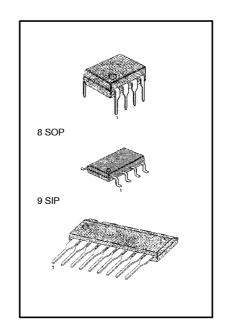
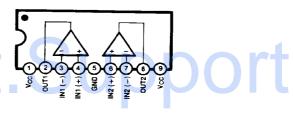
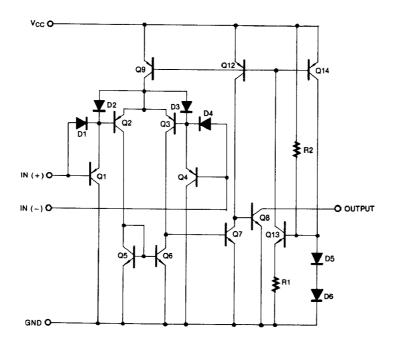
DUAL DIFFERENTIAL COMPARATOR


The LM293 series consists of two independent voltage comparators designed to operate from a single power supply over a wide voltage


FEATURES

- Single Supply Operation: 2V to 36V
 Dual Supply Operation: ± 1V to ±18V
 Allow Comparison of Voltages Near Ground Potential
- Low Current Drain 800μA Typ
- Compatible with all Forms of Logic
- Low Input Bias Current 25nA Typ
 Low Input Offset Current ±5nA WP
- Low Offset Voltage ±1mV Typ

BLOCK DIAGRAM



ORDERING INFORMATION

Device	Package	Operating Temperature			
LM393N	8 DIP				
LM393AN	0 011				
LM393S	9 SIP	0 ~ + 75°C			
LM393AS	9 311	0 +73 0			
LM393M	8 SOP				
LM393AM	6 3OF				
LM293N	8 DIP				
LM293AN	6 DIF				
LM293S	9 DIP	-25 ~ + 85°C			
LM293AS	9 DIF	25 1 05 0			
LM293M	8 SOP				
LM293AM	6 SUP				
LM2903N	8 DIP				
LM2903M	8 SOP	-40 ~ + 85°C			
LM2903S	9 SIP				

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit	
Power Supply Voltage	V _{cc}	±18 or 36	٧	
Differential Input Voltage	V _{I(DIFF)}	36	٧	
Input Voltage	Vi	- 0.3 to +36	٧	
Output Short Circuit to GND		Continuous		
Power Dissipation	P _D	570	mW	
Operating Temperature LM393/LM393A LM293/LM293A LM2903	T _{OPR}	0 ~ + 70 - 25 ~ + 85 - 40 ~ + 85	°C	
Storage Temperature	T _{STG}	- 65 ~ + 150	°C	

DUAL COMPARATOR

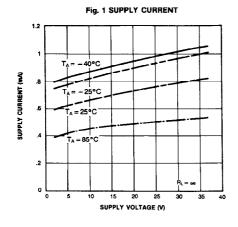
ELECTRICAL CHARACTERISTICS (V_{CC} =5V, T_A=25°C, unless otherwise specified)

Oh awa ata wiati a		Test Conditions		LM293A/LM393A			LM293/LM393			Unit	
Characteristic	Symbol			Min	Тур	Max	Min	Тур	Max	UIII	
Input Offset Voltage V _{IO}		V _{CM} =0V to V _{CC} =1.5V			±1	±2		±1	±5		
		$V_{O(P)} = 1.4V, R_S = 0\Omega$	NOTE 1			±4.0			±9.0	mV	
	I _{IO}				±5	±50		±5	±50	A	
Input Offset Current	110		NOTE 1			±150			±150	n A	
Input Bias Current	L				65	250		65	250	nA	
Input Blas Current	BIAS		NOTE 1			400			400	ША	
Input Common Mode	V _{I(R)}			0		V _{CC} -1.5	0		V _{CC} -1.5	v	
Voltage Range	- I(N)		NOTE 1	0		V _{cc} -2	0		V _{CC} -2	٧	
Committee Committee		$R_L = \infty$			0.6	1		0.6	1	m A	
Supply Current	laa	$R_L = \infty$, $V_{CC} = 30V$			0.8	2.5		8.0	2.5	į	
Voltage Gain	Gν	V _{CC} =15V, R _L ≥15KΩ (for large V _{O(P-P)swing})		50	200		50	200		V/mV	
Large Signal Response		V _I =TTL Logic Swing			350			350		ns	
Time	t _{RES}	$V_{REF} = 1.4V, V_{RL} = 5V, I$	$R_L = 5.1 K\Omega$	330				330		118	
Response Time	t _{RES}	$V_{RL} = 5V, R_L = 5.1K\Omega$			1.4			1.4		μs	
Output Sink Current	I _{SINK}	$V_{I(-)} \ge 1V$, $V_{I(+)} = 0V$, $V_{O(P)} \le 1.5V$		6	18		6	18		m A	
Output Saturation Voltage	V _{SAT}	V _{I(-)} ≥1V, VI(+) =0V			160	400		160	400		
		I _{SINK} = 4mA	NOTE 1			700			700	mV	
Output Laskage Current	I _{O(LKG)}	$V_{I(-)} = 0V$,	$V_{O(P)} = 5V$		0.1			0.1		n A	
Output Leakage Current	iO(LKG)	$V_{I(+)} = 1V$	$V_{O(P)} = 30V$			1.0			1.0	μА	

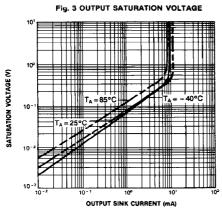
NOTE 1

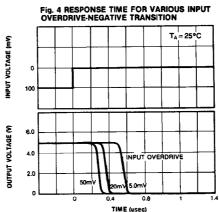
LM393/A: 0≤T_A≤ +70°C LM293/A: -25≤T_A≤ +85°C LM2903: -40≤T_A≤ +85°C

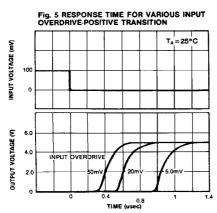
$\textbf{ELECTRICAL CHARACTERISTICS} \; (V_{\text{CC}} = 5V, \, T_{\text{A}} = 25^{\circ}\text{C}, \, \text{unless otherwise specified})$


Characteristic	Cumbal	Test Conditions			LM29			
Characteristic	Symbol			Min	Тур	Max	Unit	
		$V_{CM} = 0V$ to $V_{CC} = 1.5V$	$V_{CM} = 0V$ to $V_{CC} = 1.5V$		±1	±7	.,	
Input Offset Voltage	V _{IO}	$V_{O(P)} = 1.4V, R_S = 0\Omega$ NOTE 1			±9	±15	mV	
1 10" 10	Ι.				±5	±50	n A	
Input Offset Current	I _{IO}		NOTE 1		±50	±200	ПА	
Input Bias Current	T .				65	250	n A	
Input bias Current	BIAS		NOTE 1			500	IIA	
Input Common Mode V _{I(R)}				0		V _{cc} -1.5	V	
Voltage Range	• I(H)		NOTE 1	0		V _{cc} -2	V	
Supply Current	lcc	$R_L = \infty$			0.6	1		
Supply Current		$R_L = \infty$, $V_{CC} = 30V$			1	2.5	m A	
Voltage Gain	G√	V _{CC} =15V, R _L ≥15KΩ(for large V _{O(P-P)swing})		25	100		V/mV	
Large Signal Response Time	t _{RES}	V_{I} =TTL Logic Swing V_{REF} =1.4V, V_{RL} =5V, R_{L} =5.1K Ω			350		ns	
Response Time	t _{RES}	$V_{RL} = 5V$, $R_L = 5.1K\Omega$			1.5		μs	
Output Sink Current	I _{SINK}	$V_{I(-)} \ge 1 V$, $V_{I(+)} = 0 V$, $V_{O(P)} \le 1.5 V$		6	16		mA	
Output Saturation Voltage	V _{SAT}	V _{I(-)} ≥1V, VI(+) =0V			160	400	.,	
		I _{SINK} = 4mA	NOTE 1			700	m V	
Output Lookaga Current	l _{O(LKG)}	$V_{I(-)} = 0V$,	$V_{O(P)} = 5V$		0.1		n A	
Output Leakage Current	IO(LKG)	$V_{I(+)} = 1V$	$V_{O(P)} = 30V$			1.0	μΑ	


NOTE 1


LM393/A: 0≤T_A≤ +70°C LM293/A: -25≤T_A≤ +85°C LM2903: -40≤T_A≤ +85°C




TYPICAL PERFORMANCE CHARACTERISTICS

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEX™ ISOPLANAR™ CoolFET™ MICROWIRE™

CROSSVOLT™ POP™

E²CMOS[™] PowerTrench[™]

FACTTM QSTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.