

2N5401

Amplifier Transistor • Collector-Emitter Voltage: V_{CEO}= 150V • Collector Dissipation: P_C (max)=625mW

- Suffix "-C" means Conter Collector (1. Emitter 2. Collector 3. Base)

PNP Epitaxial Silicon Transistor

Absolute Maximum Ratings T_a=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	-160	V
V _{CEO}	Collector-Emitter Voltage	-150	V
V _{EBO}	Emitter-Base Voltage	-5	V
I _C	Collector Current	-600	mA
P _C	Collector Dissipation	625	mW
T _J	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-55 ~ 150	°C

Electrical Characteristics T_a=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	$I_C = -100 \mu A, I_E = 0$	-160			V
BV _{CEO}	* Collector-Emitter Breakdown Voltage	$I_C = -1 \text{mA}, I_B = 0$	-150			V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_E = -10\mu A, I_C = 0$	-5			V
I _{CBO}	Collector Cut-off Current	V _{CB} = -120V, I _E =0			-50	nA
I _{EBO}	Emitter Cut-off Current	V_{EB} = -3V, I_{C} =0			-50	nA
h _{FE}	* DC Current Gain	I _C = -1mA, V _{CE} = -5V I _C = -10mA, V _{CE} = -5V I _C = -50mA, V _{CE} = -5V	30 60 50		240	
V _{CE} (sat)	* Collector-Emitter Saturation Voltage	I_C = -10mA, I_B = -1mA I_C = -50mA, I_B = -5mA			-0.2 -0.5	V V
V _{BE} (sat)	* Base-Emitter Saturation Voltage	I_C = -10mA, I_B = -1mA I_C = -50mA, I_B = -5mA			-1 -1	V V
f _T	Current Gain Bandwidth Product	I _C = -10mA, V _{CE} = -10V, f=100MHz	100		400	MHz
C _{ob}	Output Capacitance	V _{CB} = -10V, I _E =0, f=1MHz			6	pF
N _F	Noise Figure	I_C = -250μA, V_{CE} = -5V R_S =1K Ω f=10Hz to 15.7KHz			8	dB

* Pulse Test: Pulse Width≤300μs, Duty Cycle≤2%

Typical Characteristics

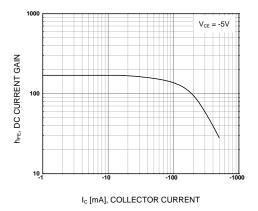


Figure 1. DC current Gain

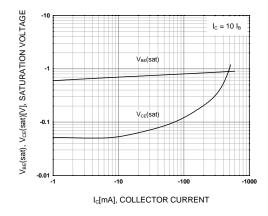


Figure 2. Base-Emitter Saturation Voltage Collector-Emitter Saturation Voltage

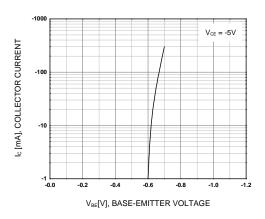


Figure 3. Base-Emitter On Voltage

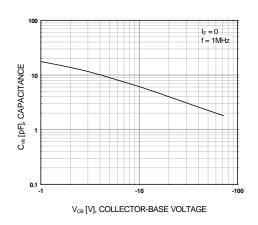
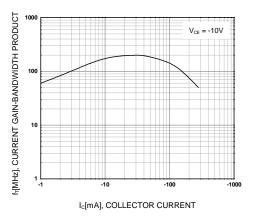
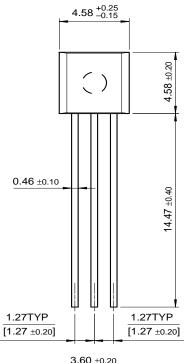
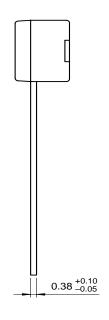
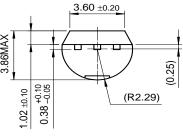


