

MR327 MR328 MR330 MR331 See Page 3-10

MR500 MR501 MR502 MR504 MR506 MR508 MR510

STANDARD RECOVERY POWER RECTIFIERS

50-1000 VOLTS 3 AMPERE

Designers Data Sheet

MINIATURE SIZE, AXIAL LEAD MOUNTED STANDARD RECOVERY POWER RECTIFIERS

 \ldots , designed for use in power supplies and other applications having need of a device with the following features:

- · High Current to Small Size
- High Surge Current Capability
- Low Forward Voltage Drop
- Economical Plastic Package
- Available in Volume Quantities

Designer's Data for "Worst Case" Conditions

The Designers - Data sheets permit the design of most circuits entirely from the information presented - Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design

MAXIMUM RATINGS

Rating	Symbol	MR500	MR501	MR502	MR504	MR506	MR508	MR510	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	800	1000	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	75	150	250	450	650	850	1050	Volts
Average Rectified Forward Current (Single phase resistive load, T _Z = 95°C, PC Board Mounting) (1) (EIA Standard Conditions L = 1/32", T _L = 85°C)	10	30					-	Anp	
Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	[‡] FSM						-	Anp	
Operating and Storage Junction Temperature Range (2)	T _J ,T _{Stg}	-			-65 to +175	·			÷C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	28	°C/W
(Recommended Printed Circuit Board			
Mounting, See Note 2 on Page 41.			

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (3)	٧F				Volts
(ig = 9.4 Amp, T _J = 175 ⁰ C)		-	0.9	1.0	
(IF = 9.4 Amp, T _J = 25 ⁰ C)		-	1.04	1.1	
Reverse Current (rated dc voltage) (3)	I _R				μА
T _J = 25 ^o C		_	01	5.0	
T _J = 100°C		-	28	25	

- (1) Derate for reverse power dissipation. See Note on Page 2.
- (2) Derate as shown in Figure 1.
- (3) Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2.0%

MECHANICAL CHARACTERISTICS

Case: Transfer Molded Plastic
Finish: External Leads are Plated,
Leads are readily Solderable
Polarity: Indicated by Cathode Band
Weight: 1.1 Grams (Approximately)
Maximum Lead Temperature for
Soldering Purposes:

 300° C, $1/8^{\prime\prime}$ from case for 10 s at 5.0 lb. tension

MR500, MR501, MR502, MR504, MR506, MR508, MR510

NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 200 volts. Proper derating may be accomplished by use of souation (1):

$$T_{A\{max\}} = T_{J\{max\}} - R_{\theta JA}P_{F\{AV\}} - R_{\theta JA}P_{R\{AV\}}$$
 (1)

TA(max) = Maximum allowable ambient temperature

T_J(max) = Maximum allowable junction temperature (175°C or the temperature at which thermal runaway occurs, whichever is lowest.)

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

ReJA = Junction-to-ambient thermal resistance

Figure 1 permits easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figure solves for a reference temperature as determined by equation (2):

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields.

$$T_{A(max)} = T_{R} - R_{\theta JA} P_{F(AV)}$$
(3)

Inspection of equations (2) and (3) reveals that T_R is the ambient temperature at which thermal runaway occurs or where $T_J = 175^{\circ}C$,

when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figure 1 as a difference in the rate of change of the slope in the vicinity of 165°C. The data of Figure 1 is based upon dc conditions. For use in common rectifier circuits, Table 1 indicates suggested factors for an equivalent dc voltage to use for conservative design, i.e.:

$$V_{R(equiv)} = V_{in}(PK) \times F$$
 (4)

The Factor F is derived by considering the properties of the various rectifier circuits and the rectifiers reverse characteristics.

Example: Find $T_{A(max)}$ for MR510 operated in a 400 Volt do supply using a full wave center-tapped circuit with capacitive filter such that 1_{DC} = 6.0 A, $1_{IF(AV)}$ = 3.0 A), $1_{IF(AV)}$ = 10, Input Voltage = 283 V(rms) (line to center tap), R_{9JA} = 28°C/W.

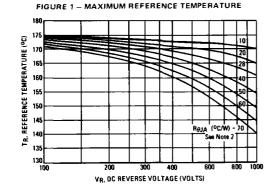
Step 1: Find $V_{R(equiv)}$. Read F = 1.11 from Table 1...

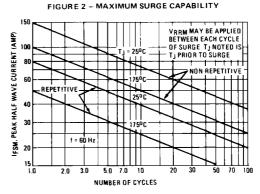
V_{R(equiv)} = 1.41)(283)(1.11) = 444 V

Step 2: Find T_R from Figure 1, Read T_R = 167° C @ $V_R = 444 \text{ V & R}_{\theta,JA} = 28^{\circ}$ C/W.

Step 3: Find P_{F(AV)} from Figure 8 Read P_{F(AV)} = 4 W

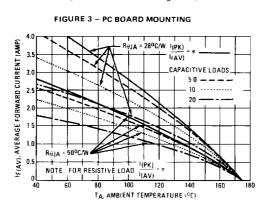
$$@ \frac{|PK|}{|AV|} = 10 & |F{AV}| = 3.0 A$$


Step 4: Find $T_{A(max)}$ from equation (3) $T_{A(max)} = 167-(28)$ (4) = 55°C.


TABLE I - VALUES FOR FACTOR F

Circuit	Half Wave		Full War	re, Bridge	Full Wave Center-Tapped*†		
Load Resistive		Capacitive*	Resistive	Capacitive	Resistive	Capacitive	
Sine Wave	0.45	1.11	0.45	0 55	0 90	1.11	
Square Wave	0.61	1.22	0.61	0.61	1.22	1.22	

^{*}Note that $V_{R(PK)} \approx 2 V_{in(PK)}$


[†]Use line to center tap voltage for Vin-

CURRENT DERATING

(Reverse Power Loss Neglected)

FIGURE 4 - SEVERAL LEAD LENGTHS

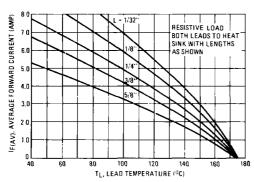


FIGURE 5 - 1/8" LEAD LENGTH

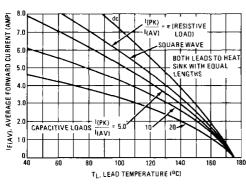


FIGURE 6 - MAXIMUM FORWARD VOLTAGE

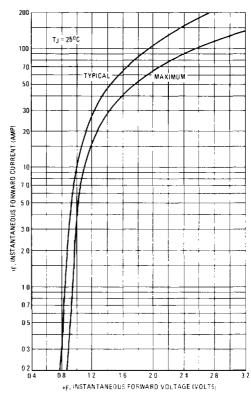
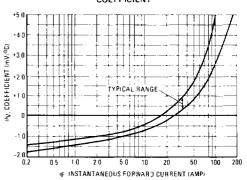
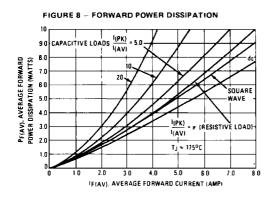
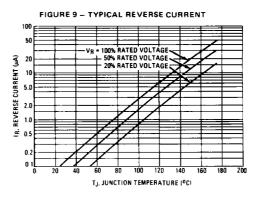
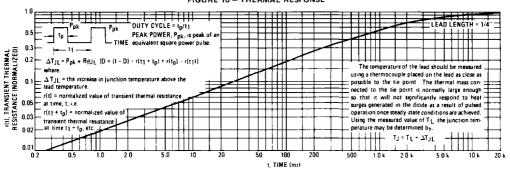
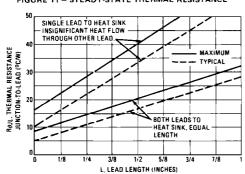
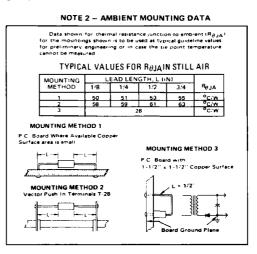
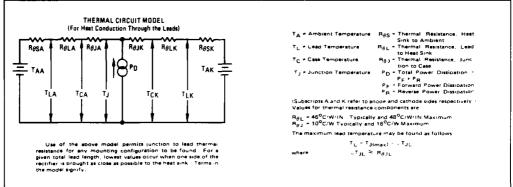





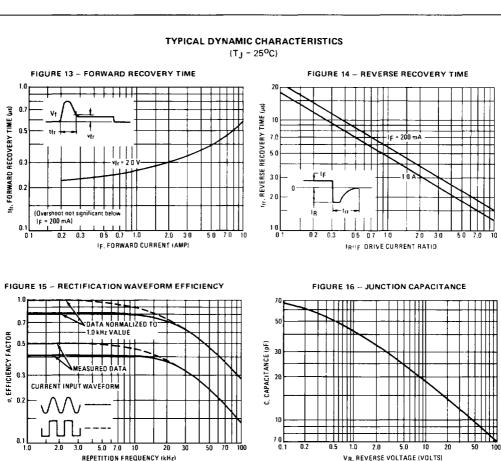
FIGURE 7 – FORWARD VOLTAGE TEMPERATURE COEFFICIENT


MR500, MR501, MR502, MR504, MR506, MR508, MR510



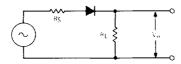

THERMAL CHARACTERISTICS


FIGURE 11 - STEADY-STATE THERMAL RESISTANCE



3

FIGURE 12 - APPROXIMATE THERMAL CIRCUIT MODEL



MR500, MR501, MR502, MR504, MR506, MR508, MR510

RECTIFIER EFFICIENCY NOTE

FIGURE 17 - SINGLE-PHASE HALF-WAVE RECTIFIER CIRCUIT

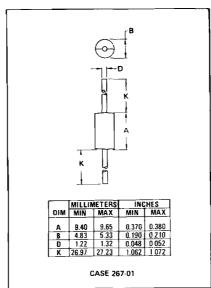
The rectification efficiency factor $\boldsymbol{\sigma}$ shown in Figure 15 was calculated using the formula

$$T = \frac{P(dc)}{P(rms)} = \frac{\frac{V^2_{o}(dc)}{R_L}}{\frac{R_L}{V^2_{o}(rms)}} = \frac{V^2_{o}(dc)}{V^2_{o}(ac) + V^2_{o}(dc)} = 100^{\circ} c + 11$$

For a sine wave input $|V_m|\sin(\omega t)$ to the diode, assumed lossless, the maximum theoretical efficiency factor becomes

$$\sigma_{\text{(sine)}} = \frac{\frac{V^2 \text{m}}{\pi^2 \text{R}_L}}{\frac{V^2 \text{m}}{4 \text{R}_L}} = \frac{4}{\pi^2} \cdot 100^{\circ}_0 = 40.6^{\circ}_0$$
 (2)

For a square wave input of amplitude V_{m_i} , the efficiency factor becomes


$$a_{(\text{square})} = \frac{\frac{V - m}{2R_L}}{\frac{2R_L}{V_{\text{cm}}}} = \frac{100\% = 50\% + (3)}{R_L}$$

(A full wave circuit has twice these efficiencies)

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 14) becomes significant, resulting in an increasing ac voltage component across Rig which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor or, as shown on Figure 15.

It should be emphasized that Figure 45 shows waveform efficiency only; it does not provide a measure of diode losses. Data was obtained by measuring the ac-component of V_0 with a true rms ac voltmeter and the dc-component with a dc-voltmeter. The data was used in Equation 1 to obtain points for the figure.

OUTLINE DIMENSIONS

