC807-16 | BC807-25 | BC807-40 | BC808 | BC808-16 | BC808-25 | BC808-40 | BC817 | BC817-16 | BC817-25 | BC817-40 | BC818 | BC818-16 | BC818-25 |
 - | | | Process
No. | 12 | F | | Ę. | | Ę | | - | | 9 | | 0. | • | 9 | | 9 | | 9 | | 9 | | | |---|---|-----------------|----------------|-----|----------|----------|----------------|----------|----------|----------|----------|------|----------|-------------------|----------|-----|----------|-----|----------|----------------|----------|------|--| | ļ | | | | - | | - | | \dashv | | | | | | _ | | _ | | • | T-0 | 3-0 | | | | | | Test | | (Note 1) | | | NF
(dB)
Max | | 5 | | 2 | | 9 | | 5 | | 9 | | 9 | | 우 | | 2 | | 우 | | 6 | _ | | | | toff
(ns)
Max | e lc
x (mA) | | | | | | | | - | | | | | | | | | | | | | | | | | ft
(MHz)
Min Max | C _{ob}
(pF)
Max | lc
(mA) | 500 | 10 | 9 | 5 | 100 | 10 | 100 | 10 | 100 | 0 | 92 | 9 | 100 | 5 | 100 | 2 | 100 | 10 | 100 | 9 | 100 | | | | VBE(SAT) VBE(ON)* @ (V) (V) Min Max | • | | | | VCE(SAT)
(V) &
Max | 2.0 | 0.25 | 9.0 | 0.25 | 9.0 | 0.25 | 9.0 | 0.25 | 9.0 | 0.25 | 9.0 | 0.25 | 9.0 | 0.25 | 9.0 | 0.25 | 9 | 0.25 | 9 | 0.25 | 9 | | | | V _{CE} | | 5 | 2 | က | S | 5 | 5 | 5 | 5 | 2 | 5 | 5 | 5 | 5 | 5 | 5 | 2 | 5 | 5 | 5 | 5 | | | | [©] اد
(mA) | 500
500 | 0.01 | 8 | 0.01 | 7 | 0.01 | 0 | 0.01 | 2 | 0.01 | 2 | 0.01 | 2 | 0.01 | 7 | 0.01 | 2 | 0.01 | 2 | 0.01 | 8 | | | | E
b @
 z* @
 Max | 009 | | 900 | | 220 | | 450 | | 800 | | 220 | | 450 | | 800 | | 220 | | 450 | | 88 | | | | H _{FE}
h _{te}
1 kHz*
Min Max | 250
40 | 110 | | 110 | | 200 | | 110 | | 110 | | 200 | | 110 | | 110 | | 200 | | 420 | | | | (penu | V _{CB} | 20 | 30 | | 30 | | 30 | | 30 | | 30 | | 30 | · | 30 | | 30 | | 30 | | 30 | | | | (Conti | lces*
lcBo _@ V
(nA) (| 1 00 | 15 | | 15 | | 15 | | 5 | | 15 | | 15 | | 15 | | 15 | | 15 | | 15 | | | | eries | VEBO
(V)
Min | 2 | 9 | | 9 | | 9 | | 9 | | 9 | | 9 | | 2 | | 5 | | 5 | | 5 | | | | ron S | VCEO
(V)
Min | 82 | 65 | | 99 | | 89 | | 45 | | 45 | | 45 | | 30 | | 30 | | 30 | | 30 | | | | Electi | VCES*
VCBO
(V)
Min | 30* | 80 | | 08 | | 80 | | 20 | | 90 | | 90 | | 30 | | 30 | | တ္တ | | 30 | | | | Bipolar Pro Electron Series (Continued) | Case
Style | TO-236
(49) | TO-236
(49) | | TO-236 | <u> </u> | TO-236
(49) | | TO-236 | <u> </u> | TO-236 | (49) | TO-236 | (8 4) | TO-236 | 2 | TO-236 | Ē | TO-236 | () | TO-236 | (43) | | | Bipola | Type
No. | BC818-40 | BC846 | | BC846-A | | BC846-B | | BC847 | 7.1 | BC847-A | | BC847-B | | BC848 | | BC848-A | | BC848-B | | BC848-C | | | | JENI C | | | | <u> </u> | | | | | | | | | | | | | | - | | _ | |--|--|------|----------|----------|----------|-------------------|----------|----------------|----------|------|----------|----------|---------------|------|----------|------|----------|-----------------|----------|-------------| | Process
No. | 10 | | 9 | | 01 | | 9 | | 9 | | 69 | | 69 | | 69 | | 8
T-(| ,
-80 | æ
01 | | | Test | (Note 1) | | NF
(dB)
Max | 4 | | 4 | | 4 | | 6 | | | | 5 | | 5 | | 2 | | 2 | | 5 | | | toff
(ns)
Max | ပ်
(A m) | | | | | | | | | | | | | | Ì | | | | | | | | f _T l _C
(MHz) @ (mA)
Min Max | Cob
(pF) | lc (mA) | 5 | 100 | 10 | 5 | 2 | 100 | 10 | 100 | 10 | 100 | 5 | 19 | 9 | Ş | 우 | 100 | 10 | 100 | 10 | 100 | | VBE(SAT) VBE(ON) ® (V) | THE STATE OF S | VCE(SAT)
(V) &
Max | 0.25 | 9 | 0.25 | 9.0 | 0.25 | 9.0 | 0.25 | 9.0 | 0.25 | 9 | 6.0 | 0.65 | 0.3 | 0.65 | 0.3 | 0.65 | 0.3 | 0.65 | 0.3 | 0.65 | | SK | 5 | 5 | 5 | 5 | ıçı | ro | ഹ | 2 | 5 | 2 | 5 | | 5 | | 2 | | 32 | | ည | | | B Ic (mA) | 0.01 | Ø | 0.01 | 2 | 0.01 | œ | 0.01 | N ₃ | 0.01 | N | 7 | | 8 | | 8 | | 8 | | 8 | | | HFE hto @ | 200 | 800 | | 450 | | 800 | i | 800 | | 450 | 475 | | 520 | | 475 | | 475 | | 520 | | | | 8 8 | | 200 | | 420 | | 82 | | 8 | | 75 | | 125 | | 220 | | 75 | | 125 | | | lces*
tceo @ Vce
(nA) (V) | 8 | | 8 | | ၕ | | မွ | | ଞ | | 8 | | ೫ | | ೫ | | 8 | | ೫ | | | ces
(nA) | 15
15 | | 15 | | 15 | | 15 | _ | 15 | | 15 | | 5 | | 5 | | 15 | | 15 | | | VEBO | 5 | - | 5 | | 5 | | 2 | | S | | 2 | | 5 | | 2 | | 2 | | သ | | | VCEO | 8 | | 99 | | e | | 45 | | 45 | | 65 | | 99 | | 99 | | 45 | | 45 | | | VCES* | 8 8 | | 93 | ···· | 90 | | 20 | - | 22 | . ' | 8 | | 8 | | 8 | | 20 | | 50 | | | Case | TO-236 | (49) | TO-236 | (49) | TO-236 | (4 9) | TO-236 | <u>6</u> | ╚ | (49) | TO-236 | <u>6</u> | - | | TO-236 | (49) | TO-236 | (4 9 | TO-236 | | | Type
No. | BC849 | | BC849B | | BC849C | | BC850 | | BC850-B | | BC856 | | BC856-A | | BC856-B | | BC857 | | BC857-A | | | ļ 1 | ا ما | | | | ŀ | | <u>I</u> | | 1 | | | | • | | | | | l | | | |--------------------------|---|----------|----------|----------------|------|----------------|----------|----------------|------|----------------|----------------|----------------|----------------|----------|------|----------|------|----------------|----------------|----------------| | | Process
No. | 8 | | 88 | | 8 | | 8 1 | | 88 | 88 | 88 | 88 | 89 | | 88 | | 8
T-0 | 8
3-01 | 9 | | | Test | (Note 1) | | | (Note 1) | | (Note 1) | (Note 1) | (Note 1) | | | NF
(dB)
Max | 10 | | 10 | | 2 | | 9 | | 4 | 4 | 4 | 4 | ε | | ε | | 4 | 4 | 4 | | | toff
(ns)
Max | | | | | | | - | | | | | | | | | ÷ | | | | | | (mA) | f _T
(MHz) (
Min Max | Cob
(pF) | e lc (mA) | 10 | 100 | 5 | 8 | 5 5 | 3 | 5 | 28 | 100 | 100 | 100 | 100 | 10 | 100 | 0 | 5 | 5 | 9 | 10 | | | VBE(SAT) VBE(ON) (V) Min Max | VCE(SAT)
(V) &
Max | 6.0 | 0.65 | 6.0 | 0.65 | 0.3 | 0.65 | 0.3 | 0.65 | 0.65 | 99'0 | 0.65 | 99'0 | 6.0 | 0.65 | 6.0 | 0.65 | 0.3 | 0.25 | 0.3 | | | V _{CE} | 2 | | 5 | | co | | 5 | | 5 | 5 | 5 | 5 | 5 | | S | | ro ro | ro ro | 5 | | | (mA) | 8 | | ~ | | 8 | | N | | 2 | 8 | 8 | ત | 2 | | 8 | | 0.01 | 0.01 | 0.01 | | | HFE
hte
1kHz* ⁽
Min Max | 475 | | 800 | | 475 | | 800 | | 800 | 250 | 475 | 800 | 800 | | 475 | | 780
780 | 450 | 200 | | 6 | | 220 | | 75 | | 220 | | 420 | | 220 | 125 | 520 | 420 | 220 | | 220 | | 120 | 82 | 215 | | ntinuec | « VcB | 99 | | 30 | | 30 | | 30 | | 30 | 30 | 30 | 30 | 99 | | 8 | | 32 | 32 | 20 | | ries (Continued) | ICES*
ICBO [®] (nA)
Max | 15 | | 15 | | 5 | | 5 | | 15 | 15 | 15 | 15 | 15 | | 15 | | 5 | 92 | 100 | | Serie | VEBO
(V) | 9 | | 2 | | 2 | | ഹ | | 2 | 5 | c) | 5 | 5 | | 5 | | ري
د | S | 2 | | ron (| VCEO
(V) | 45 | | 30 | | 30 | | 8 | | 30 | 30 | 30 | 30 | 45 | | 45 | | 32 | 32 | 45 | | Elect | VCES* VCBO (V) | 20 | | 30 | | 90 | | 90 | | 30 | 30 | 30 | 30 | 09 | | 90 | | 32 | 32 | 20 | | Bipolar Pro Electron Sei | Case
Style | TO-236 | <u> </u> | TO-236
(49) | | TO-236
(49) | | TO-236
(49) | | TO-236
(49) | TO-236
(49) | TO-236
(49) | TO-236
(49) | 10-236 | £ | TO-236 | ₹ | TO-236
(49) | TO-236
(49) | TO-236
(49) | | Bipol | Type
No. | BC857-B | | BC858 | | BC858-B | | BC858-C | | BC859 | BC859-A | BC859-B | BC859-C | BC860 | | BC860-B | | BCF29 | BCF30 | BCF32 | **Bipolar Pro Electron Series** Process No. ý ^{__} 2 9 9 F 89 8 9 2 8 유 9 5 Ξ Test Conditions (Note 1) 유 NF (dB) 2 9 5 유 9 2 유 9 4 T-03-01 toff (ns) Max f_T lc (MHz) @ (mA) Min Max 9 8 52 8 42 Cob Max Max VBE(SAT) VBE(ON)* @ IC (V) (mA) Min Max 200 유 훙 9 은 유 5 오 유 ည 2 5 9.0 9.0 VCE(SAT) (V) & Max 0.3 6. 0.3 0.3 0.1 0.3 35 **6---**S - 5 വവ 2 Ŋ 5 က က က 2 2 2 2 വവ ၁ <u>န</u> 0.01 2 2 0.01 2 2 2 - 6 8 ~ 6 형 0.01 200 20 ଥି ଏ 2. c 5 8. 800 420 280 20 22 22 450 8 8 4,000 10,000 20,000 4,000 10,000 20,000 110 215 200 8 35 200 8 215 120 Bipolar Pro Electron Series (Continued) 35 32 32 32 32 32 32 32 8 8 ೪ 32 8 lces* lcBo @\ (nA) 8 8 8 ᅙ 8 9 5 5 8 8 ᅙ ଷ୍ଟ ଷ ន្ត M S P ល 5 5 ı, Ŋ S ស Ŋ Ŋ ß ည N SEO 엃 32 32 32 32 45 8 8 8 32 8 ₹ 8 8 VCES. **8** 5 8 8 8 8 32 8 32 32 32 တ္တ 20 TO-236 (49) Case Style BCW33 BCW65 BCW60 BCW30 BCW31 BCW32 BCW61 BCW29 BCV72 BCV71 BCF70 | | Process
No. | 10 | 10 | 8 | .82- | 88 | 8 | 0 | . 88 | 29 | | 12 | 5 | |---|--|------------------|----------------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------------|-------------------|-------------------|-------------------| | | Test Conditions | (Note 1) | (Note 1) | (Note 1) | (Note 1) | | (Note 1) | (Note 1) | (Note 1) | | Т- | -03-0 <u>1</u> | | | | NF
(dB)
Max | 01 | 9 | 5 | 은 | 우 | 5 | 5 | 5 | | | | | | | toff
(ns)
Max | 1111 | | | | | | | | · | _ | | | | | [©] lc
x (mA) | 8 | 20 | | | | | | | | | | | | | f _T
(MHz) @
Min Max | 100 | 100 | | | | | | | | | | | | | C _{ob} (pF) | 52 | 72 | | | - | | | | | | | | | | lc
(mA) | 200 | 200 | 10 | 9 | 10 | 10 | 10 | 10 | 200 | 200 | 200 | 200 | | | VBE(SAT) VBE(ON)* @ (V) Min Max | 2.0 | 2.0 | | | ٠ | | | | | | 1.2 | 1.2 | | | VCE(SAT)
(V) &
Max | | | 0.3 | 0.3 | 0.25 | 0.25 | 0.25 | 0.3 | 0.62 | 0.62 | 0.62 | 0.62 | | Ì | V _{CE} | 10
1
1 | 10
1
1 | 5 | 5 | 2 | 5 | 5 | 2 | | | | | | | ® Ic
(mA)
× | 0.1
10
500 | 0.1
100
500 | 2 | 2 | N | 2 | 2 | 2 | 100
300
500 | 100
300
500 | 100
300
500 | 100
300
500 | | | HFE
hte
1kHz*
Min Max | 250 | 250 | 260 | 200 | 220 | 450 | 800 | 260 | 900 | 900 | 900 | 009 | | Ð | - | 35
100
35 | 35
20
35
35 | 120 | 215 | 110 | 200 | 420 | 120 | 00
07
04 | § 5 8 | 100
70
40 | 5 6 4 | | ontinue | S CB | 45 | 45 | 20 | 20 | 20 | 50 | 20 | 20 | 20 | 20 | 50 | 20 | | es (c | Ices*
Iceo _@ (nA)
Max | 20. | \$0. | 100 | 5 | 5 | <u>5</u> | 100 | 100 | 100 | 100 | 100 | <u>8</u> | | Seri | VEBO
(Y) | က | က | S. | c, | 2 | ຜ | 2 | 2 | ιo | တ | υn. | ro. | | tron | VcEo
Min | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 99 | 45 | 25 | 45 | 52 | | o Elec | VCES.
VCBO
(V) | 75 | 75 | 20 | 9 | 20 | 20 | 20 | 8 | •09• | 30• | •0• | 30* | | Bipolar Pro Electron Series (Continued) | Case
Style | TO-236
(49) | Bipc | Type
No. | ВСМ66 | ВСМ68 | BCW69 | BCW70 | BCW71 | BCW72 | BCW81 | BCW89 | BCX17 | BCX18 | BCX19 | BCX20 | Process No. 유 우 은 9 9 55 ~ 9 유 T-03-01 (Notes 3 & 4) Test Conditions (Note 5) (Note 5) (Note 5) (dB) 9 9 9 9 8 800 8 8 88 8 Toff (ns) 8 8 f_T l_C (MHz) @ (mA) Min Max. 9 9 우 2 9 우 9 9 52 125 125 125 52 125 52 125 Cob (pF) VBE(SAT) VBE(ON) @ IC (V) (mA) 9 용 충 6 VCE(SAT) (Y) & Max 0.5 0.5 0.5 38 5 5 - -HFE hre @ lc ∵ 1kHz* @mA) 630 1000 630 1000 310 630 1000 310 8 83 83 83 82 Bipolar Pro Electron Series (Continued) 3 Š 32 32 32 8 엉 CES. (1A) 69 Max (1A) 9 9 2 9 유 ¥3€ ¥3 SE 4 **4** 45 32 32 잃 32 32 VCBO TO-92 (97) Case BCX58-10 BCX59-8 BCX58-7 BCX58-8 BCX59 동 BCX58 7-16 | | Process
No. | 10 | 10 | 10 | ₫ ~ | 10 | 88 | 89 | 89 | 89 |
 8
 -03-01 | | |---------------------------|---|---------------------|-------------------------|----------------|------------------|------------------|----------------|------------------|-------------------|-----------------|-------------------|---| | | Test | (Note 5) | (Note 5) | (Notes 17, 19) | (Note 1) | (Note 1) | , | | | NF
(dB)
Max | | | 9 | 9 | 9 | 9 | 9 | 9 | 9 | ဖ | | | | t _{off}
(ns)
Max | 800 | 800 | 800 | 800 | 800 | 88 | 800 | 800 | | | | | | f _T (MHz) @ ^I C
Win Max (mA) | 10 | 10 | 10 | 5 | 10 | 6 | 01 | 10 | 10 | 10 | | | | f _T
(MHz) (
Min Max | 125 | 125 | 125 | 125 | 125 | 125 | 125 | 125 | 200 | 200 | | | | C _{ob}
(pF)
Max | | | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | | | | lc
(mA) | 100 | 100 | 50 | ß | 90 | 55 | 92 | 50 | 100 | 100 | | | | VBE(SAT) VBE(ON) @ (V) Min Max | 1.0 | 1.0 | 1.05 | 1.05 | 1.05 | 1.05 | 1.05 | 1.05 | 1.0 | 1.0 | | | | | | | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | | | | | | VCE(SAT)
(V) &
Max | 0.5 | 0.5 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.6 | 0.6 | | | | V _{CE} | ro ro − − | ωω - - | ω - | დ - დ | ი - ი | ი – | ი - ი | თ - თ | æ | 2 | | | | Ic
(mA) | 0.0
2 5 5
0 5 | 0.01
100
100 | 20 20 | 2
50
0.01 | 2
50
0.01 | 20 05 | 2
50
0.01 | 2
50
0.01 | 2
5
100 | 2 t 0 0 1 0 0 1 | | | | HFE
hte @
1 kHz*
Min Max | 460
630 | 630
1000 | 220 | 310 | 460 | 220 | 310 | 460 | 630
1000 | 220 | | | | H
h
1k | 550
160
60 | 100
380
240
60 | 120
60 | 180
70
20 | 250
90
40 | 120
60 | 180
75
80 | 250 .
90
40 | 120
80
40 | 02
08
04 | | | tinued) | νς _® | | | 35 | 32 | 32 | જ્ઞ | 32 | 32 | | | | | es (Continued) | Ices* Iceo@Vce (nA) (V) Max | | | 8 | 50 | 20 | 20 | 20 | 20 | | | | | | VEBO
(V)
Min | 2 | 7 | 5 | 5 | 5 | 5 | 5 | 9 | 5 | 2 | | | ron S | VCEO
(V) | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 32 | 32 | | | Electi | V _{CES} * V _{CBO} (V) Min | | | 45 | 45 | 45 | 45 | 45 | 45 | | | | | ır Pro | Case
Style | TO-92
(97) | TO-92
(97) | TO-236
(49) | TO-236
(49) | TO-236
(49) | TO-236
(49) | TO-236
(49) | TO-236
(49) | TO-92
(97) | TO-92
(97) | | | Bipolar Pro Electron Seri | Type
No. | BCX59-9 | BCX59-10 | BCX70G | всх70н | BCX70J | BCX71G | всх71н | BCX71J | BCX78 | BCX78-7 | | | | | | | | | 7-17 | | | | | | | | Process
No. | 89 | 89 | 8 | 88 | 88 | 8 | ෂ
T-03-01 | 88 | 88 | |---|---|------------------------|--------------------|---------------|---------------|------------------------|--|---------------------|----------------| | Test | (Note 1) (Notes 5 & 6) | | NF
(dB)
Max | 9 | 9 | 9 | g | ဖ | ဖ | ဖ | ဖ | 9 | | toff
(ns)
Max | | | | | | | | | 420 | | J. (AE) | 10 | 10 | 10 | 9 | 5 | 9 | 10 | 0 | 200 | | fT
(MHz) @
Min Max | 200 | 200 | 200 | 200 | 200 | 500 | 200 | 200 | 20 | | Cob
(pF)
Max | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 8 | | اد
(a ه) | 5 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ₹ | | VBE(SAT) VBE(ON)* (V) Min Max | 0.1 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.2* | | VCE(SAT)
(V) &
Max | 9.0 | 9.0 | 9.0 | 9.0 | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | | 3 C | 2 2 | 29-1- | 5 1 | w | သ | | | 23 | 2 - | | LC (m/A) | 0.0
2 0 0
100
100
100
100
100
100
100
100
100 | 0.0
2 0 0
100 | 0.01
100
100 | 001
2 | 8 | 10
100
2 | 5 to 2 6 6 6 7 6 6 7 6 9 6 9 6 9 6 9 9 9 9 9 9 | 5 5 6 9 | 50
50
50 | | HFE
he @
1kHz* @ | 310 | 460 | 630
1000 | 1000 | 220 | 310 | 630 | 1000 | 6 | | H A Y | 85
120
55
55 | 550
160
60
60 | 5 8 8 8 | 8 4 5 | 120 | 120
45
30
180 | § 8 4 8 | 45 % 55 %
8 55 % | 8 9 | | Type Case VCBO (Y) (Y) (N) (MA) (NA) (V) MEn Min (MA) (V) | | | | | | | | | 100 45 | | N S N | က | S. | ro | c, | s | ro. | ro. | c c | | | E 3 C | 8 | 8 | 8 | 54 | 45 | र् | र् | र् | 45 | | S CES. | | | | | | | | | 8 | | Case | TO-92
(97) TO-237
(91) | | Type
No. | BCX78-8 | BCX78-9 | BCX78-10 | всх79 | BCX79-7 | BCX79-8 | BCX79-9 | BCX79-10 | BD370A | | ΑT | L SEMI | CON | ID | DIS | CRE | TE | 1 | 16 | D | 65 | 011 | 30 (| 1031 | 7167 | ? В | | | |---|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----| | | Process
No. | 92 | 78 | 78 | 78 | 78 | 148 | 78 | 78 | 78 | 82 | 78 | 38 | 38 | 38 | 38 | | | | Test | (Notes 5 & 6) | | | NF
(dB)
Max | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | | toff
(ns)
Max | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | | | | lc
(mA) | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 500 | 200 | 200 | | | | f†
(MHz) @
Min Max | | | | | | | | | | | | | | T | -03- | 01 | | | | 90 | 20 | ន | 20 | 20 | 9 | ß | 25 | 22 | 8 | SS. | 20 | ಜ | 95 | 20 | | | | C _{ob}
(pF)
Max | 96 | 8 | 8 | 8 | 30 | 30 | e | | 8 | 98 | 8 | ၕ | မွ | | 30 | | | | e lc (mA) | 1 | ₹ | ₹ | 1¥ | 4 | 1 A | ₹ | 4 | ‡ | 4 | ₹ | ¥. | ¥ | 4 | 1A | | | | VBE(SAT) VBE(ON)* (V) Min Max | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | | | | VCE(SAT)
(V) &
Max | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | | | | VcE
(?) | 2 | 2 | 2 - | 2 | 2 | 2 | 2 - | 2 - | 2 - | 2 | 2 | 2 | 2 - | 2 1 | 2 | | | | [@] lc
(mA)
× | 500
100 | 500
100 | 5 5
5 | 500
100 | 500
100 | 500
100 | 8 5
5 | 00° 50° 50° 50° 50° 50° 50° 50° 50° 50° | 5 5
5 | 05
05
05 | 500
100 | 500
100 | 8 5
5 | 500 | 500
100 | | | | HFE
hto
1 kHz*
In Max | 9 | 250 | 9 | 400 | 160 | | § | 400 | 5 | 160 | 250 | 400 | 5 | <u>8</u> | 400 | | | | H A P | 83
83 | 85
5 | 25
55 | 25 | 88 | 25
100 | 8 형 | 8 9 | 8 8 | 88 | 8 g | 8 8 | % 8 | 8 8 | 55 64 | | | (penu | o VcB | 45 | 45 | 45 | 89 | 8 | 89 | 8 | 8 | 80 | 80 | 80 | 88 | 8 | 80 | 45 | | | Cont | lces*
lcBo _@
(nA)
Max | 100 | 100 | 5 | 100 | 100 | 100 | 6 | 5 | 100 | 100 | 100 | 100 | 5 | 100 | 100 | | | eries | VEBO | | | | | | | | | | | | | | | | | | S uo | VCEO
33 | 45 | 45 | 3 | 99 | 90 | 60 | 8 | 8 | 8 | 8 | 8 | 100 | § | 100 | 45 | | | lectr | VCES*
VCBO
(V) | 80 | 8 | 8 | 88 | 80 | 80 | 8 | 8 | 8 | 8 | 8 | 88 | 8 | 8 | 88 | | | Pro E | Case
Style | TO-237
(91) | | Bipolar Pro Electron Series (Continued) | Type
No. | BD370A-10 | BD370A-16 | BD370A-25 | BD370B | BD370B-10 | BD370B-16 | BD370B-25 | BD370C | BD370C-6 | BD370C-10 | BD370C-16 | BD370D | BD370D-6 | BD370D-10 | BD371A | | | NΑ | IL SE | טאנ | DI | SCK | C C | | | | | | | | | | | | |----------------------------|----------------------------------|---------------|----------------|----------------|----------------|----------------|---------------|----------------|----------------|---------------|----------------|----------------|----------------|----------------|---------------|----------------| | | Process
No. | 78 | 78 | 78 | 78 | 28 | 478 | 78 | 78 | 82 | 82 | g f | e 6 | 2 | 79 | 38 | | | Test
Conditions | (Notes 5 & 6) | | NF
(dB)
Max | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | و | 9 | ဖ | | | torr
(ns) (| 420 | 62 | 420 | 82 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | | | lc (mA) | 88 | ,
002 | 500 | 200 | 8 | 200 | 200 | 88 | 200 | 200 | 88 | 8 | 800 | 200 | 200 | | | (9) | | | | | | | | | | | | ' | • | T-0 | 3-01 | | | fr
(MHz)
Min Max | 20 | 50 | 50 | 20 | 20 | 20 | 20 | 52 | 20 | 20 | 20 | 20 | 8 | SS | 90 | | | Cob
(pF) | 30 | 30 | 8 | 8 | 8 | 99 | 8 | 8 | 30 | 8 | 8 | 8 | | 99 | 8 | | | 2 (| 4 | 4 | ≰ | 4 | ≰ | ≰ | ₹ | 4 | ₹ | 4 | 4 | ≰ | ₹. | 4 | ₹ | | | VBE(SAT) VBE(ON)* @ (V) (Win Max | | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 12* | 12• | 12. | 12* | 12* | 12* | | | VCE(SAT) (V) & Max | 0.7 | 7.0 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | | | 3 5 | 2 - | 2 | 2 | 2 | 1 | 2 | 2 + | 2 - | 2 | 2 - | N - | 2 - | 2 - | 2 - | 1 | | | ် မြို့ | 50 50 | 55
50
50 | 500
100 | 8 5
5 | 500
100 | 500
100 | 50
50
50 | 500
100 | 500
100 | 500
100 | 500
100 | 8 5
5 | 100 | 8 5 | 100 | | | 8 | 9 | 250 | 004 | § | 160 | 250 | 6 | 400 | 100 | 160 | 250 | 64 | 9 | 8 | 400 | | | HE has | 8 82 | 8 S | 25
56 | % 4 | श्र छ | න් දි | સ્ટ <u>ક</u> | 8 8 | % 4 | श्र छ | 25
100 | 8 8 | 8 8 | 8 8 | ₹ \$ | | (per | 38 | 45 | 45 | 45 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 100 | 5 | 5 | 5 | \$ | | S (Continued) | ces (nA) | 8 | 5 | 5 | 5 | 8 | 8 | <u>6</u> | ᅙ | 호 | 8 | 9 | 5 | 5 | 5 | 8 | 37. | E 3 C | 5 | 5 | 45 | 8 | 8 | 8 | 8 | 80 | 88 | 8 | 100 | 100 | 100 | 8 | 55 | | Pottre | S C BO | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 88 | 80 | 88 | 8 | 8. | | Pro F | Case | TO-237 | TO-237
(99) | TO-237
(90) | TO-237
(90) | TO-237
(90) | 10-237 | TO-237
(90) | TO-237
(90) | 10-237 | TO-237
(90) | TO-237
(90) | TO-237
(90) | TO-237
(90) | 10-237 | TO-237
(90) | | Binolar Pro Flectron Serie | Type
No. | BD372A-10 | BD372A-16 | BD372A-25 | BD372B | BD372B-10 | BD372B-16 | BD372B-25 | BD372C | BD372C-6 | BD372C-10 | BD372C-16 | BD372D | BD372D-6 | BD372D-10 | BD373A | | NAT | F 2FW1 | CUN | υ
—— | ס ד ס | CKE | 16 | | | | | | | | 171 | <u> </u> | - - | |----------------------------|---------------------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | | Process
No. | 88 | 88 | 38 | 38 | 88 | 88 | 38 | 38 | 88 | 88 | 88 | 8 | 88 | 8 | 47 | | | Test | (Notes 5 & 6) (Note 7) | | ļ | NF
(dB)
Max | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | g | 9 | 9 | 3.5 | | | toff
(ns)
Max | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | 420 | | | ļ | n (m A) | 82 | 500 | 200 | 200 | 200 | 200 | 88 | 200 | 200 | 200 | 200 | 500 | 200 | 200 | - | | | (e) (| | | | | | | | | | | | ı | · | T-0 | 3-01 | | | ft
(MHz) (
Min Max | 20 | 20 | 50 | 50 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 50 | 20 | 20 | | | | Cob
(PF) | 8 | 30 | 30 | 30 | 8 | 8 | 8 | 8 | 30 | 30 | 30 | 90 | 8 | 90 | 0.34 | | | C (mA) | 4 | 14 | 1A | 1.4 | 4 | 4 | Ţ. | ¥. | 4 | 4F | 4 Y | 1A | 4 | ¥. | - | | | VBE(SAT) VBE(ON)* @ (V) Min Max | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 1.2* | 12* | 1.2 | 1.2* | 1.2* | 0.65 0.74 | | | VCE(SAT)
(V) &
Max | 2.0 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | | | | V _{CE} | 2 + | 2 - | 2 T | 2 - | 2 | 2 ~ | 2 - | 2 | 2 | a - | 1 | 1 | 2 - | 2 | 10 7 | | | © lc
(mA) | 500
100 | 8 5
5 | 8 5 | 500
100 | 500
100 | 500 | 8 5
5 | 500 | 500
100 | 500
100 | 500
100 | 500
100 | 500 | 500
100 | - 5 | | | HFE
hto
1 kHz* | 6 | 550 | 6 | 400 | 160 | 250 | 9 | . 400 | 100 | 160 | 250 | 400 | 100 | 160 | 225 | | | A T T T | 8 8 | 왕 호 | 8 5 | 3
5
5 | 83 83 | 25 100 | 8 5 | 8 6 | 8 8 | 25
63 | 100
100 | 22
4 | 25
4 | 8 8 | - 6
6 | | (penu | S.C. | 45 | 55 | 45 | 8 | 80 | 8 | 8 | 8 | 8 | 80 | 8 | 100 | 100 | 5 | ล | | S (Continued) | lces*
lcBo @ (nA) | इ | 5 | 5 | 5 | 9 | 100 | 5 | 5 | 6 | 100 | ş | 100 | 100 | 5 | 8 | | eries | VEBO (YEBO | | | | | | | | | į | | | | | | 4 | | S uc | VcEo
(3) | 45 | 45 | 45 | 8 | 8 | 8 | 8 | 88 | 80 | 80 | 8 | ş | 5 | 6.
0. | 4 | | lectro | VCES* | 8 | 8 | 8 | 8 | 8 | 08 | 88 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 40 | | Pro E | Case
Style | 10-237 | TO-237
(90) TO-92
(98) | | Bipolar Pro Electron Serie | Type
No. | BD373A-10 | BD373A-16 | BD373A-25 | BD373B | BD373B-10 | BD373B-16 | BD373B-25 | BD373C | BD373C-6 | BD373C-10 | BD373C-16 | Вра7ар | BD373D-6 | BD373D-10 | BF240 | | | ATL SE | | OND | | 130 | RET | | ш ш | _ <i>D</i> | | | 1 1777 | |---|---|---------------|---------------|---------------|----------------|----------------|----------------|---------------|----------------|----------------|--------------------------------|-------------------------| | | Process
No. | 47 | 49 | 49 | 42 | 47 | 47 | 75 | 49 | 49 | - 61 | 65 | | | Test | (Note 7) | | - | | | | (Note 7) | | | | T-03-01 | | | NF
(dB)
Max | 3.5 | | | | | | 6 | | | | | | | toff
(ns)
Max | | | | | | | | | | | | | | e lc
x (mA) | 1 | | | | | | | | | 20 | 82 | | | f _T
(MHz) @
Min Max | | | - | | | | | | | 250 | 300 | | | C _{ob}
(pF)
Max | 0.34 | | | | | | | | | 8 | ω | | | lc
(mA) | - | | | | | | | | | 150 | 150 | | | VBE(SAT) VBE(ON)* @ (V) (V) Min Max | 0.74 | | | | | | | | | 1.3 | 1.2 | | | VBE(SAT) VBE(ON) (V) Min May | 0.65 | | | | | | | | | | 9.0 | | | VCE(SAT)
(V) &
Max | | | | | | | | | | 0.4 | 1.0 | | | V _{CE} | 10
7 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 5 5 5 5 - 5 | 5 5 5 5 - 5 | | | H _{FE}
h _{fe} l _C
1 kHz* (mA)
Min Max | 12 | - | - | 1 | - | - | - | 1 | 1 | 0.1
10
150
150
500 | 0.1
15
150
500 | | | H _{FE}
h _{fe}
1 kHz*
Min Max | 125 | 220 | 250 | | 220 | 125 | | 125 | 225 | 300 | 300 | | (pe | <u></u> . | 35 | 65 | 32 | 52 | 99 | 35 | 52 | 35 | 65 | 35
50
75
100
30 | | | Continu | lces*
lcBo @ VcB
(nA) (V)
Max | 20 | | | 20 | 20 | 20 | 20 | 20 | 25 | 50 | 8 | | ies (| | 100 | | | 20 | 100 | 100 | 50 | 100 | 100 | 98 | 6 | | Ser I | VEBO
(V)
Min | 4 | 5 | 9 | 4 | 4 | 4 | 4 | 9 | 2 | 2 | ω | | ctror | VcEO
(V)
Min | 40 | 20 | 20 | 30 | 40 | 40 | 20 | 30 | 30 | 30 | 4 | | o Elec | VCES*
VCBO
(V) | 40 | 30 | 30 | 30 | 40 | 40 | 0E | 0E | 30 | 09 | 22 | | Bipolar Pro Electron Series (Continued) | Case
Style | TO-92
(98) | TO-92
(98) | TO-92
(98) | TO-236
(49) | TO-236
(49) | TO-236
(49) | TO-92
(97) | TO-236
(49) | TO-236
(49) | TO-236
(49) | TO-236
(49) | | Bipc | Type
No. | BF241 | BF494 | BF495 | BF536 | BF840 | BF841 | BF936 | BFS18 | BFS19 | BSR13 | BSR14 | 7- | Bip | Bipolar Pro Electron Se | o Ele | ctron | Seri | ries (Continued) | Intinue | æ | | | | | | | | | | | | | | | |-------------|-------------------------|-------|-------------|-------------|----------------------------------|---------|---------------------------------|----------------|------------------|------------|--------------------------|------------------------------|--------------------------------|--------------------|-----|--------------------------------------|--------------|---------------------|-------------------|--------------------|----------------| | Type
No. | Case
Style | VCES* | VCEO
(V) | VEBO
(Y) | lces*
lceo @ \
(nA)
Max | Sc | HFE
hte
1 kHz*
Min Max | (a) | lc Vc
(mA) (V | Vce
(y) | VCE(SAT)
(V) &
Max | VBE(SAT) VBE(ON) (V) Min Max |)
• [@] (mA)
ax | Cob
(pF)
Max | | f _T
(MHz) @
Min Max | , Ic
(mA) | toff
(ns)
Max | NF
(dB)
Max | Test
Conditions | Process
No. | | BSR15 | TO-236
(49) | 89 | 40 | 5 | 20 | 20 | 35
50 | 0 '- | 0.1 10 | 10
10 | 0.4 | + | 1.3 150 | 8 | 200 | | 20 | 9 | | (Note 9) | 8 | | | , | | | | | | | | | 0 0 | 9.1 | ci | 2.6 500 | 0 | | | *** | •• | | | | | | | | | | | | 30 | 300 | 500 10 | | | | | | | | | | | | | | BSR16 | _ | 09 | 09 | 5 | 5 | 20 | 75 | 0 | | 10 | 0.4 | 7 | 1.3 150 | 8 | 200 | _ | 20 | 9 | | (Note 9) | 8 | | | (49 | | | | | | <u> </u> | - | - 2 | | 1.6 | ď | 2.6 500 | | | | | | | | • | | | | | | | | | | 300 | | 5 5 | | | | | | | | | | | | | BSR17 | - | 8 | 8 | 9 | 5 µA | 8 | ឧ | 0 | - · | _ | 0.2 | 0.65 0.85 | 35 10 | | 520 | | 20 | 250 | | (Note 5) | ន | | | <u>4</u> | | | | | | | 150 | - 6 | 98 | | 50 50 | | 8 | 50 | 0.95 50 | | | | | | | | | | RSB18 | TO-236 | 8 | 8 | ۳ | 5 u.A | 8 | 8 | ° | | + | | 0.65 0.85 | | | 200 | | 8 | 98 | | (Note 5) | 99 | | | | | | , | Ļ | | 8 | , * | - | | | | | | | | | | | , | • | | | | | | | | | | 150 | ·- ` | 5
5
5 | ., | 8 S | | 0.3 | ő | 0.95 50 | | | | | | | | | | BSR19 | - | 160 | 140 | 9 | 901 | 901 | 8 8 | | | IC 1 | 0.15 | - | 1.0 10 | 9 0 | 100 | 300 | 10 | | 10 | (Note 16) | 16 | | | ₹ | | | | | | 8 8 | 250 5 | 2 62 | ດທ | 0.25 | - | 1.2 50 | _ | | | | | | | | | BSR20 | TO-236 | 55 | 120 | 5 | 5 | 5 | 30 | | | | 0.2 | 1 | 1.0 | 10 6 | 100 | 400 | 10 | | 8 | (Note 16) | 16 | | | <u>6</u> | | | | | | 송 송
- | 180 | 5 5
2 4 | ນເນ | 0.5 | - - | 1.0 50 | | | | | | | | | | BSS38 | - | 120 | 100 | 5 | 200 | 8 | 8 | | 4 | _ | 0.7 | * | 4 3 | | 8 | | 4 | 1000 | | (Notes 17, 18) | 16 | | | | | | | | 1 | | | | + | 9.0 | | | | | | | | 1 | | | | BSS63 | TO-236
(49) | 110 | <u>5</u> | 9 | 5 | 8 | 88 | (4 | 55 55
1 1 | | 0.25 | o | 0.9 25 | | S. | | 25 | | Γ-03 | | 74 | | BSS64 | TO-236
(49) | 120 | 8 | ဟ | 9 | 8 | 8 | - | 5 | | 0.15
0.2 | - | 1.2 4
50 | | 9 | | 4 | 0001 | 3-01 | (Note 5) | 91 | l I | | | | N | ATL S | MIC | OND | D | ISC | RE | TE, | | ŀ | lΕ | D | | P 2 | 501 | 73 | 0 | 0037173 | 3 | |------------------------------------|--------------------------------------|----------------|----------------|----------------|----------------|-----------|-----------|----------|------|------------------|---|---|---|--|---|--|---------|----| | | Process
No. | 19 | 19 | æ | 8 | 2 | _ | -₹ | | | | | • | | | | T-03-01 | | | | Test | | | | | (Note 18) | | (Note 1) | | | | | | | | | | | | | NF
(dB)
Max | | | | | _ | | | | | | | | | | | | | | | toff
(ns)
Max | | | | | 18 | | 18 | | | | | | | | | | | | | (mA) | 20 | 20 | 20 | 50 | 10 | | | | | | | | | | | | | | | f _T
(MHz) (
Min Max | 200 | 200 | 200 | 200 | 400 | | | | | | | | | | | | | | | C _{ob}
(pF) | 9 | 9 | 8 | 8 | | | | | | | | | | | | | | | | LC (mA) | 150
500 | 150
500 | 150
500 | 150
500 | 10 | 50 | 10 | 5 | | | | | | | | | | | | VBE(SAT) VBE(ON)* @ (V) Min Max | | | | | 7 0.85 | | 7 0.85 | 1.2 | | | | | ㅂ | | | | | | | | | | | | 0.7 | | 0.7 | | | 15 KHz. | | | 15.7 kH | al. | | | - | | | VCE(SAT)
(V) &
Max | 0.4
1.6 | 0.4
1.6 | 0.4
1.6 | 0.4
1.6 | 0.3 | 0.4 | 0.25 | 0.4 | | Note 11: $ c/l_B = 20$.
Note 12: $ c = 200 \mu A$, $V_{CE} = 5V$, $f = 30 \text{Hz}$ to 15 kHz. | | | Note 16: $ _C=250~\mu\text{A}$, $ _{\text{QE}}=5\text{V}$, $ _f=10~\text{Hz}$ to 15.7 kHz. Note 17: $ _C=15~\text{mA}$, $ _B^1= _B^2=1~\text{mA}$. | Note 18: I _C /I _B = 3.3.
Note 19: I _{CE} = 200 µA, V _{CE} = 5V, f = 200 Hz. | | | · | | | VcE
3 | 10 | 10 | 10 | 10 | | | 1 | | | 5V, f | - | | = 5V, f:
lg ² = 1 | = 5V,1 | | | | | | (mA) | 150 | 150 | 150 | 55 | - 5 | 20 23 | - \$ | 2 23 | |
I.A. Vo≘ | | g
8 | Note 16: $I_C = 250 \mu$ A, $V_{CE} = 50$, $f = 10$
Note 17: $I_C = 15 \text{mA}$, $I_B{}^1 = I_B{}^2 = 1 \text{mA}$. | 3.
JuA, V _{CS} | | | | | | HFE
hte
1 kHz* | 120 | 300 | 120 | ဓ္တ | 5 | 32 | 8 | 200 | | Note 11: Ic/Ig = 20.
Note 12: Ic = 200 µ | Note 13: I _C /I _B = 40. | Note 14: ${}^{(c)}$ / ${}^{(g)} = 1000$.
Note 15: ${}^{(c)}$ / ${}^{(g)} = 33$. | 7 = 250
≡ 15 m | Note 18: l _C /l _B = 3.3.
Note 19: l _{CE} = 200 μ | ł | | | | ~ | | 4 | 5 | 8 | 5 | £ ₹ | }
 | | ჵ ჯ | | 36 11: 년
3 12: 년 | ote 13: Ic | ote 14: 5 | ote 16: k | ote 18: k | | | | | (Continued) | S V CB | 25 | જ | β | ଜ | 9 | | 12 | | | žž | ž: | ŽŽ | žž | ŽŽ | | | | | | ICES*
ICBO ® V
(nA) (| 우 | 5 | 우 | 5 | 호 | | 5 | | | | | | | | | | | | Serie | VEBO
(V) | တ | so. | သ | သ | 3 | | | | | = 5 mA. | ; | = 10 mA.
1 mA. | | 15 mA. | | | | | ton | VcEo
(Y) | 4 | 4 | \$ | \$ | 12 | | 4 | | | 1 kHz | 1 KHz | . 18 = 18 = 18 = 18 = 18 = 18 = 18 = 18 | . 1 KHz
200 MHz | KHz
 = 13 ² = | WB. | | ·. | | Eleci | VCES*
VCBO
(V) | 9 | 8 | 8 | 8 | 82 | | | | | = 5V, f = ; | = 2V, f = | : = 10V, lg
= 3V, lg¹ | = 5V, f = 10V, f = | = 5V, f = 1
= 6V, lg | = 5V, f | | | | Bipolar Pro Electron Series | Case
Style | TO-236
(49) | TO-236
(49) | TO-236
(49) | TO-236
(49) | 10-236 | £ | TO-236 | (48) | DITIONS | 200 JuA, VCR
100 mA, VCR | 200 µA, VC | 100 mA, V _C
10 mA, V _{CC} | 100 µA, VCE 1 | 1 mA, VCE - | 10 µA, VC | | | | Bipol | Type
No. | BSS79-B | BSS79-C | BSS80-B | BSS80-C | BSV52 | | BSX39 | | TEST CONDITIONS: | Note 1: $ C = 200 \mu A$, $ V_{CE} = 5V$, $ f = 1 kFt$.
Note 2: $ C = 100 mA$, $ V_{CE} = 20V$, $ g = g = 5 mA$. | Note 3: Ic = 200 µA, VCE = 2V, f = 1 kHz. | Note 4: $ C = 100 \text{ mA}$, $ V_{CC} = 100$, $ g = g^2 = 10 \text{ mA}$.
Note 5: $ C = 10 \text{ mA}$, $ V_{CC} = 30$, $ g = g^2 = 1 \text{ mA}$. | Note 6: IC = 100 µA, VCE = 5V, f = 1 kHz
Note 7: IC = 1 mA, VCE = 10V, f = 200 MHz. | Note 8: $ _{C} = 1 \text{ mA}$, $ _{CE} = 5\text{ V}$, $ _{I} = 1 \text{ kHz}$
Note 8: $ _{C} = 150 \text{ mA}$, $ _{VCC} = 6\text{ V}$, $ _{R}^{1} = _{R}^{2} = 15 \text{ mA}$. | Note 10: Ic = 10 µA, VcE = 5V, f = WB. | | |