Figure 4. Output Capacitance


Figure 5. Current Gain Bandwidth Product


©2004 Fairchild Semiconductor Corporation Rev. B, May 2004

Package Dimensions

TO-92

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FAST[®] $ACEx^{TM}$ ISOPLANAR™ Power247™ SuperFET™ $\mathsf{FASTr}^{\mathsf{TM}}$ ActiveArrav™ LittleFET™ PowerSaver™ SuperSOT™-3 FPS™ MICROCOUPLER™ $\mathsf{PowerTrench}^{\mathbb{R}}$ SuperSOT™-6 Bottomless™ QFET® $\mathsf{CoolFET}^{\mathsf{TM}}$ FRFET™ MicroFET™ SuperSOT™-8 QS™ SyncFET™ GlobalOptoisolator™ MicroPak™ $CROSSVOLT^{TM}$ MICROWIRE™ TinyLogic[®] GTO™ QT Optoelectronics™ $\mathsf{DOME}^\mathsf{TM}$ HiSeC™ TINYOPTO™ MSX^{TM} EcoSPARK™ Quiet Series™ $I^2C^{\scriptscriptstyle\mathsf{TM}}$ $MSXPro^{TM}$ RapidConfigure™ TruTranslation™ E²CMOS™ OCX^{TM} EnSigna™ i-Lo™ RapidConnect™ UHC™ $\mathsf{UltraFET}^{\circledR}$ ImpliedDisconnect™ FACT™ OCXPro™ uSerDes™ OPTOLOGIC® VCX^{TM} SILENT SWITCHER® FACT Quiet Series™ OPTOPLANAR™ SMART START™ Across the board. Around the world.™ PACMAN™

The Power Franchise® РОР™ Programmable Active Droop™

SPM™ Stealth™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Search:

Go

DATASHEETS, SAMPLES, BUY TECHNICAL INFORMATION APPLICATIONS DESIGN CENTER SUPPORT COMPANY INVESTORS MY F.

Home >> Find products >>

2N5401

PNP General Purpose Amplifier

Contents

Features

- Qualification Support
- Product status/pricing/packaging
- Order Samples
- Models

Features

back to top

- Collector-Emitter Voltage: VCEO= 150V • Collector Dissipation: PC (max)=625mW
- Suffix "-C" means Conter Collector (1. Emitter 2. Collector 3. Base)

BUY

Datasheet Download this datasheet

e-mail this datasheet

This page Print version

Request samples

Related Links

How to order products

Product Change Notices (PCNs)

Support

Sales support

Quality and reliability

Design center

Product status/pricing/packaging

BUY

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method	Package Marking Convention**	
2N5401BU	Full Production	Full Production	\$0.0281	<u>TO-92</u>	3	BULK	<u>Line 1:</u> 2N <u>Line 2:</u> 5401 <u>Line 3:</u> -&3	
2N5401CTA	Full Production	Full Production	\$0.0281	<u>TO-92</u>	3	AMMO	Line 1: 2N Line 2: 5401 Line 3: C&3	
2N5401NLBU	Full Production	Full Production	\$0.0281	<u>TO-92</u>	3	BULK	Line 1: 2N Line 2: 5401 Line 3: -&3	
2N5401TA	Full Production		\$0.0281	<u>TO-92</u>	3	AMMO	Line 1: 2N Line 2: 5401 Line 3: -&3	

		Full Production					
2N5401TAR	Full Production	Full Production	\$0.0281	TO-92	3	АММО	<u>Line 1:</u> 2N <u>Line 2:</u> 5401 <u>Line 3:</u> -&3
2N5401TF	Full Production	Full Production	\$0.0281	<u>TO-92</u>	3	TAPE REEL	Line 1: 2N Line 2: 5401 Line 3: -&3
2N5401TFR	Full Production	Full Production	\$0.0281	TO-92	3	TAPE REEL	Line 1: 2N Line 2: 5401 Line 3: -&3
2N5401_D81Z	Full Production	Full Production	N/A	<u>TO-92</u>	3	TAPE REEL	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) & 3 (3-Digit Date Code) Line 2: 2N Line 3: 5401
2N5401_J05Z	Full Production	Full Production	N/A	<u>TO-92</u>	3	BULK	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) & 3 (3-Digit Date Code) Line 2: 2N Line 3: 5401
2N5401_J61Z	Full Production	Full Production	N/A	TO-92	3	BULK	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) & 3 (3-Digit Date Code) Line 2: 2N Line 3: 5401

^{*} Fairchild 1,000 piece Budgetary Pricing

** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a Fairchild distributor to obtain samples

Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product 2N5401 is available. Click here for more information.

back to top

Models

Package & leads	Condition	Temperature range	Software version	Revision date	
		PSPICE			
TO-92-3	<u>Electrical</u>	25°C	N/A	N/A	

back to top

Qualification Support

Click on a product for detailed qualification data

Product
<u>2N5401BU</u>
2N5401CTA
2N5401NLBU
<u>2N5401TA</u>
<u>2N5401TAR</u>
2N5401TF
<u>2N5401TFR</u>
2N5401_D81Z
2N5401_J05Z
2N5401_J61Z

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions |